工程水文课程设计1
- 格式:doc
- 大小:597.39 KB
- 文档页数:17
工程水文学课程设计
一、课程目标
1. 了解工程水文学的基本概念和原理。
2. 掌握水文数据的收集、处理和分析方法。
3. 学习水文模型的建立和应用。
4. 培养学生运用工程水文学知识解决实际工程问题的能力。
二、课程内容
1. 工程水文学基础:包括水循环、河流径流、降水、蒸发等基本概念。
2. 水文数据分析:介绍如何收集、整理和分析水文数据,如水位、流量、降水等。
3. 水文模型:讲解常用的水文模型,如水箱模型、马斯京根法等,并进行实例分析。
4. 洪水预估与防洪工程:学习洪水预估方法和防洪工程的设计。
5. 水资源管理与规划:探讨水资源的合理利用和保护。
三、教学方法
1. 课堂讲授:讲解工程水文学的基本理论和方法。
2. 案例分析:通过实际工程案例,让学生了解如何应用工程水文学知识解决问题。
3. 实验与实践:进行水文数据的观测和分析,以及水文模型的应用实践。
4. 小组讨论:组织学生进行小组讨论,共同探讨工程水文学中的问题和解决方案。
四、考核方式
1. 平时作业:布置课后作业和课堂练习,以检验学生对知识的掌握程度。
2. 课程项目:要求学生完成一项与工程水文学相关的课程项目,培养其实际应用能力。
3. 期末考试:通过笔试形式,考核学生对工程水文学的整体理解和掌握情况。
目录第一章设计水库概况 (1)1.1流域概况 (1)1。
2工程概况 (1)第二章年径流分析计算 (4)2.1 径流资料来源 (4)2。
2 年径流资料的审查 (4)2.2.1 资料可靠性审查 (4)2。
2.2 资料一致性审查 (4)2.2.3 资料代表性审查 (4)2.3 设计年径流分析计算 (4)2。
3。
1 水利年划分 (4)2。
3。
2 绘制年径流频率曲线 (4)2。
3。
2。
1 频率曲线线型选择 (4)2.3。
2.2 经验频率计算 (5)2。
3。
2。
3 频率曲线参数估计 (5)2。
3。
2。
4 绘制频率曲线 (5)2.3。
3 计算成果 (7)2。
3.4成果合理性分析 (7)2。
4 设计代表年径流分析计算 (7)2。
4。
1 代表年的选择应用实测径流资料选择代表年的原则: (7)2。
4.2 设计代表年径流年内分配计算 (7)2.4。
3 代表年内径流分配成果 (7)第三章设计洪水分析 (9)3.1 洪水资料的审查 (9)3.1.1 洪水资料可靠性审查 (9)3.1.2 洪水资料一致性审查 (9)3.1。
3 洪水资料代表性审查 (9)3.2 特大洪水的处理 (9)3。
3 设计洪水分析计算 (9)3.3.1 频率曲线线型选择 (9)3。
3。
2 经验频率计算 (9)3.3。
3 频率曲线参数估计 (10)3。
3.4 绘制频率曲线 (10)3.3.5 成果合理性分析 (13)3。
3。
6 计算成果 (13)3.4 设计洪水过程线 (13)3。
4。
1 典型洪水过程线的选取 (13)3。
4。
2 推求设计洪水过程线方法 (13)3.4.3 计算成果 (14)3。
4.4 设计洪水过程线的绘制 (14)第四章兴利调节 (16)4.1 兴利调节计算的方法 (16)4.2 兴利调节计算 (16)4。
2。
1 来水量的确定 (16)4.2。
2 用水量的确定 (16)4.2.2。
1 灌溉用水量的确定 (16)4。
2.2。
2 城镇生活供水 (16)4。
工程水文与水利计算课程设计
在课程设计中,学生需要通过理论学习和案例分析,全面了解和掌握
水文学和水利计算的基本原理和方法,同时还需要具备编程和计算能力,
能够运用计算机软件进行水文数据的处理和水利计算的分析。
在设计课程中,可以分为以下几个步骤:
第一步,了解水文数据的处理方法。
水文数据包括降雨、径流和蒸散
发等,学生需要学会如何获取和整理水文数据,如何进行数据质量的评估
和处理。
第二步,学习水文计算的基本原理和方法。
这包括水文过程的模拟与
预报、水力学计算和水文统计学等。
学生需要通过理论学习和实例分析,
掌握水文计算的基本原理和方法。
第三步,学习水利计算的基本原理和方法。
水利计算是指在水利工程
设计中,对水流、水位、水库及渠道的水力条件进行计算。
学生需要学习
水利计算的基本原理和常用的计算方法,如渠道流量计算、堤坝稳定性计
算等。
第四步,运用计算机软件进行水文和水利计算的实践。
在这一步骤中,学生需要学会使用计算机软件进行水文数据的处理和水利计算的分析。
常
用的软件包括E某cel、Matlab和SWMM等。
第五步,进行课程设计的实践。
学生可以选择一个具体的水利工程设
计实例,运用所学的知识和方法,进行水文数据的处理和水利计算的分析。
通过实践,学生可以巩固所学的理论知识,提高实际操作能力。
通过以上的课程设计,学生可以全面掌握工程水文与水利计算的理论和实践,培养学生的水文数据处理和水利计算的能力,提高他们在水利工程领域的应用能力。
这对于培养具有工程实践能力的水利工程专业人才具有重要意义。
目录第一章设计水库概况 (1)1.1流域概况 (1)1.2工程概况 (1)第二章年径流分析计算 (4)2.1 径流资料来源 (4)2.2 年径流资料的审查 (4)2.2.1 资料可靠性审查 (4)2.2.2 资料一致性审查 (4)2.2.3 资料代表性审查 (4)2.3 设计年径流分析计算 (4)2.3.1 水利年划分 (4)2.3.2 绘制年径流频率曲线 (4)2.3.2.1 频率曲线线型选择 (4)2.3.2.2 经验频率计算 (5)2.3.2.3 频率曲线参数估计 (5)2.3.2.4 绘制频率曲线 (5)2.3.3 计算成果 (7)2.3.4成果合理性分析 (7)2.4 设计代表年径流分析计算 (7)2.4.1 代表年的选择应用实测径流资料选择代表年的原则: (7)2.4.2 设计代表年径流年内分配计算 (7)2.4.3 代表年内径流分配成果 (7)第三章设计洪水分析 (9)3.1 