(完整)高中数学抛物线练习题.doc
- 格式:doc
- 大小:308.54 KB
- 文档页数:5
高中抛物线试题及答案一、选择题1. 抛物线的标准方程为 \( y = ax^2 + bx + c \),其中 \( a \)、\( b \)、\( c \) 是常数,且 \( a \neq 0 \)。
下列哪个选项不是抛物线的标准形式?A. \( y = 3x^2 - 4x + 5 \)B. \( y = -2x^2 + 3 \)C. \( x = 4y^2 - 6y + 7 \)D. \( y = 0 \)答案:D2. 对于抛物线 \( y = ax^2 + bx + c \),如果 \( a > 0 \),抛物线的开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A3. 抛物线 \( y = x^2 \) 的焦点坐标是:A. (0, 0)B. (0, 1/4)C. (0, -1/4)D. (1/4, 0)答案:B二、填空题4. 抛物线 \( y = 2x^2 - 4x + 3 \) 的顶点坐标是 _________ 。
答案:(1, 1)5. 抛物线 \( y = -3x^2 + 6x - 5 \) 的对称轴方程是 _________ 。
答案:x = 1三、解答题6. 已知抛物线 \( y = ax^2 + bx + c \) 经过点 (1, 2) 和 (-1, 6),求抛物线的方程。
解:将点 (1, 2) 代入方程得 \( 2 = a(1)^2 + b(1) + c \),即\( a + b + c = 2 \)。
将点 (-1, 6) 代入方程得 \( 6 = a(-1)^2 + b(-1) + c \),即\( a - b + c = 6 \)。
解得 \( b = -2 \),\( a + c = 4 \)。
假设 \( a = 1 \),则 \( c = 3 \),抛物线方程为 \( y = x^2- 2x + 3 \)。
7. 已知抛物线 \( y = x^2 + 4x + 5 \),求其焦点坐标。
2.4.3抛物线习题课一、选择题1.P (x 0,y 0)是抛物线y 2=2px (p ≠0)上任一点,则P 到焦点的距离是( ) A .|x 0-p2|B .|x 0+p2|C .|x 0-p |D .|x 0+p |[答案] B[解析] 利用P 到焦点的距离等于到准线的距离,当p >0时,p 到准线的距离为d =x 0+p 2;当p <0时,p 到准线的距离为d =-p 2-x 0=|p2+x 0|.2.已知抛物线的准线方程为x =-7,则抛物线的标准方程为( ) A .x 2=-28y B .y 2=28x C .y 2=-28x D .x 2=28y [答案] B[解析] 由题意,知抛物线的标准方程为:y 2=2px (p >0),又准线方程为x =-7,∴p =14.3.抛物线y 2=-4px (p >0)的焦点为F ,准线为l ,则p 表示( ) A .F 到l 的距离 B .F 到y 轴的距离 C .F 点的横坐标 D .F 到l 的距离的14[答案] B[解析] 设y 2=-2p ′x (p ′>0),p ′表示焦点到准线的距离,又2p ′=4p ,p =p ′2,故P 表示焦点到y 轴的距离.4.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=8,那么|AB |等于( )A .10B .8C .6D .4[答案] A[解析] 设F 为抛物线y 2=4x 的焦点,则由抛物线的定义知|AF |=x 1+p2=x 1+1,|BF |=x 2+p2=x 2+1,∴|AB |=|AF |+|BF |=x 1+x 2+2=10.5.已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点分别为A (x 1,y 1),B (x 2,y 2),则一定有y 1y 2x 1x 2等于( ) A .4 B .-4 C .p 2D .-p 2[答案] B[解析] 设过焦点的直线方程为x +ay -p2=0(a ∈R ),则代入抛物线方程有y 2+2apy-p 2=0,故由根与系数的关系知y 1y 2=-p 2.又由y 21=2px 1,①y 22=2px 2,②①②相乘得y 21y 22=4p 2x 1x 2,∴x 1x 2=p 24,∴y 1y 2x 1x 2=-4. 6.直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若AB 中点的横坐标为2,则k =( )A .2或-2B .-1C .2D .3[答案] C[解析] 由⎩⎨⎧y 2=8xy =kx -2得k 2x 2-4(k +2)x +4=0,则4(k +2)k2=4,即k =2. 7.(2010·山东文,9)已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 本题考查了抛物线的方程及中点弦问题,属圆锥曲线部分题型,可设A (x 1,y 1),B (x 2,y 2),则中点(x 1+x 22,y 1+y 22),∴y 1+y 22=2,⎩⎨⎧y 21=2px 1 ①y 22=2px 2 ②①-②得y 21-y 22=2p (x 1-x 2)⇒y 1-y 2x 1-x 2=2p y 1+y 2=p y 1+y 22,∴k AB =1=p 2⇒p =2,∴y 2=4x ,∴准线方程式为:x =-1,故选B.8.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为( )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22)[答案] B[解析] 依题意F (1,0)设A 点坐标为(x ,y ),则OA →=(x ,y ),AF →=(1-x ,-y ), OA →·AF →=x (1-x )+y (-y )=x -x 2-y 2,x -x 2-4x ,=-x 2-3x =-4.即x 2+3x -4=0解之得x =1或x =-4 又∵x ≥0,∴x =1,y 2=4,y =±2. ∴A (1,±2).9.一动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)[答案] B[解析] 由抛物线定义知,抛物线上的点到焦点的距离等于它到准线的距离,又动圆圆心在抛物线上且恒与x +2=0相切.∴动圆过定点F (2,0),故选B.10.(2008·宁夏、海南)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A.⎝ ⎛⎭⎪⎫14,-1B.⎝ ⎛⎭⎪⎫14,1 C .(1,2) D .(1,-2)[答案] A[解析] 依题意,抛物线的焦点F (1,0),准线为l x =-1.过Q 点作直线l 的垂线交抛物线于P 点,交准线l 于M 点,则|QP |+|PF |=|QP |+|PM |=|QM |=3为所求的最小值,此时P ⎝ ⎛⎭⎪⎫14,-1.故选A.二、填空题11.P 点是抛物线y 2=4x 上任一点,到直线x =-1的距离为d ,A (3,4),|PA |+d 的最小值为________.[答案] 2 5[解析] 设抛物线焦点为F (1,0)则d =|PF |,∴|AP |+d =|AP |+|PF |≥|AF |=(3-1)2+(4-0)2=2 5. 12.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是________.[答案] 2x -y +4=0[解析] 设y =3x 2-4x +2在M (1,1)处切线方程为y -1=k (x -1),联立得⎩⎨⎧y =3x 2-4x +2,y -1=k (x -1),∴3x 2-(k +4)x +(k +1)=0. ∵Δ=0,∴k =2.