洪水资料的审查 (9)3.1.1 洪水资料可靠性审查 (9)3.1.2 洪水资料一致性审查 (9)3.1.3 洪水资料代表性审查 (9)3.2 特大洪水的处理 (9)3.3 设计洪水分析计算 (9)3.3.1 频率曲线线型选择 (9)3.3.2 经验频率计算 (9)3.3.3 频率曲线参数估计 (10)3.3.4 绘制频率曲线 (10)3.3.5 成果合理性分析 (13)3.3.6 计算成果 (13)3.4 设计洪水过程线 (13)3.4.1 典型洪水过程线的选取 (13)3.4.2 推求设计洪水过程线方法 (13)3.4.3 计算成果 (14)3.4.4 设计洪水过程线的绘制 (14)第四章兴利调节 (16)4.1 兴利调节计算的方法 (16)4.2 兴利调节计算 (16)4.2.1 来水量的确定 (16)4.2.2 用水量的确定 (16)4.2.2.1 灌溉用水量的确定 (16)4.2.2.2 城镇生活供水 (16)4.2.3 死水位与死库容的确定 (17)4.2.3.1死水位的确定 (17)4.2.3.2 死库容的确定 (17)4.2.3水量损失的确定 (18)4.2.4 渗漏损失 (18)4.2.5 计入水量损失的兴利调节 (18)4.2.7 计算成果 (18)第五章水库调洪演算 (20)5.1 泄洪方案的拟定 (20)5.2 水库调洪的基本原理 (20)5.3 水库调洪的列表试算法 (21)5.4 计算成果 (22)5.4.1 不同重现期洪水的水库调洪试算 (22)5.4.2 特征水位及特征库容 (25)参考文献 (26)第一章设计水库概况1.1流域概况石堡川河系洛河左岸的一级支流,发源于陕西省黄龙山脉的宜川县丰河沟海拔1700m的中字梁,流经宜川、黄龙、洛川、白水等县,于白水县法家塔汇入洛河。
工程水文课程设计指导书水利教研室编第一节产流汇流方案编制一、产流方案的编制过程1、首先搜集流域的自然地理概况、地质与水文地质条件、气候特点、以及流域特征,分析判断本流域的主要产流条件。
2、搜集和整理水文气象资料。
必须搜集的有:分段降水量摘录表;逐日降水量表;洪水水文要素摘录表;逐日流量表和水系图表(均可在水文总站刊印本中查阅),这些资料需整理和选择,作为编制降雨径流相关图的基本依据;3、绘制流量过程线和降雨过程线流量过程线应从每年汛期前或汛期初开始绘制连续绘到汛期结束。
流量过程线根据洪水水文要素摘录表绘制,在没有洪水水文要素摘录资料的时时段,可用逐日流量表中的平均流量来补充。
流量过程线的流量及时间比例尺,一般应历年统一。
如果遇到个别较大洪水,图幅不足,可单独选用比例尺,另绘图形。
流量过程线绘好后,在其图纸上边绘制相应的雨量过程柱状图,用流域平均时段降雨量绘制,但要求时段不能太长,以3小时或6小时为宣。
若两次降雨相隔12小时,应分开计算成两次降雨。
4、选择和划分各次降雨与相应的洪水。
这—步很重要,问题也较多,必须细心谨慎,原则上凡是流量过程线上有明显起伏的洪峰及相应的各次降雨都应一一分开。
如果在实际工作中,有两次洪峰相距很近,且分界点很高时,往往不易划分,则可作为一次洪水处理,相应的降雨也作为一次过程,对洪峰之后的少量降雨可不必分开。
在划分洪水及其相应降雨时,必须注意要相对应,不要把前次洪水的降雨量划到本次洪水。
所以在划分时最好对照短期(时段)降雨记录。
连续洪水用退水曲线结合经验划分。
在实测资料中选择退水期基本无雨的退水曲线,用透明纸描绘并平移使各曲线尾部重合,取下包线作为该站的综合退水曲线。
各次洪水及其降雨一一划分后,按时间顺序将各次洪水编号,以便作图、分析和查对。
5、计算各次洪水的流域平均雨量P和降雨历时T(水库站、南山城、姜家街、三道岭)用算数平均法计算。
6、推求径流深R。
在量算径流深前,首先确定基流流量,通过历年枯水(封冻期除外)径流分析,采用比较稳定的枯季流量的多年平均值,作为基流。
工程水文课程设计邯郸市一、教学目标本课程旨在让学生掌握工程水文的基本概念、原理和方法,能够运用工程水文学知识分析和解决实际问题。
知识目标:了解工程水文学的基本概念、原理和方法,掌握水文循环的基本过程,熟悉水文数据的收集、分析和应用。
技能目标:能够运用工程水文学知识进行水文计算和分析,具备一定的工程水文设计能力,能够阅读和理解水文图纸和报告。
情感态度价值观目标:培养学生对水资源的敬畏之心,提高学生的环境保护意识,使学生认识到工程水文学在可持续发展中的重要性。
二、教学内容本课程的教学内容主要包括工程水文学的基本概念、水文循环及其过程、水文数据的收集和分析、水文计算、洪水分析与设计、地下水资源评价等。
具体安排如下:1.工程水文学的基本概念:介绍工程水文学的定义、作用和意义。
2.水文循环及其过程:讲解水文循环的基本过程,包括降水、蒸发、地表径流、地下径流等。
3.水文数据的收集和分析:介绍水文数据的收集方法,如降水观测、河流流量测量等,以及数据分析的基本方法。
4.水文计算:教授水文计算的基本方法,如设计洪水计算、径流系数计算等。
5.洪水分析与设计:讲解洪水的特性、洪水分析的方法以及洪水设计的原则。
6.地下水资源评价:介绍地下水资源的评价方法,包括地下水补给、排泄和储量的计算。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性。
1.讲授法:讲解基本概念、原理和方法,使学生掌握工程水文学的基本知识。
2.案例分析法:分析实际案例,使学生能够将理论知识应用于实际问题。
3.实验法:进行水文实验,使学生直观地了解水文现象和过程。
4.讨论法:课堂讨论,引导学生思考和探讨水文学问题,提高学生的批判性思维能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将使用以下教学资源:1.教材:选用权威、实用的工程水文学教材,作为学生学习的主要参考资料。
2.参考书:推荐相关的参考书籍,扩展学生的知识视野。