∴过P (-1,2)与切线平行的直线为2x -y +4=0.13.已知点P 在抛物线y 2=2x 上运动,点Q 与点P 关于(1,1)对称,则点Q 的轨迹方程是________.[答案] y 2-4y +2x =0[解析] 设P (x 0,y 0),Q (x ,y )由已知得⎩⎨⎧x 0+x =2,y 0+y =2∴x 0=2-x ,y 0=2-y ,又P (x 0,y 0)在y 2=2x 上, ∴(2-y )2=2(2-x ) 即y 2-4y +2x =0.14.(2010·全国Ⅱ理,15)已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM →=MB →,则p =______.[答案] 2[解析] 如图,设B (x 0,y 0),则MK =12BH ,则x 0+p2=2⎝ ⎛⎭⎪⎫1+p 2有x 0=p2+2.可得y 0=p 2+4p ,又直线AB 方程为y =3(x -1),代入有p 2+4p =3⎝ ⎛⎭⎪⎫p 2+2-1,解得p =2. 三、解答题15.已知抛物线y 2=4x ,直线l 过定点P (-2,1),斜率为k ,k 为何值时,直线l 与抛物线满足下列条件:①只有一个公共点; ②有两个公共点; ③没有公共点.[解析] 由题意得直线l 的方程为y -1=k (x +2), 由⎩⎨⎧y -1=k (x +2),y 2=4x ,消去x 得ky 2-4y +4(2k +1)=0①,当k =0时,由方程①得y =1,把y =1代入y 2=4x ,得x =14,此时,直线l 与抛物线只有一个公共点(14,1).当k ≠0时,方程①的判别式为Δ=-16(2k 2+k -1).①当Δ=0,即2k 2+k -1=0,解得k =-1或k =12,此时方程①只有一解,方程组只有一个解,直线l 与抛物线只有一个公共点.②当Δ>0,即2k 2+k -1<0,解得-1<k <12,所以-1<k <12且k ≠0时,直线l 与抛物线有两个公共点.③当Δ<0,即2k 2+k -1>0,解得k >12或k <-1,此时,直线l 与抛物线没有公共点.综上所述可知当k =0或k =-1或k =12时,直线l 与抛物线只有一个公共点;当-1<k <12且k ≠0时,直线l 与抛物线有两个公共点;当k <-1或k >12时,直线l 与抛物线没有公共点.16.已知抛物线y 2=-x 与直线y =k (x +1)相交于A ,B 两点. (1)求证OA ⊥OB ;(2)当△AOB 的面积等于10时, 求k 的值.[解析] (1)证明:如图所示,由方程组⎩⎨⎧y 2=-xy =k (x +1)消去x 得ky 2+y -k =0,设A (x 1,y 1),B (x 2,y 2).由根与系数的关系知y 1y 2=-1.因为A ,B 在抛物线y 2=-x 上,所以y 21=-x 1,y 22=-x 2,y 21y 22=x 1x 2,因为k OA ·k OB =y 1x 1·y 2x 2=y 1y 2x 1x 2=1y 1y 2=-1,所以OA ⊥OB .(2)解:设直线AB 与x 轴交于点N ,显然k ≠0,所以点N 的坐标为(-1,0),因为S △OAB=S △OAN +S △OBN=12|ON ||y 1|+12|ON ||y 2|=12|ON ||y 1-y 2|,所以S △OAB =12·1·(y 1+y 2)2-4y 1y 2=12(1k )2+4,因为S △OAB =10,所以10=121k 2+4,解得k =±16. 17.设抛物线y 2=8x 的焦点是F ,有倾斜角为45°的弦AB ,|AB |=85,求△FAB 的面积.[解析] 设AB 方程为y =x +b ,由⎩⎨⎧y =x +b ,y 2=8x .消去y 得:x 2+(2b -8)x +b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8-2b ,x 1·x 2=b 2.∴|AB |=1+k 2·|x 1-x 2| =2×(x 1+x 2)2-4x 1·x 2 =2[(8-2b )2-4b 2]=85,解得:b =-3.∴直线方程为y =x -3.即:x -y -3=0, ∴焦点F (2,0)到x -y -3=0的距离为d =12=22.∴S △FAB =12×85×22=210. 18.已知抛物线y 2=x 上存在两点关于直线l :y =k (x -1)+1对称,求实数k 的取值范围.[解析] 设抛物线上的点A (y 21,y 1),B (y 22,y 2)关于直线l 对称.则⎩⎪⎨⎪⎧k ·y 1-y2y 21-y 22=-1y 1+y 22=k (y 21+y222-1)+1得⎩⎪⎨⎪⎧y 1+y 2=-k y 1y 2=k 22+1k -12,∴y 1、y 2是方程t 2+kt +k 22+1k -12=0的两个不同根.∴Δ=k 2-4(k 22+1k -12)>0得-2<k <0.。
第二章 圆锥曲线与方程2.3 抛物线2.3.1 抛物线及其标准方程A 级 基础巩固一、选择题1.准线方程为y =23的抛物线的标准方程为( ) A .x 2=83y B .x 2=-83y C .y 2=-83xD .y 2=83x解析:由准线方程为y =23,知抛物线焦点在y 轴负半轴上,且p 2=23,则p =43.故所求抛物线的标准方程为x 2=-83y .答案:B2.已知抛物线y -2 016x 2=0,则它的焦点坐标是( ) A .(504,0) B.⎝⎛⎭⎪⎫18 064,0 C.⎝⎛⎭⎪⎫0,18 064 D.⎝⎛⎭⎪⎫0,1504 解析:抛物线的标准方程为x 2=12 016y ,故其焦点为(0,18 064). 答案:C3.抛物线y =12x 2上的点到焦点的距离的最小值为( ) A .3 B .6 C.148 D.124解析:将方程化为标准形式是x 2=112y ,因为2p =112,所以p =124.故到焦点的距离最小值为148. 答案:C4.一动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆过定点( ) A .(4,0) B .(2,0) C .(0,2)D .(0,4)解析:由题意易知直线x +2=0为抛物线y 2=8x 的准线,由抛物线的定义知动圆一定过抛物线的焦点. 答案:B5.抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是焦点,|AF |,|BF |,|CF |成等差数列,则( )A .x 1,x 2,x 3成等差数列B .x 1,x 3,x 2成等差数列C .y 1,y 2,y 3成等差数列D .y 1,y 3,y 2成等差数列解析:由抛物线的定义知|AF |=x 1+p2,|BF |=x 2+p 2, |CF |=x 3+p 2.因为|AF |,|BF |,|CF |成等差数列,所以2⎝⎛⎭⎪⎫x2+p 2=⎝⎛⎭⎪⎫x1+p 2+⎝⎛⎭⎪⎫x3+p 2,即2x 2=x 1+x 3.故x 1,x 2,x 3成等差数列.故选A.答案:A 二、填空题6.抛物线y 2=2x 上的两点A ,B 到焦点的距离之和是5,则线段AB 中点的横坐标是________. 解析:由抛物线的定义知点A ,B 到准线的距离之和是5,则AB 的中点到准线的距离为52,故AB 中点的横坐标为x =52-12=2.答案:27.抛物线过原点,焦点在y 轴上,其上一点P (m ,1)到焦点的距离为5,则抛物线的标准方程是________. 解析:由题意,知抛物线开口向上,且1+p 2=5,所以p =8,即抛物线的标准方程是x 2=16y . 答案:x 2=16y8.焦点为F 的抛物线y 2=2px (p >0)上一点M 在准线上的射影为N ,若|MN |=p ,则|FN |=________. 解析:由条件知|MF |=|MN |=p ,MF ⊥MN ,在△MNF 中,∠FMN =90°,得|FN |=2p . 答案:2p 三、解答题9.