工程水文课程设计参考版一、教学目标本节课的教学目标是让学生掌握工程水文的基本概念、方法和应用,包括降水、蒸发、流量、泥沙等水文要素的观测和计算方法。
学生应能够运用所学的知识分析和解决实际工程中的水文问题。
在技能方面,学生应具备较强的水文数据采集、处理和分析能力。
在情感态度价值观方面,学生应认识到水文工作在工程建设中的重要性,培养对水文事业的热爱和责任感。
二、教学内容本节课的教学内容主要包括工程水文的基本概念、水文观测方法、水文计算方法和工程水文应用。
具体包括以下几个方面:1.工程水文的基本概念:降水、蒸发、流量、泥沙等水文要素的定义和关系。
2.水文观测方法:降水、蒸发、流量、泥沙等水文要素的观测设备、方法和步骤。
3.水文计算方法:降水、蒸发、流量、泥沙等水文要素的计算公式和计算方法。
4.工程水文应用:水文成果在工程设计、施工和运行中的应用案例。
三、教学方法为了激发学生的学习兴趣和主动性,本节课采用多种教学方法相结合的方式,包括讲授法、案例分析法和实验法等。
1.讲授法:通过讲解工程水文的基本概念、方法和应用,使学生掌握水文工作的基本知识。
2.案例分析法:分析实际工程中的水文案例,让学生学会如何运用水文知识解决实际问题。
3.实验法:学生进行水文实验,培养学生的动手能力和实际操作技能。
四、教学资源本节课的教学资源包括教材、参考书、多媒体资料和实验设备等。
教材和参考书用于提供理论知识和案例分析,多媒体资料用于辅助讲解和展示实验结果,实验设备用于开展水文实验。
这些教学资源应具备较高的科学性和系统性,以支持教学内容和教学方法的实施,丰富学生的学习体验。
五、教学评估本节课的评估方式包括平时表现、作业和考试三个部分,以全面客观地评价学生的学习成果。
平时表现主要考察学生的课堂参与、提问和小组讨论等情况,占总评的20%。
作业包括课堂练习和课后作业,占总评的30%。
考试为闭卷考试,内容涵盖本节课的全部知识点,占总评的50%。
目录1 工程概况与设计任务 (1)1。
1工程概况及原始资料 (1)1。
2设计任务 (3)2 干流设计洪水推求 (4)2。
1 特大洪水重现期N与实测系列长度n的确定 (4)2.2 洪水经验频率的计算 (4)2。
3 洪水频率曲线统计参数估计和确定 (7)2.4 干流设计洪峰流量推求 (9)3 支流小流域设计洪水计算 (10)3。
1 最大24小时设计暴雨过程推求 (10)3。
2 产流计算 (11)3。
3 汇流计算 (13)3.4 支流设计洪峰流量的确定 (15)4 桥址设计洪水流量 (15)5 桥址设计断面平均流速和设计水深 (15)6 设计感悟 (16)1 工程概况与设计任务1.1工程概况及原始资料某高速公路大桥跨越的河流断面来水由干流和支流洪水组成,干流水文站位于桥址上游1km处,资料可用来推求坝址处洪水,支流洪水由地区降雨资料推求。
干,支流与桥址位置示意图如图1所示.图1—1干支流与桥址位置示意图干流洪水资料有年洪峰最大流量,包括调查和实测资料,见表1。
另外,还调查到桥址附近干流1900年岸坡上洪痕点2个,分别位于水文站和桥轴线上,洪痕点高程分别为121。
3m和120。
8m,桥址断面河床高程为115。
03m,河床比降为0.5%0,床面与边坡曼宁粗糙系数n=0。
012,河宽500m,据此可得该年洪峰流量,作为一个洪水统计样本点.图1-2桥址河段年最大洪峰流量支流洪水为一小流域(流域面积为F )汇流而成。
1) 该支流流域无实测洪水流量资料,但流域中心附近有一个雨量站资料,经频率计算获得P=2%,1%所对应的最大1d 的设计点雨量分别为202。
4mm , 323.8mm.该地区暴雨点~面折算关系见表2,该地区的最大日降雨量与最大24小时降雨量根据经验其关系为p p H H ,,2414.1日=,设计暴雨时程分配见表3.表1-1某地区暴雨点~面折算关系表表1—2地区最大24小时设计暴雨的时程分配表2) 该流域位于湿润地区,m I 流域蓄水容量为。
湖南农业大学工学院课程设计说明书课程名称:工程水文学题目名称:新塘水库除险加固设计水文计算班级:20 13级水利水电工程专业 2班姓名:张雄亮学号:201340616226指导教师:张文萍评定成绩:教师评语:指导老师签名:20 年月日工程水文学课程设计任务书一、内容新塘水库除险加固设计水文计算二、设计资料2.1 流域概况新塘水库属湘江支流白水江水系,大坝坝址位于汨罗市川山坪镇清泉村,地理坐标位置东经113°01′11",北纬28°36′01",距清泉村庄约1.3km,距川山坪镇约5.0km,距汨罗市城区约35km。
新塘水库集雨面积0.5km2,干流长度0.572km,干流平均坡降为14.2‰。
新塘水库流域未设入库水文站,水库未开展任何水文水情观测;仅有断断续续的水位及雨情观测,并且其观测资料极不完整,不能满足规范要求。
故该水库洪水复核按无资料地区对待。
2.2 气象新塘水库地处亚热带季风气候区,属于湿润的大陆性气候。
冬季多为西伯利亚干冷气团控制,气候干燥寒冷;夏季为低纬海洋暖湿气团所盘据,温高湿重。
夏季之交,流域正处在冷暖气流交汇的过渡地带,形成阴湿多雨的梅雨天气。
根据汨罗气象站1957~2006年实测的气象站资料统计,多年平均气温为16.9℃,历年最高气温为40.1℃,最低气温为-14.7℃。
多年平均日照时数1987小时。
多年平均降雨量为1367.2mm,历年最大降雨量为2294.60mm(1998年),最小降雨量为1184.7mm(1972年),最大一日降雨量为208.00 mm。
历年最大风速24m/s,风向NNE,历年平均最大风速14.0m/s。
多年平均蒸发量为1104mm,全年无霜期266天。
6~8月气温高,蒸发量也大。
多年平均月蒸发量最大在7月份,达214.8mm。
2.3 水文基本资料新塘水库所在的河流没有水文站,建库后水库管理所也没有开展入库流量观测,为无资料地区,没有实测的水文气象资料,本次洪水复核按湖南省水利厅1984年编制的《湖南省暴雨洪水查算手册》查算设计洪水。