求满足下列条件的抛物线的标准方程.(1)焦点在坐标轴上,顶点在原点,且过点(-3,2);(2)顶点在原点,以坐标轴为对称轴,焦点在直线x -2y -4=0上.解:(1)当焦点在x 轴上时,设抛物线的标准方程为y 2=-2px (p >0).把(-3,2)代入,得22=-2p ×(-3),解得p =23.所以所求抛物线的标准方程为y 2=-43x .当焦点在y 轴上时,设抛物线的标准方程为x 2=2py (p >0). 把(-3,2)代入,得(-3)2=4p ,解得p =94.所以所求抛物线的标准方程为x2=92 y.(2)直线x-2y-4=0与x轴的交点为(4,0),与y轴的交点为(0,-2),故抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,设抛物线方程为y2=2px(p>0),则p2=4,所以p=8.所以抛物线方程为y2=16x.当焦点为(0,-2)时,设抛物线方程为x2=-2py(p>0),则-p2=-2,所以p=4.所以抛物线方程为x2=-8y.10.已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,求动圆圆心M的轨迹方程.解:设动圆圆心为M(x,y),半径为r,则由题意可得M到C(0,-3)的距离与到直线y=3的距离相等,则动圆圆心的轨迹是以C(0,-3)为焦点,y=3为准线的一条抛物线,其方程为x2=-12y.B级能力提升1.点M(5,3)到抛物线y=ax2的准线的距离为6,那么抛物线的方程是( )A.y=12x2B.y=12x2或y=-36x2C.y=-36x2D.y=112x2或y=-136x2解析:当a>0时,抛物线开口向上,准线方程为y=-14a,则点M到准线的距离为3+14a=6,解得a=112,抛物线方程为y=112x2.当a<0时,开口向下,准线方程为y=-14a,点M到准线的距离为⎪⎪⎪⎪⎪⎪3+14a=6,解得a=-136,抛物线方程为y=-136x2.答案:D2.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值为________.解析:由已知得抛物线的焦点为F(1,0),由抛物线的定义知:动点P到直线l1和直线l2的距离之和的最小值即为焦点F(1,0)到直线l1:4x-3y+6=0的距离,由点到直线的距离公式得:d=|4-0+6|42+(-3)2=2,所以动点P到直线l1和直线l2的距离之和的最小值是2.答案:23.抛物线y2=2px(p>0)且一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y=2x,斜边长为513,求此抛物线方程.解:设抛物线y2=2px(p>0)的内接直角三角形为AOB,直角边OA所在直线方程为y=2x,另一直角边所在直线方程为y =-12x .解方程组⎩⎪⎨⎪⎧y =2x ,y2=2px ,可得点A 的坐标为⎝ ⎛⎭⎪⎫p 2,p ;解方程组⎩⎪⎨⎪⎧y =-12x ,y2=2px ,可得点B 的坐标为(8p ,-4p ).因为|OA |2+|OB |2=|AB |2,且|AB |=513,所以⎝ ⎛⎭⎪⎫p24+p2+(64p 2+16p 2)=325.所以p =2,所以所求的抛物线方程为y 2=4x .。
抛物线大题30题1 .已知抛物线的顶点在原点,焦点与椭圆224520x y +=的一个焦点相同,(1)求椭圆的焦点坐标与离心率;(2)求抛物线方程.2 .过抛物线y 2=4x 的焦点作直线AB 交抛物线于 A .B,求AB 中点M 的轨迹方程。3 .已知直线l 过定点()0,4A ,且与抛物线2:2(0)C ypx p = >交于P 、Q 两点,若以PQ 为直径的圆经过原点O ,求抛物线的方程.4 .已知p :方程2212x y m m+=-表示椭圆;q :抛物线y =221x mx ++与 x 轴无公共点,若p 是真命题且q 是假命题,求实数m 的取值范围.5 .在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上。
(1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线的方程;(3)设过点(,0)(0)M m m >的直线交抛物线C 于D .E 两点,ME=2DM , 记D 和E 两点间的距离为()f m ,求()f m 关于m 的表达式。
6 .直线y=2x 与抛物线y=-x 2-2x+m 相交于不同的两点 A .B ,求(1)实数m 的取值范围;(2)∣AB ∣的值(用含m 的代数式表示).7 .已知抛物线1C :24(0)y px p =>,焦点为2F ,其准线与x 轴交于点1F ;椭圆2C :分别以12F F 、为左、右焦点,其离心率12e =;且抛物线1C 和椭圆2C 的一个交点记为M .(1)当1p =时,求椭圆2C 的标准方程;(2)在(1)的条件下,若直线l 经过椭圆2C 的右焦点2F ,且与抛物线1C 相交于,A B 两点,若弦长||AB 等于12MF F ∆的周长,求直线l 的方程.8 .如图,已知直线l :2y kx =-与抛物线C :22(0)x py p =->交于A ,B 两点,O 为坐标原点,(4,12)OA OB +=--。(Ⅰ)求直线l 和抛物线C 的方程; (Ⅱ)抛物线上一动点P 从A 到B 运动时, 求△ABP 面积最大值.9.设圆Q 过点P (0,2), 且在x 轴上截得的弦RG 的长为4.(Ⅰ)求圆心Q 的轨迹E 的方程;(Ⅱ)过点F (0,1),作轨迹E 的两条互相垂直的弦AB ,CD ,设AB 、CD 的中点分别为M ,N ,试判断直线MN 是否过定点?并说明理由. 10.已知抛物线2:2C y px =的准线方程14x =-,C 与直线1:y x =在第一象限相交于点1P ,过1P 作C的切线1m ,过1P 作1m 的垂线1g 交x 轴正半轴于点1A ,过1A 作1的平行线2交抛物线C 于第一象限内的点2P ,过2P 作抛物线1C 的切线2m ,过2P 作2m 的垂线2g 交x 轴正半轴于点2A ,…,依此类推,在x 轴上形成一点列1A ,2A ,3A ,…,(*)n A n N ∈,设点n A 的坐标为(,0).n a(Ⅰ)试探求1n a +关于n a 的递推关系式; (Ⅱ)求证:13322n n a -≤⋅-; (Ⅲ)求证:()()1234211(23)2(23)6(23)13321n n n a a a n n n ++++≥-+⋅+⋅+⋅⋅+⋅⋅+. 11.已知直线1:++=k kx y l ,抛物线x y C 4:2=,定点M(1,1)。(I)当直线l 经过抛物线焦点F 时,求点M 关于直线l 的对称点N 的坐标,并判断点N 是否在抛物线C 上;(II)当)0(≠k k 变化且直线l 与抛物线C 有公共点时,设点P(a,1)关于直线l 的对称点为Q(x 0,y 0),求x 0关于k 的函数关系式)(0k f x =;若P 与M 重合时,求0x 的取值范围。12.位于函数4133+=x y 的图象上的一系列点 ),,(,),,(),,(222111n n n y x P y x P y x P ,这一系列点的横坐标构成以25-为首项,1-为公差的等差数列{}n x . (Ⅰ)求点n P 的坐标;(Ⅱ)设抛物线 ,,,,,321n C C C C 中的每一条的对称轴都垂直于x 轴,对于n ∈*N 第n 条抛物线n C 的顶点为n P ,抛物线n C 过点)1,0(2+n D n ,且在该点处的切线的斜率为n k ,求证:10111113221<+++-n n k k k k k k . 13.已知抛物线24y x =的焦点为F , A .B 为抛物线上的两个动点.(Ⅰ)如果直线AB 过抛物线焦点,判断坐标原点O 与以线段AB 为直径的圆的位置关系, 并给出证明;(Ⅱ)如果4OA OB ⋅=-(O 为坐标原点),证明直线AB 必过一定点,并求出该定点.14.已知点F(2 ,0) ,直线:1l x =-,动点N 到点F 距离比到直线l 的距离大1;(1)求动点N 的轨迹C 的方程; (2)直线2y x =-与轨迹C 交于点A,B,求ABO ∆的面积.15.(本小题共13分)已知抛物线C :2y x =,过定点()0,0A x 01()8x ≥,作直线l 交抛物线于,P Q (点P 在第一象限). (Ⅰ)当点A 是抛物线C 的焦点,且弦长2PQ =时,求直线l 的方程;(Ⅱ)设点Q 关于x 轴的对称点为M ,直线PM 交x 轴于点B ,且BQ BP ⊥.求证:点B 的坐标是0(,0)x -并求点B 到直线l 的距离d 的取值范围.16.抛物线()2:20C ypx p=上横坐标为32的点到焦点F 的距离为2(I )求p 的值;(II )过抛物线C 的焦点F.,作相互垂直的两条弦AB 和CD , 求AB CD +的最小值。
抛物线大题一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.抛物线大题参考答案与试题解析一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.【分析】(1)由题意,结合所给信息列出等式,求出p的值,进而可得抛物线C的方程;(2)(i)结合(1)中所得信息得到点P的坐标,设出A,B两点的坐标,利用斜率公式得到4(y1+y2)+y1y2+20=0,对直线AB的斜率是否存在进行讨论,进而即可求解;(ii)设出A,B两点的坐标,分别讨论直线AB的斜率是否存在,当直线AB的斜率存在时,设出直线AB的方程,将直线方程与抛物线方程联立,利用韦达定理即可得到|F A|•|FB|的最小值,当直线AB的斜率不存在时,结合抛物线的定义即可得到|F A|•|FB|的最小值,两者比较即可求解.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.【分析】(1)由抛物线的准线方程求出p,可得抛物线C的方程;(2)设P(x1,y1),Q(x2,y2),联立直线l和抛物线C的方程,消元写出韦达定理,将OP⊥OQ用坐标表示,代入韦达定理化简计算,可得m的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.【分析】(1)由题意,先设出抛物线C的方程,将点P的坐标代入抛物线方程中,求出p的值,进而可得抛物线C的标准方程;(2)设出直线AB的方程和A,B两点的坐标,将直线AB的方程与抛物线方程联立,求出A,B两点的坐标,进而即可求解.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.【分析】(1)由题意,结合题目所给信息建立有关p的等式,进而即可求解;(2)设出A,B两点的坐标,将直线l的方程与抛物线方程联立,利用向量的坐标运算以及韦达定理再进行求解即可.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.【分析】(1)由题意,先求出的右焦点,根据抛物线C的焦点F与椭圆的右焦点重合,可得,进而求出抛物线方程;(2)结合(1)中所得信息得到直线AB的方程,将直线AB的方程与抛物线方程联立,利用韦达定理以及弦长公式再进行求解即可.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.【分析】(1)由题意,得到点A的坐标,代入抛物线方程中进行求解即可;(2)先得到直线l的方程,将直线方程与抛物线方程联立,利用韦达定理以及抛物线的定义再进行求解即可.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)利用|PF|=5,根据抛物线的定义,求出p的值,即可得解;(2)设A(x1,y1),B(x2,y2),M(s,0),直线l的方程为x=ty+2(t≠0),将其与抛物线的方程联立,利用韦达定理,根据k AM=﹣k MB,求出s的值,即可得解.。
3.3 抛物线【题组一 抛物线的定义】1.(2020·全国高二课时练习)已知抛物线24,y x =上一点P 到准线的距离为1d ,到直线l :43110x y -+=为2d ,则12d d +的最小值为( )A .3B .4C D【答案】A【解析】抛物线上的点P 到准线的距离等于到焦点F 的距离, 所以过焦点F 作直线43110x y -+=的垂线,则该点到直线的距离为12d d +最小值,如图所示;由(1,0)F ,直线43110x y -+=,所以123d d +==,故选A.2.(2020·全国高二课时练习)若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于( ) A .12B .1C .3 2D .2【答案】D【解析】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p = ∵p >0,∴p=2.故选D .3.(2020·昆明市官渡区第一中学高二期中(文))已知抛物线24y x =上点B (在第一象限)到焦点F 距离为5,则点B 坐标为( )A .()1,1B .()2,3C .()4,4D .(【答案】C【解析】设()()000,,0B x y y >, 因为点B 到焦点F 距离为5即5BF =, 根据抛物线定义:00152pBF x x =+=+=, 解得:04x =,代入抛物线方程24y x =, 得04y =即()4,4B 故选:C4.(2020·广东佛山.高二期末)已知抛物线2y x =上的点M 到其焦点的距离为2,则M 的横坐标是( )A .32B .52C .74D .94【答案】C【解析】抛物线2y x =焦点1(,0)4F ,准线方程为14x =-,设点M 的横坐标为0x ,根据抛物线的定义,0017||2,44MF x x =+=∴=.故选:C5.(2020·定远县民族学校高二月考(理))已知抛物线C :28x y =的焦点为F ,()00A x y ,是C 上一点,且02AF y =,则0x =( ) A .2 B .2± C .4 D .4±【答案】D【解析】28x y =,如图,由抛物线的几何意义,可知0022AF Al y y ===+,所以02y =,所以04x =±,故选D .6.(2020·沙坪坝.重庆八中高二月考)若抛物线y 2=2px (p >0)上任意一点到焦点的距离恒大于1,则p 的取值范围是( ) A .p <1 B .p >1C .p <2D .p >2【答案】D【解析】∵设P 为抛物线的任意一点, 则P 到焦点的距离等于到准线:x 2p=-的距离, 显然当P 为抛物线的顶点时,P 到准线的距离取得最小值2p . ∴12p>,即p >2. 故选:D .7.(2019·河南濮阳.高二月考(文))若点P 为抛物线2:2C y x =上的动点,F 为C 的焦点,则||PF 的最小值为( ) A .1 B .12C .14D .18【答案】D【解析】由y =2x 2,得212x y =,∴2p 12=,则128p =, 由抛物线上所有点中,顶点到焦点距离最小可得,|PF |的最小值为18.故选D . 【题组二 抛物线的标准方程】1.(2020·全国高二课时练习)已知抛物线2:2(0)C y px p =>的焦点为F ,点(00,2p M x x ⎛⎫>⎪⎝⎭是抛物线C 上一点,以点M 为圆心的圆与直线2p x =交于E ,G 两点,若13sin MFG ∠=,则抛物线C 的方程是( ) A .2y x =B .22y x =C .24y x =D .28y x =【答案】C【解析】作MD EG ⊥,垂足为点D .由题意得点(002p M x x ⎛⎫> ⎪⎝⎭在抛物线上,则082px =得04px =.①由抛物线的性质,可知,0||2pDM x =-, 因为1sin 3MFG ∠=,所以011||||332p DM MF x ⎛⎫==+ ⎪⎝⎭.