拟在某河上修筑蓄水工程。
坝址断面水文站内有 1960-2022 年的洪水流量观测资料,如表 1 所 示。
历史洪水洪峰流量调查资料如下: 1878 年为Q =14720m 3/s, 1901 年为Q =22100m 3/s ,为 1901m m年以来的最大洪峰流量, 1942 年为 8400m 3/s 。
1878- 1900 年间其他洪水未能查清。
分析选定的典型 洪水过程如表 2 所示。
表 1 实测历年洪水资料统计表表 2 典型洪水过程14 15 16 17 18 20 24根据以上资料推求百年一遇设计洪水的洪峰流量和洪水过程线。
1960920011030018723019849812115840211570 1961 8500 100020 183600 1985 3248 38830 70148 1962 7512 90110 152990 1986 8421 97810 178650 1963 6524 13048 139820 1987 3264 38650 70024 1964 2100 25200 45360 1988 5671 68500 40326 1965 6325 76216 138620 1989 5421 65420 115980 1966 5412 58340 116800 1990 6487 76840 140020 1967 5486 65600 118490 1991 9120 105420 189683 1968 2400 28560 51840 1992 8845 103110 191020 1969 3241 39000 68950 1993 6124 73450 132180 1970 6245 74230 135620 1994 2456 29400 52850 1971 980 10264 21152 1995 3210 37920 68936 1972 1600 18250 35310 1996 8451 101220 182540 1973 3245 37932 70005 1997 6243 74102 133980 1974 6328 12350 136420 1998 8515 102150 183682 1975 3261 39950 70420 1999 6278 75300 135800 1976 2369 27450 51124 2000 3164 36890 67842 1977 1620 18430 34820 2001 2489 28960 54160 1978 2458 27856 52852 2002 1189 14260 25640 1979 1540 17580 33240 2003 6120 72340 129806 1980 1200 13420 25860 2004 4832 58010 103740 1981 5412 64520 116583 2005 1006 12042 21560 1982 3214 38500 68490 2022 3216 39480 686544890 5634 6572 6310 6150 5648 52604890 4560 4235 3980 3674 3325 30003980 3420 3146 2653 3130 3582 42001240 1652 2430 2880 3832 4430 41000 4 8 12 13 14 1618 20 244 8 10 124 810 12 14 18 249781、分别选取洪峰流量和时段洪量组成计算样本,计算相应频率,绘制P-Ⅲ频率曲线;2、根据P-Ⅲ频率曲线推求设计洪峰流量和时段洪量;3、频率计算成果合理性检查;4、计算放大倍比;5、推求设计洪水过程线。
工程水文学课程设计学科:工学门类:水利类前景:本专业是以工程力学、水文学等为基础,研究水利水电工程建设相关的基本理论及工程设计、施工管理方法,研究消除水旱灾害、科学利用水资源的综合性学科。
随着社会经济进步和科学技术发展以及水危机的日益加剧,改善现有水利设施,加快江河治理、合理开发利用和配置水资源,大力发展水电等重任,要求有更多的适合国家需求和市场经济需要的水利水电人才,具有广阔的发展前景。
业务培养目标:本专业培养具有水利水电工程的勘测、规划、设计、施工、科研和管理等方面的知识,能在水利、水电等部门从事规划、设计、施工、科研和管理等方面工作的高级工程技术人才。
业务培养要求:本专业学生主要学习水利水电工程建设所必需的数学、力学和建筑结构等方面的基本理论和基本知识,使学生得到必要的工程设计方法、施工管理方法和科学研究方法的基本训练,具有水利水电工程勘测、规划、设计、施工、科研和管理等方面的基本能力。
毕业生应获得以下几方面的知识和能力:1.具有较扎实的自然科学基础,较好的人文社会科学基础和外语综合能力;2.掌握工程力学、流体力学、岩土力学、工程地质、工程测量、工程水文学、河流动力学、管理学等基本理论、基本知识;3.掌握工程结构设计基本理论、知识和技能;4.掌握大中型水利水电枢纽、河道治理工程的勘测、规划、设计、施工和管理技术;5.具有较强的计算机应用能力;6.具有水利水电工程所必需的测绘制图、运算和基本工艺操作技能。
主干学科:土木工程、水利工程主要课程:工程力学、水力学、河流动力学、岩土力学、工程地质及水文地质学、工程测量、工程水文学、工程经济学、建筑材料、钢筋混凝土结构和钢结构等。
主要实践性教学环节:包括课程实习、专业实习、课程设计和毕业设计等、其中每门课程设计一般安排1--2周,毕业设计一般安排12--13周。
修业年限:四年授予学位:工学学士就业方向:毕业生可在水利水电工程管理、设计、科学研究机构,工程单位和高等院校从事相关的设计、施工、管理和教学等工作,也可在土木建筑、交通和市政工程及其他行业从事相关工作。