所以001232p p x x ⎛⎫-=+ ⎪⎝⎭,解得:0x p =.②. 由①②,解得:02x p ==-(舍去)或02x p ==.故抛物线C 的方程是24y x =. 故选C .2.(2020·定远县育才学校高二月考(文))设斜率为2的直线l 过抛物线2y ax = ()0a ≠的焦点F ,且和y 轴交于点A .若(OAF O 为坐标原点)的面积为4,则抛物线的方程为( ) A .y 2=4x B .y 2=8x C .y 2=±4x D .y 2=±8x【答案】D【解析】2y ax =的焦点是,04a F (),直线l 的方程为2()4a y x =-,令0x =得,(0,)22a ay A =,所以由OAF △的面积为4得,214,64,8224a a a a ⋅⋅===±,故选D .3.(2020·天津和平.耀华中学高二期末)设抛物线22y px = (0p >)的焦点为F ,准线为l ,过焦点的直线分别交抛物线于,A B 两点,分别过,A B 作l 的垂线,垂足为,C D .若3AF BF =,且三角形CDF 的面积为则p 的值为( )A B C D 【答案】C【解析】过点B 作BM l ∥交直线AC 于点M ,交x 轴于点N , 设点()()1122,,A x y B x y 、,由3AF BF =得12322p p x x ⎛⎫+=+ ⎪⎝⎭,即123x x p -=……①, 又因为NF AM ∥,所以14NF BF AM AB ==, 所以()1214NF x x =-, 所以()212142pOF ON NF x x x =+=+-=……②, 由①②可解得123,26p px x ==, 在Rt ABM ∆中,1283AB x x p p =++=, 124=3AM x x p -=,所以BM p ==,所以132CDF S P P ∆==,解得2p =或2p =-(舍去), 故选:C4.(2018·河南洛阳.高二一模(文))已知点(0,2)A ,抛物线C :22(0)y px p =>的焦点为F ,射线FA 与抛物线C 交于点M ,与抛物线准线相交于N ,若MN =,则p 的值为( )A .4B .1C .2D .3【答案】C【解析】依题意F 点的坐标为(2p,0),设M 在准线上的射影为K由抛物线的定义知|MF|=|MK|,5FM MN ∴=则|KN|:|KM|=2:1,02402FN k p p -==--,42p∴-=得p=2,选C. 5.(2019·黑龙江香坊.哈尔滨市第六中学校高二期中(文))已知点(1,2)M 在抛物线2:2(0)C y px p =>上,则p =______;点M 到抛物线C 的焦点的距离是______.【答案】2 2【解析】点(1,2)M 代入抛物线方程得:2221p =⨯,解得:2p =;抛物线方程为:24y x =,准线方程为:1x =-,点M 到焦点的距离等于点M 到准线的距离:112--=()故答案为2,26.(2020·全国高二课时练习)已知抛物线()2:20C y px p =>的焦点为F ,准线为l .若位于x 轴上方的动点A 在准线l 上,线段AF 与抛物线C 相交于点B ,且1AF AF BF-=,则抛物线C 的标准方程为____.【答案】22y x =【解析】如图所示,设(0)2AFO παα∠=<<,过点B 作BB l '⊥于点B ',由抛物线的定义知,BF BB =',FC p =,ABB AFO α∠=∠=';在Rt AB B '∆中,cos BB BF ABABα==',cos BF AB α=,从而(1cos )AF BF AB AB α=+=+;又1AF AF BF-=,所以(1cos )1cos AB AF AB αα+-=,即1cos 1cos AF αα+-=,所以1cos AF α=;在Rt AFC ∆中,cos CF pAFAFα==,cos p AF α=, 所以1·cos 1cos p αα==, 所以抛物线C 的标准方程为22y x =.故答案为22y x =.7.(2020·四川省广元市川师大万达中学高二期中)已知抛物线22(0)y px p =>的准线与圆22670x y x +--=相切,则p 的值为_____.【答案】2;【解析】抛物线y 2=2px (p >0)的准线方程为x=﹣, 因为抛物线y 2=2px (p >0)的准线与圆(x ﹣3)2+y 2=16相切,所以3+=4,解得p=2. 故答案为2【题组三 直线与抛物线的位置关系】1.(2018·湖南衡阳市八中高二期中(文))过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线共有( ) A .1条 B .2条 C .3条 D .4条【答案】C【解析】通过图形可知满足题目要求的直线只能画出3条2.(2020·四川南充.高二期末(文))已知过点M (1,0)的直线AB 与抛物线y 2=2x 交于A ,B 两点,O 为坐标原点,若OA ,OB 的斜率之和为1,则直线AB 方程为______. 【答案】2x +y -2=0【解析】依题意可设直线AB 的方程为:x=ty+1,代入y 2=2x 得2220y ty --=,设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-2,y 1+y 2=2t ,所以12121212122()22422OA OB y y y y t k k t x x y y y y ++=+=+===--,∴21t -=,解得12t =-, ∴直线AB 的方程为:x=12y -+1,即2x+y-2=0.故答案为2x+y-2=0. 3.(2020·四川阆中中学高二月考(文))直线440kx y k --=与抛物线2y x =交于,A B 两点,若AB 4=,则弦AB 的中点到直线102x +=的距离等于________. 【答案】94【解析】如图,直线440kx y k --=过定点1(4,0),而抛物线2y x =的焦点F 为1(4,0),∴弦AB 的中点到准线14x =-的距离为1||22AB =,则弦AB 的中点到直线102x +=的距离等于19244+=. 故答案为:94.4.(2020·昆明市官渡区第一中学高二期末(理))设抛物线24y x =的焦点为F ,过F 的直线l 交抛物线于,A B 两点,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则直线l 的方程为__________.0y --=【解析】抛物线方程为24y x =,∴抛物线焦点为()1,0F ,准线为:1l x =-,设()()1122,,,A x y B x y ,因为P 在第一象限,所以直线AB 的斜率0k >, 设直线AB 方程为()1y k x =-,代入抛物线方程消去y ,得()2222240k x k x k -++=,21212224,1k x x x x k+∴+==, 过AB 的中点M 作准线的垂线与抛物线交于点P , 设P 点的坐标为()00,x y ,可得()01212y y y =+, ()()11221,1y k x y k x =-=-,()21212224422k y y k x x k k k k k+∴+=+-=⋅-=, 得到00221,y x k k =∴=,可得212,P k k ⎛⎫⎪⎝⎭,32PF =,32=,解之得22k =,所以k =)1y x =-0y -=,0y --=. 【题组四 弦长】1.(2019·安徽滁州.高二期末(理))已知,A B 为抛物线2:4C y x =上的不同两点,F 为抛物线C 的焦点,若5AB FB =,则||AB =( )A .252B .10C .254D .6【答案】C【解析】设1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,又(1,0)F ,∴()221,FB x y =-,∴21255x x x -=-,2125y y y -=,∴1212544x x y y =-⎧⎨=-⎩,由()()22222244454y x y x ⎧=⎪⎨-=-⎪⎩,得21144x x ==,,∴1225||24AB x x =++=. 故选C .2.(2020·江西赣州.高二月考(理))过抛物线C :24y x =的焦点F 的直线交抛物线C 于11(,)A x y 、22(,)B x y 两点,且1243x x +=,则弦AB 的长为( ) A .163B .4C .103D .83【答案】C【解析】抛物线的焦点弦公式为:12x x p ++,由抛物线方程可得:2p =,则弦AB 的长为12410233x x p ++=+=.本题选择C 选项. 3.(2020·河南淇滨。