目录一、洪水预报的目的意义 (1)二、流域自然地理概况 (1)三、水库工程管理情况 (1)四、产流方案的编制 (2)1、确定前期影响雨量折减系数K (2)2、计算前期影响雨量Pa (4)3、绘制降雨径流相关图 (5)五、汇流方案的编制 (5)1、单位线的推求 (5)2、单位线的时段转换 (8)六、产流汇流方案的编制 (10)1、利用降雨径流相关图推求净雨 (10)2、水库洪水过程线 (10)七、体会与意见 (12)一、洪水预报的目的意义洪水预报的目的就是预测短、中、长期河道洪水的发生与变化趋势。
准确及时的水文预报在防范水旱灾害、保证工农业安全生产、充分利用水资源以及发挥水利设施的作用等方面都具有重大意义。
二、流域自然地理概况该水库位于东经XX,北纬乂乂,第二松花江流域XX河水系,X河支流。
集水面积541平方公里,流域南北长约36公里,东西宽约22.5公里。
河流于XX镇汇入X河,全长54.9公里,流域面积756.8平方公理,为水库控制面积的 1.4 倍。
整个流域内没有较大的厂矿、企业和水利工程,沿河两岸滩地种植农作物约占坝址以上流域面积的17.8%。
水利设施有拦河坝和塘坝近40处,蓄水约150 万立方米,这些水利设施对汛期洪水影响不大,但对年径流特性有所改变。
该流域主要属大陆性气候,夏季常受太平洋季风和台风的影响,雨水较多,多年平均降雨量为750〜800毫米,6~9月流域平均雨量约占全年的80%以上.最大月雨量为371.1毫米(1960年8月),最大日雨量达132.5毫米(1957年7月)降雨分布很不均匀,多集中在7〜8月,占整个汛期60%以上。
冬季常受西伯利亚寒流影响,气温较低。
结冰期约140天。
多年平均温度为4℃,水面蒸发约600毫米,春秋多风而干燥,常出现5级以上的大风。
汛期洪水次数一般为2〜8次,洪水历时5〜7天,最大日平均流量为190m3/s,瞬时最大流量为442 m3/s。
根据洪水调查,1951年洪峰流量为1250米m3/s,相当于60年一遇的洪水。
[毕业设计精品] 赋石水库水利水电规划工程水文及水利计算课程设计资料1课程设计(综合实验)报告( 2011-- 2012年度第1学期)课题:赋石水库水利水电规划院系:可再生能源学院专业:水利水电工程班级:水电0902姓名:学号:指导教师:2011年12 月28日赋石水库水利水电规划一、设计任务在太湖流域的西苕溪支流西溪上,拟修建赋石水库,因而要进行水库规划的水文水利计算,其具体任务是:1、选择水库死水位。
2、选择正常蓄水位。
3、计算电站保证出力和多年平均发电量。
4、选择水电站装机容量。
5、推求设计标准和校核标准的设计洪水过程线。
6、推求洪水特征水位和大坝坝顶高程。
二、流域和水库情况简介西苕溪为太湖流域一大水系,流域面积为2260km2,发源于浙江省安吉县天目山,干流全长150km,上游坡陡流急,安城以下堰塘遍布,河道曲折,排泄不畅,易遭洪涝灾害,又因流域拦蓄工程较少,灌溉水源不足,易受旱灾。
赋石水库为根治西苕溪流域水旱灾害骨干工程之一,位于安吉县丰城以西十公里,控制西苕溪主要支流西溪,坝址以上流域面积328km2.流域内气候温和,湿润,多年平均雨量孝丰站为1450mm,国民经济以农,林业为主,流域内大部为山区,小部为丘陵,平地较少.流域水系及测站分布见下图。
三、设计方案(一)水位气象资料的搜集和审查熟悉流域的自然地理情况,广泛的搜集有关水文的气象资料(见基本资料)。
经初步审查,降雨和径流等实测资料是可靠的、具有一致性的,可用于本次设计。
(二)设计年径流量及其年内分配先进行年径流量的频率计算,求出频率为85%、50%、15%的丰、中、枯年径流量表1 设计年径流及典型年径流量代表年设计频率设计年径流量s m /3典型年典型年径流量s m /3缩放倍比枯水年%85=P56.5 1973 35.5 039.1 中水年%50=P 50.7 1957 11.7 055.1 丰水年%15=P 37.10 1967 11.7 042.12.2设计年内分配根据年、月径流资料和代表年的选择原则,确定丰、中、枯三个代表年。
工程水文及水利课程设计一、引言1.1 课程设计的背景和意义工程水文及水利课程设计是水文与水资源课程的重要组成部分。
该课程旨在培养学生对水文学原理和水利工程设计的理论与实践能力。
通过课程设计,学生可以深入了解工程水文及水利的相关知识,运用所学知识解决实际问题,提高工程水文与水利工程的应用能力。
1.2 课程设计的目标和要求本课程设计的主要目标是让学生掌握工程水文及水利的基本理论和相关技术,培养学生的实际操作能力和解决实际问题的能力。
通过课程设计,学生应能够独立完成水文数据的采集和处理,完成水利工程的设计与优化,具备一定的分析和解决实际问题的能力。
二、水文数据的采集与处理2.1 水文数据的采集方法水文数据的采集是进行工程水文及水利课程设计的基础工作。
水文数据的采集方法包括实地观测和遥感监测两种方式。
实地观测主要包括水位观测、流量观测和降雨观测;遥感监测主要包括利用卫星遥感数据和气象雷达数据进行水文信息的提取。
2.2 水文数据的处理方法水文数据的处理是进行工程水文及水利课程设计的关键步骤。
水文数据的处理方法包括数据的分析与统计、频率分析、时序分析和空间分析等。
其中,数据的分析与统计是对水文数据进行质量检验和描述统计分析;频率分析是对水文数据的频率分布进行分析,如洪水频率分析和干旱频率分析;时序分析是对水文数据的时序变化进行分析,如水位随时间的变化规律;空间分析是研究水文要素在空间上的分布特征和变化规律。
三、水利工程的设计与优化3.1 水利工程设计的基本原理水利工程设计是工程水文及水利课程设计的核心内容之一。
水利工程设计的基本原理包括流量计算、水头计算、结构设计和经济评价等。
其中,流量计算是根据水利工程的用途和设计要求,计算流量的大小和变化规律;水头计算是根据流量和地形条件,计算水头的高度和分布;结构设计是根据水利工程的功能和安全要求,设计各种水利结构的构造;经济评价则是对水利工程的投资和效益进行评价,包括成本效益分析和资源优化配置。
《工程水文学》课程设计书二〇一二年六月十二日第一部分年径流分析计算一、径流系列选择刁崖水电站渠首控制流域面积250平方公里,其下游白土岗水文站控制流域面积1130平方公里,现搜集到1961~1999年共39年实测径流系列资料,该系列较长,项目较全。
虽然渠首与白土岗控制流域面积相差较大,但经过综合分析,两处均为白河上游,自然地理条件、降雨情况、汇流下垫面情况类似,可以根据白土岗水文站的实测径流系列间接推算刁崖电站渠首径流。
根据设计规范要求,本次采用系列大于20年,满足规范要求。
二、径流资料分析与处理(一)白土岗水文站实测径流分析根据白土岗水文站实测径流系列通过计算,多年平均流量为12.65秒立米,其中大于或等于14秒立米的年份10年;大于等于11秒立米小于14秒立米的年份15年;小于11秒立米的年份14年。
丰、平、枯年份分布合理,其间除经历了1961~1965、1979~1985两段连续5~6年丰水,1985~1990年连续5年枯水外,其余连续丰、平、枯的年份均不超过4年,说明此系列有较好的代表性,因此本次设计对此实测系列进行分析。
以白土岗水文站39年平均流量为样本系列,采用现行水文频率计算方法——配线法,对白土岗站年平均流量进行频率计算。
表1、白土岗水文站年径流经验频率计算表年径流量序号模比系数Ki-1 (Ki-1)²(Ki-1)³P1 3.565217 2.565217 6.58034 16.88 0.0252 1.944664 0.944664 0.89239 0.843009 0.053 1.620553 0.620553 0.385086 0.238967 0.0754 1.565217 0.565217 0.319471 0.18057 0.15 1.478261 0.478261 0.228733 0.109394 0.1256 1.391304 0.391304 0.153119 0.059916 0.157 1.328063 0.328063 0.107625 0.035308 0.1758 1.320158 0.320158 0.102501 0.032817 0.29 1.280632 0.280632 0.078755 0.022101 0.22510 1.264822 0.264822 0.070131 0.018572 0.2511 1.098814 0.098814 0.009764 0.000965 0.27512 1.083004 0.083004 0.00689 0.000572 0.313 1.051383 0.051383 0.00264 0.000136 0.32514 1.051383 0.051383 0.00264 0.000136 0.3515 1.043478 0.043478 0.00189 8.22E-05 0.37516 1.019763 0.019763 0.000391 7.72E-06 0.417 1.011858 0.011858 0.000141 1.67E-06 0.42518 1.011858 0.011858 0.000141 1.67E-06 0.4519 0.996047 -0.00395 1.56E-05 -6.2E-08 0.47520 0.964427 -0.03557 0.001265 -4.5E-05 0.521 0.956522 -0.04348 0.00189 -8.2E-05 0.52522 0.932806 -0.06719 0.004515 -0.0003 0.5523 0.916996 -0.083 0.00689 -0.00057 0.57524 0.885375 -0.11462 0.013139 -0.00151 0.625 0.87747 -0.12253 0.015014 -0.00184 0.62526 0.86166 -0.13834 0.019138 -0.00265 0.6527 0.814229 -0.18577 0.034511 -0.00641 0.67528 0.679842 -0.32016 0.102501 -0.03282 0.729 0.671937 -0.32806 0.107625 -0.03531 0.72530 0.670356 -0.32964 0.108665 -0.03582 0.7531 0.641107 -0.35889 0.128804 -0.04623 0.77532 0.554941 -0.44506 0.198078 -0.08816 0.833 0.53834 -0.46166 0.21313 -0.09839 0.82534 0.433202 -0.5668 0.32126 -0.18209 0.8535 0.388933 -0.61107 0.373403 -0.22817 0.87536 0.348617 -0.65138 0.4243 -0.27638 0.937 0.333597 -0.6664 0.444093 -0.29595 0.92538 0.218972 -0.78103 0.610004 -0.47643 0.9539 0.18498 -0.81502 0.664257 -0.54138 0.975 年径流均值为12.65m3/s,Cv=0.56,Cs=2Cv时,白土岗水文站年径流理论频率计算见表2。
工程水文课程设计格式一、教学目标本节课的教学目标是让学生掌握工程水文的基本概念、原理和方法,能够运用工程水文的知识分析和解决实际问题。
具体来说,知识目标包括:了解工程水文的研究对象、基本概念和常用术语;掌握水文循环的基本原理和水文过程的模拟方法;熟悉水文资料的收集、整理和分析方法。
技能目标包括:能够运用工程水文的方法分析和解决实际工程问题;能够运用水文软件进行水文计算和分析;具备一定的工程水文设计和规划能力。