高考数学复习题库抛物线抛物线一.选择题1.抛物线x2=(2a-1)y的准线方程是y=1,则实数a=( )A. B. C.- D.-解析根据分析把抛物线方程化为x2=-2y,则焦参数p=-a,故抛物线的准线方程是y==,则=1,解得a=-. 答案 D2.若抛物线y2=2px(p>0)的焦点在圆x2+y2+2x-3=0上,则p=( )A. B.1 C.2 D.3 解析∵抛物线y2=2px(p>0)的焦点为(,0)在圆x2+y2+2x-3=0上,∴+p-3=0,解得p=2或p=-6(舍去). 答案 C3.已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为( ). A. B.1 C.2 D.4 解析抛物线y2=2px(p >0)的准线为x=-,圆x2+y2-6x-7=0,即(x-3)2+y2=16,则圆心为(3,0),半径为4;又因抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,所以3+=4,解得p=2. 答案 C4.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为( ). A.18 B.24 C.36 D.48 解析如图,设抛物线方程为 y2=2px(p>0). ∵当x=时,|y|=p,∴p===6. 又P到AB的距离始终为p,∴S△ABP=×12×6=36. 答案 C5. 过抛物线的焦点的直线交抛物线于两点,点是原点,若,则的面积为() A. B. C. D. 答案 C6.将两个顶点在抛物线y2=2px(p>0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则( ). A.n=0 B.n=1 C.n=2 D.n≥3 解析结合图象可知,过焦点斜率为和-的直线与抛物线各有两个交点,所以能够构成两组正三角形.本题也可以利用代数的方法求解,但显得有些麻烦. 答案 C7.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为( )A. B.3 C. D. 解析依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F.依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|PA|≥|AF|==. 答案 A二.填空题8.设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________.解析设抛物线的焦点F,由B为线段FA的中点,所以B,代入抛物线方程得p=,则B到该抛物线准线的距离为+==. 答案9.已知动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为________. 解析设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与其到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x. 答案 y2=4x10.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且满足|NF|=|MN|,则∠NMF=________. 解析过N 作准线的垂线,垂足是P,则有PN=NF,∴PN=MN,∠NMF=∠MNP.又cos∠MNP=,∴∠MNP=,即∠NMF=. 答案11.设圆C 位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为________. 解析依题意,结合图形的对称性可知,要使满足题目约束条件的圆的半径最大,圆心位于x轴上时才有可能,可设圆心坐标是(a,0)(0<a<3),则由条件知圆的方程是(x-a)2+y2=(3-a)2.由消去y得x2+2(1-a)x+6a-9=0,结合图形分析可知,当Δ=[2(1-a)]2-4(6a-9)=0且0<a<3,即a=4-时,相应的圆满足题目约束条件,因此所求圆的最大半径是3-a =-1.答案-112. 过抛物线的焦点作直线交抛物线于两点,若则= 。
高中数学高考总复习抛物线习题(附参考答案)一、选择题1.(2010·湖北黄冈)若抛物线y 2=2px 的焦点与椭圆x26+y22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4[答案] D[解析] 椭圆中,a 2=6,b 2=2,∴c =a2-b2=2,∴右焦点(2,0),由题意知p2=2,∴p =4.2.已知点M 是抛物线y 2=2px (p >0)上的一点,F 为抛物线的焦点,若以|MF |为直径作圆,则这个圆与y 轴的关系是( )A .相交B .相切C .相离D .以上三种情形都有可能 [答案] B[解析] 如图,由MF 的中点A 作准线l 的垂线AE ,交直线l 于点E ,交y 轴于点B ;由点M 作准线l 的垂线MD ,垂足为D ,交y 轴于点C ,则MD =MF ,ON =OF , ∴AB =OF +CM 2=ON +CM 2=DM 2=MF2, ∴这个圆与y 轴相切.3.(2010·山东文)已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则线段AB 的中点(x1+x22,y1+y22),∴y1+y22=2,∵A 、B 在抛物线y 2=2px 上,∴⎩⎪⎨⎪⎧y12=2px1 ①y22=2px2 ② ①-②得y 12-y 22=2p (x 1-x 2),∴k AB =y1-y2x1-x2=2p y1+y2=p 2,∵k AB =1,∴,p =2∴抛物线方程为y 2=4x ,∴准线方程为:x =-1,故选B.4.双曲线x29-y24=1的渐近线上一点A 到双曲线的右焦点F 的距离等于2,抛物线y 2=2px (p >0)过点A ,则该抛物线的方程为( )A .y 2=9xB .y 2=4xC .y 2=41313xD .y 2=21313x [答案] C[解析] ∵双曲线x29-y24=1的渐近线方程为y =±23x ,F 点坐标为(13,0),设A 点坐标为(x ,y ),则y =±23x ,由|AF |=2⇒-13+⎝ ⎛⎭⎪⎫23x 2=2⇒x =913,y =±613,代入y 2=2px 得p =21313,所以抛物线方程为y 2=41313x ,所以选C. 5.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172B .3C.5D.92[答案] A[解析] 记抛物线y 2=2x 的焦点为F ⎝ ⎛⎭⎪⎫12,0,准线是l ,由抛物线的定义知点P 到焦点F的距离等于它到准线l 的距离,因此要求点P 到点(0,2)的距离与点P 到抛物线的准线的距离之和的最小值,可以转化为求点P 到点(0,2)的距离与点P 到焦点F 的距离之和的最小值,结合图形不难得知相应的最小值就等于焦点F 与点(0,2)的距离,因此所求的最小值等于⎝ ⎛⎭⎪⎫122+22=172,选A. 6.