情感态度价值观目标包括:培养学生的环保意识和社会责任感,使学生认识到工程水文对于可持续发展的重要性;培养学生团队合作和创新思维的能力。
二、教学内容本节课的教学内容主要包括工程水文的基本概念、水文循环原理、水文过程模拟、水文资料收集与分析、工程水文计算和设计等方面。
具体安排如下:1.工程水文的基本概念:介绍工程水文的研究对象、目的和意义,以及工程水文中的常用术语和概念。
2.水文循环原理:讲解水文循环的基本过程,包括降水、蒸发、径流等,使学生了解水文循环的物理机制。
3.水文过程模拟:介绍水文过程模拟的方法和手段,如水文模型、水文时间序列分析等,培养学生运用数学和统计方法分析水文问题的能力。
4.水文资料收集与分析:讲解水文资料的收集、整理和分析方法,包括地面降水观测、水位观测、流量观测等,使学生掌握水文数据的处理和分析技巧。
5.工程水文计算和设计:介绍工程水文计算的基本方法,如设计洪水、设计暴雨等,以及工程水文设计的基本原则和方法,培养学生运用工程水文知识解决实际问题的能力。
三、教学方法为了激发学生的学习兴趣和主动性,本节课采用多种教学方法相结合的方式。
主要包括:1.讲授法:教师讲解工程水文的基本概念、原理和方法,引导学生掌握水文知识。
2.案例分析法:通过分析实际工程案例,使学生了解工程水文在学校教育中的重要作用。
3.实验法:学生进行水文实验,培养学生的实践操作能力和动手能力。
4.小组讨论法:学生分组讨论水文问题,培养学生的团队合作和创新思维能力。
目录1 工程概况与设计任务 (2)1.1工程概况及原始资料 (2)1.2设计任务 (4)2 干流设计洪水推求 (5)2.1 特大洪水重现期N与实测系列长度n的确定 (5)2.2 洪水经验频率的计算 (5)2.3 洪水频率曲线统计参数估计和确定 (8)2.4 干流设计洪峰流量推求 (10)3 支流小流域设计洪水计算 (11)3.1 最大24小时设计暴雨过程推求 (11)3.2 产流计算 (12)3.3 汇流计算 (14)3.4 支流设计洪峰流量的确定 (16)4 桥址设计洪水流量 (16)5 桥址设计断面平均流速和设计水深 (16)6 设计感悟 (17)1 工程概况与设计任务1.1工程概况及原始资料某高速公路大桥跨越的河流断面来水由干流和支流洪水组成,干流水文站位于桥址上游1km处,资料可用来推求坝址处洪水,支流洪水由地区降雨资料推求。
干,支流与桥址位置示意图如图1所示。
图1-1干支流与桥址位置示意图干流洪水资料有年洪峰最大流量,包括调查和实测资料,见表1。
另外,还调查到桥址附近干流1900年岸坡上洪痕点2个,分别位于水文站和桥轴线上,洪痕点高程分别为121.3m和120.8m,桥址断面河床高程为115.03m,河床比降为0.5%0,床面与边坡曼宁粗糙系数n=0.012,河宽500m,据此可得该年洪峰流量,作为一个洪水统计样本点。
图1-2桥址河段年最大洪峰流量支流洪水为一小流域(流域面积为F )汇流而成。
1) 该支流流域无实测洪水流量资料,但流域中心附近有一个雨量站资料,经频率计算获得P=2%,1%所对应的最大1d 的设计点雨量分别为202.4mm, 323.8mm 。
该地区暴雨点~面折算关系见表2,该地区的最大日降雨量与最大24小时降雨量根据经验其关系为p p H H ,,2414.1日=,设计暴雨时程分配见表3。
表1-1某地区暴雨点~面折算关系表表1-2地区最大24小时设计暴雨的时程分配表2) 该流域位于湿润地区,m I 流域蓄水容量为。
用同频率法求得设计%)1(86%);2(90====P mm P P mm P a a ,该流域的稳定下渗率为)/(h mm f c流域所在地区的地区综合瞬时单位线参数00,k K n n ==1.2设计任务1)推求桥址设计洪水流量2)按均匀流假设,推求坝址断面设计流量的平均流速和水深。
设计条件如下表:2 干流设计洪水推求2.1 特大洪水重现期N 与实测系列长度n 的确定1.干流设计洪水推求1)洪水资料的总长度N :洪水资料的总长度为实测资料期17年;调查期56年;考证期4年的总和,即:(年)7721=++=n n n N2)特大洪水流量判定:3/>Q Q EM ,若EM i Q Q >,可判定为特大洪水24.4958x ==∑nQi, 72.148743Q E M ==x 3)由调查资料推求水文站1900年洪峰流量o %5.01000x=,x=0.5m,推求水文站处河床高程为115.03+0.5=115.53m 水文站水深m 77.553.1153.121M 1=-=,桥址水深m 77.503.1158.120M 2=-= 推求水文站处水流断面面积2m 288550077.5A =⨯= 根据曼宁公式2/13/21i R nv = 水文站处断面平均流速sm /9945.50005.077.5012.01v 2132=⨯⨯= 根据Av Q =推求水文站处洪峰流量1325.172949945.52885Q =⨯= 判定1900年,1904年,1927年为特大洪水。
2.2 洪水经验频率的计算其中有3项特大洪水,即a=3。
其经验频率按以下公式计算: 特大洪水系列:aM N MP M ,...2,11=+=则3次特大洪水经验频率分别为:0128.01771P 19211=+==P 0256.01772P 19002=+==P 0385.01773P 19043=+==P 实测洪水:系列长度为 n=1976-1960+1=17年实测期的n 项洪水,认为是在N 年中任意抽取的部分。
如果实测期n 项中有l 项是特大洪水,是属于a 项中的,即已从n 项中抽出,还剩有(n -l )项普通洪水都不超过为首的a 项特大洪水。
由于上一步中3项特大洪水可看做从N 年中随意抽取的,故其概率可假定在0~1之间分布。