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为31,则点A 的坐标为( )A .(2,22)B .(2,-22)C .(2,±2)D .(2,±22)[答案] D[解析] 如图,由题意可得,|OF |=1,由抛物线定义得,|AF |=|AM |,∵△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,∴S△AMF S△AOF =12×|AF|×|AM|×sin∠MAF 12-=3,∴|AM |=3,设A ⎝ ⎛⎭⎪⎫y024,y0,∴y024+1=3, 解得y 0=±22,∴y024=2,∴点A 的坐标是(2,±22),故选D.7.(2010·河北许昌调研)过点P (-3,1)且方向向量为a =(2,-5)的光线经直线y =-2反射后通过抛物线y 2=mx ,(m ≠0)的焦点,则抛物线的方程为( )A .y 2=-2x B .y 2=-32xC .y 2=4xD .y 2=-4x[答案] D[解析] 设过P (-3,1),方向向量为a =(2,-5)的直线上任一点Q (x ,y ),则PQ →∥a ,∴x +32=y -1-5,∴5x +2y +13=0,此直线关于直线y =-2对称的直线方程为5x +2(-4-y )+13=0,即5x -2y +5=0,此直线过抛物线y 2=mx 的焦点F ⎝ ⎛⎭⎪⎫m 4,0,∴m =-4,故选D.8.已知mn ≠0,则方程是mx 2+ny 2=1与mx +ny 2=0在同一坐标系内的图形可能是( )[答案] A[解析] 若mn >0,则mx 2+ny 2=1应为椭圆,y 2=-mnx 应开口向左,故排除C 、D ;∴mn <0,此时抛物线y 2=-mnx 应开口向右,排除B ,选A.9.(2010·山东聊城模考)已知A 、B 为抛物线C :y 2=4x 上的不同两点,F 为抛物线C 的焦点,若FA →=-4FB →,则直线AB 的斜率为( )A .±23B .±32C .±34D .±43[答案] D[解析] ∵FA →=-4FB →,∴|FA →|=4|FB →|,设|BF |=t ,则|AF |=4t ,∴|BM |=|AA 1|-|BB 1|=|AF |-|BF |=3t ,又|AB |=|AF |+|BF |=5t ,∴|AM |=4t ,∴tan ∠ABM =43,由对称性可知,这样的直线AB 有两条,其斜率为±43.10.已知抛物线C 的方程为x 2=12y ,过点A (0,-4)和点B (t,0)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(-∞,-1)∪(1,+∞)B.⎝ ⎛⎭⎪⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎪⎫22,+∞C .(-∞,-22)∪(22,+∞)D .(-∞,-22)∪(2,+∞)[答案] B[解析] 由题意知方程组⎩⎪⎨⎪⎧x2=12y ①x t +y-4=1 ②无实数解由②得y =4xt -4,代入①整理得,2x 2-4x t +4=0,∴Δ=16t2-32<0,∴t >22或t <-22,故选B.[点评] 可用数形结合法求解,设过点A (0,-4)与抛物线x 2=12y 相切的直线与抛物线切点为M (x 0,y 0),则切线方程为y -y 0=4x 0(x -x 0), ∵过A 点,∴-4-2x 02=4x 0(0-x 0), ∴x 0=±2,∴y 0=4, ∴切线方程为y -4=±42x -8,令y =0得x =±22,即t =±22,由图形易知直线与抛物线无公共点时,t <-22或t >22.二、填空题11.已知点A (2,0)、B (4,0),动点P 在抛物线y 2=-4x 上运动,则AP→·BP→取得最小值时的点P 的坐标是______.[答案] (0,0)[解析] 设P ⎝ ⎛⎭⎪⎫-y24,y ,则AP →=⎝ ⎛⎭⎪⎫-y24-2,y ,BP →=⎝ ⎛⎭⎪⎫-y24-4,y ,AP →·BP →=⎝ ⎛⎭⎪⎫-y24-2⎝ ⎛⎭⎪⎫-y24-4+y 2=y416+52y 2+8≥8,当且仅当y =0时取等号,此时点P 的坐标为(0,0).12.(文)(2010·泰安市模拟)如图,过抛物线y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,交抛物线于A 、B 两点,且|F A |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 设抛物线准线为l ,作AA 1⊥l ,BB 1⊥l ,FQ ⊥l ,垂足分别为A 1、B 1、Q ,作BM ⊥AA 1垂足为M ,BM 交FQ 于N ,则由条件易知∠ABM =30°,设|BF |=t ,则|NF |=t2,|MA |=t +32,∵|AM |=|QN |,∴3-t +32=p -t 2,∴p =32,∴抛物线方程为y 2=3x .(理)(2010·泰安质检)如图,过抛物线y 2=2px (p >0)的焦点的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 解法1:过A 、B 作准线垂线,垂足分别为A 1,B 1,则|AA 1|=3,|BB 1|=|BF |,∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴|AC |=2|AA 1|=2|AF |=6,∴|CF |=3,∴p =12|CF |=32,∴抛物线方程为y 2=3x .解法2:由抛物线定义,|BF |等于B 到准线的距离,由|BC |=2|BF |得∠BCB 1=30°,又|AF |=3,从而A ⎝ ⎛⎭⎪⎪⎫p 2+32,332在抛物线上,代入抛物线方程y 2=2px ,解得p =32. 点评:还可以由|BC |=2|BF |得出∠BCB 1=30°,从而求得A 点的横坐标为|OF |+12|AF |=p 2+32或3-p 2,∴p 2+32=3-p 2,∴p =32. 13.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.[答案] 3+22[解析] 分别由A 和B 向准线作垂线,垂足分别为A 1,B 1,则由条件知,⎩⎪⎨⎪⎧|AA1|+|BB1|=|AB|,|AA1|-|BB1|=22|AB|,解得⎩⎪⎨⎪⎧|AA1|=2+24|AB||BB1|=2-24|AB|,∴|AA1||BB1|=3+22,即|FA||FB|=3+22.14.(文)若点(3,1)是抛物线y 2=2px 的一条弦的中点,且这条弦所在直线的斜率为2,则p =________.[答案] 2[解析] 设弦两端点P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎪⎨⎪⎧y12=2px1y22=2px2,两式相减得,y1-y2x1-x2=2p y1+y2=2,∵y 1+y 2=2,∴p =2.(理)(2010·衡水市模考)设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A 、B 两点,又知点P 恰为AB 的中点,则|AF |+|BF |=________.[答案] 8[解析] 过A 、B 、P 作准线的垂线AA 1、BB 1与PP 1,垂足A 1、B 1、P 1,则|AF |+|BF |=|AA 1|+|BB 1|=2|PP 1|=2[1-(-3)]=8.三、解答题 15.(文)若椭圆C 1:x24+y2b2=1(0<b <2)的离心率等于32,抛物线C 2:x 2=2py (p >0)的焦点在椭圆C 1的顶点上.(1)求抛物线C 2的方程;(2)若过M (-1,0)的直线l 与抛物线C 2交于E 、F 两点,又过E 、F 作抛物线C 2的切线l 1、l 2,当l 1⊥l 2时,求直线l 的方程.