在统一样本法中,认为这(n -l )项洪水的经验频率均匀分布于1-M a P 范围内,经验频率计算公式为: 实测洪水系列:n l l l m l n lm P P P a a m +++=+---+=...,2,11)1(如1960年,s m /6120Q 3m =,M=2,其经验频率为: %88.191m )1(P 1960=+--⨯-+=l n lP P M a M a2.3 洪水频率曲线统计参数估计和确定1)统计参数初估 对于不连续系列样本,假定:(n -l )年系列的均值和均方差与除去特大洪水后的(N -a )年系列的均值和均方差相等,可导出如下统计参数矩法初估公式:⎥⎦⎤⎢⎣⎡--+=∑∑=+=aj nl i i j x ln a N x N 111x⎥⎦⎤⎢⎣⎡---+--=∑∑=+=aj nl i i j v x x ln aN x x N x 1122)()(111C52994151001729420600a1=++=∑=j mjQ,84290n1=∑=i iQ3.5453017377771x 11=⎥⎦⎤⎢⎣⎡⨯--+=∑∑=+=aj nl i i j x x5311.0)(17377)(17713.54531C 1122=⎥⎦⎤⎢⎣⎡---+--=∑∑=+=aj n l i i j v x x l x x2)目估适线法确定统计参数选频率分布线行为皮尔逊Ⅲ型,并选v s C 3C = 进行第一次配线第二次配线采用Cv=0.71 Cs=2.5 Cs/Cv=3.522.4 干流设计洪峰流量推求)1(ϕv p C x x +=)(s /m 3.5453x 3= Cv=0.71 85.3=ϕ得,s m C x v p /90.20359)85.371.01(3.5453)1(x 3=⨯+⨯=+⨯=ϕ3 支流小流域设计洪水计算3.1 最大24小时设计暴雨过程推求该支流流域无实测洪水流量资料,但流域中心附近有一个雨量站资料,经频率计算获得P=2%,1%所对应的最大1d 的设计点雨量分别为202.4mm, 323.8mm 。
该地区暴雨点~面折算关系见表1-1,该地区的最大日降雨量与最大24小时降雨量根据经验其关系为pp H H ,,2414.1日=。
该流域位于湿润地区,m I 流域蓄水容量为。
用同频率法求得设计%)1(86%);2(90====P mm P P mm P a a ,该流域的稳定下渗率为)/(h mm f c 。
流域所在地区的地区综合瞬时单位线参数00,k K n n ==1)最大1日面设计暴雨量利用设计资料中所提供的关系式:pp H H ,,2414.1日= mmH p 8.323=日,,所以m m736.2308.32314.1,24=⨯=p H2)流域面平均设计雨量及时程分配根据设计资料所提供的点面折算系数进行流域面平均设计雨量的计算 由设计资料,支流小流域面积230km F =根据表1-1,t=24时,F=20时折算系数为0.991,F=40时折算系数为0.983。
利用内插法,F=30Km ² 折算系数=987.02040)3040)(983.0991.0(983.0=---+所以,流域面平均设计雨量为227.736=230.7360.987⨯mm根据设计暴雨时程分配表进行设计暴雨的时程分配3.2 产流计算1)设计净雨的推求按照蓄满产流模式(B=0.2)进行设计净雨计算。
根据稳定下渗率进行地面净雨和地下净雨的划分。
根据设计资料所提供,110=m W mm ,B=0.2,由公式m mmW B W )1(+=' 得,mm 132110)2.01(W 'm m =⨯+= 根据设计资料所提供,Wo=Pa=90mm由公式A=[])1/(10)/1(1B m mmW W W +--'得,()[]67.11190/110-1132=A 2.1/1=⨯已知流域降雨量P 和初始土壤含水量0W =90时,蓄满产流模型的产流计算公式归纳为当A+P<mmW '时,[]Bmm m m W P A W W W P R +'+-+-+=10/)(1当A+P>mmW '时,R=P+m W W -0设计净雨计算表2)地面净雨与地下净雨的推求根据对设计资料中所提供的数据,本流域的稳定下渗率为1.5mm/h 。
由设计净雨过程中扣除地下净雨(等于稳定下渗率乘以净雨历时)得地面净雨过程。
其中第一时段的净雨历时c t =(2.202/14.94)x3=0.806(h )地下净雨c c t f h 下=1.5x0.806=01.2(mm),故第一时段地面净雨为1.2mm ,其余类推。
P=2%设计暴雨过程分配3.3 汇流计算1)无因次单位线),(t t u ∆与10mm 单位线),(t t u ∆的推求 由设计资料得,综合单位线参数68.5,5.100==k n ,)()(),(t t S t S t t u k k k ∆--=∆2)设计地面径流过程推求由上表得出大洪水的单位线。
由设计地面净雨过程通过单位线推求,得设计地面径流过程。
3)设计地下径流过程推求把地下径流概化为等腰三角形初六,其峰值出现在设计地面径流停止时刻(第24时段),地下径流过程的底长为设计径流底长的2倍,即h 1443242T 2T =⨯⨯==面下9324901030083.311.0h 1.0W 4=⨯⨯⨯=⨯⨯=F 下下598.3T W 2Q m ==下下下4)设计洪水过程推求3.4 支流设计洪峰流量的确定支流设计洪峰流量即为洪水流量过程线中最大值,为89.68(m^3/s )4 桥址设计洪水流量s Q Q Q /m 58.2044968.8990.203593=+=+=支干总桥址断面设计洪峰流量5 桥址设计断面平均流速和设计水深已知:洪痕点2个分别位于水文站和桥轴线上,洪痕点高程分别为121.3m 和120.8m 桥址断面河床高程为115.03m 河床比降为0.5%0 床面与边坡曼宁粗糙系数n=0.012 河宽500m 。
按均匀流假设,桥址断面设计流量的平均流速v 和水深h 分别为2132n1h d v h d Av Q i h ⨯⨯⨯=⨯⨯==V=6.43m/s h=6.44m6 设计感悟这一次的课程设计让我感受非常,由于是一个人单独完成,很多知识点很模糊,不知道从何入手进行设计工作。