[解析] (1)已知椭圆的长半轴长为a =2,半焦距c =4-b2,由离心率e =ca=4-b22=32得,b 2=1. ∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1), ∴p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2),∵y =14x 2,∴y ′=12x ,∴切线l 1,l 2的斜率分别为12x 1,12x 2,当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4,由⎩⎪⎨⎪⎧y =+x2=4y得:x 2-4kx -4k =0,由Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0. 又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为x -y +1=0.(理)在△ABC 中,CA →⊥CB →,OA →=(0,-2),点M 在y 轴上且AM →=12(AB→+CD →),点C 在x 轴上移动.(1)求B 点的轨迹E 的方程;(2)过点F ⎝ ⎛⎭⎪⎫0,-14的直线l 交轨迹E 于H 、E 两点,(H 在F 、G 之间),若FH →=12HG →,求直线l 的方程.[解析] (1)设B (x ,y ),C (x 0,0),M (0,y 0),x 0≠0, ∵CA →⊥CB →,∴∠ACB =π2,∴2x0·y0-x0=-1,于是x 02=2y 0① M 在y 轴上且AM →=12(AB →+AC →),所以M 是BC 的中点,可得 ⎩⎪⎨⎪⎧x0+x2=0y +02=y0,∴⎩⎪⎨⎪⎧x0=-x ②y0=y2③把②③代入①,得y =x 2(x ≠0),所以,点B 的轨迹E 的方程为y =x 2(x ≠0).(2)点F ⎝⎛⎭⎪⎫0,-14,设满足条件的直线l 方程为:y =kx -14,H (x 1,y 1),G (x 2,y 2),由⎩⎪⎨⎪⎧ y =kx -14y =x2消去y 得,x 2-kx +14=0. Δ=k 2-1>0⇒k 2>1,∵FH →=12HG →,即⎝⎛⎭⎪⎫x1,y1+14=12(x 2-x 1,y 2-y 1), ∴x 1=12x 2-12x 1⇒3x 1=x 2. ∵x 1+x 2=k ,x 1x 2=14,∴k =±233, 故满足条件的直线有两条,方程为:8x +43y +3=0和8x -43y -3=0. 16.(文)已知P (x ,y )为平面上的动点且x ≥0,若P 到y 轴的距离比到点(1,0)的距离小1.(1)求点P 的轨迹C 的方程;(2)设过点M (m,0)的直线交曲线C 于A 、B 两点,问是否存在这样的实数m ,使得以线段A B 为直径的圆恒过原点.[解析] (1)由题意得:-+y2-x =1,化简得:y 2=4x (x ≥0).∴点P 的轨迹方程为y 2=4x (x ≥0).(2)设直线AB 为y =k (x -m ),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ y =-y2=4x ,得ky 2-4y -4km =0,∴y 1+y 2=4k,y 1·y 2=-4m .∴x 1·x 2=m 2, ∵以线段AB 为直径的圆恒过原点,∴OA ⊥OB ,∴x 1·x 2+y 1·y 2=0.即m 2-4m =0⇒m =0或4.当k 不存在时,m =0或4.∴存在m =0或4,使得以线段AB 为直径的圆恒过原点.[点评] (1)点P 到定点F (1,0)的距离比到y 轴的距离大1,即点P 到定点F (1,0)的距离与到定直线l :x =-1的距离相等.∴P 点轨迹是以F 为焦点,l 为准线的抛物线,∴p =2,∴方程为y 2=4x .(理)已知抛物线y 2=4x ,过点(0,-2)的直线交抛物线于A 、B 两点,O 为坐标原点.(1)若OA →·OB →=4,求直线AB 的方程.(2)若线段AB 的垂直平分线交x 轴于点(n,0),求n 的取值范围.[解析] (1)设直线AB 的方程为y =kx -2 (k ≠0),代入y 2=4x 中得,k 2x 2-(4k +4)x +4=0①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k +4k2,x 1x 2=4k2. y 1y 2=(kx 1-2)·(kx 2-2)=k 2x 1x 2-2k (x 1+x 2)+4=-8k . ∵OA →·OB →=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=4k2-8k=4,∴k 2+2k -1=0,解得k =-1±2. 又由方程①的判别式Δ=(4k +4)2-16k 2=32k +16>0得k >-12,∴k =-1+2,∴直线AB 的方程为(2-1)x -y -2=0.(2)设线段AB 的中点的坐标为(x 0,y 0),则由(1)知x 0=x1+x22=2k +2k2,y 0=kx 0-2=2k, ∴线段AB 的垂直平分线的方程是y -2k =-1k ⎝⎛⎭⎪⎫x -2k +2k2. 令y =0,得n =2+2k +2k2=2k2+2k+2 =2⎝ ⎛⎭⎪⎫1k +122+32. 又由k >-12且k ≠0得1k <-2,或1k>0,∴n >2⎝ ⎛⎭⎪⎫0+122+32=2.∴n 的取值范围为(2,+∞). 17.(文)(2010·全国Ⅰ)已知抛物线C :y 2=4x 的焦点为F ,过点K (-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)证明:点F 在直线BD 上;(2)设FA →·FB →=89,求△BDK 的内切圆M 的方程. [解析] 设A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),l 的方程为x =my -1(m ≠0)(1)将x =my -1(m ≠0)代入y 2=4x 并整理得y 2-4my +4=0,从而y 1+y 2=4m ,y 1y 2=4①直线BD 的方程为y -y 2=y2+y1x2-x1(x -x 2) 即y -y 2=4y2-y1⎝ ⎛⎭⎪⎫x -y224 令y =0,得x =y1y24=1,所以点F (1,0)在直线BD 上. (2)由(1)知,x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2,x 1x 2=(my 1-1)(my 2-1)=1因为FA →=(x 1-1,y 1),FB →=(x 2-1,y 2),FA →·FB →=(x 1-1,y 1)·(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+4=8-4m 2,故8-4m 2=89,解得m =±43, 直线l 的方程为3x +4y +3=0,3x -4y +3=0.从而y 2-y 1=±-4×4=±437, 故4y2-y1=±37因而直线BD 的方程为3x +7y -3=0,3x -7y -3=0.因为KF 为∠BKD 的角平分线,故可设圆心M (t,0),(-1<t <1),M (t,0)到直线l 及BD 的距离分别为3|t +1|5,3|t -1|4, 由3|t +1|5=3|t -1|4得t =19或t =9(舍去),故圆M 的半径为r =3|t +1|5=23, 所以圆M 的方程为⎝ ⎛⎭⎪⎫x -192+y 2=49. (理)(2010·揭阳市模考)已知点C (1,0),点A 、B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点.(1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.[解析] (1)法一:连结CP ,由AC →·BC →=0知,AC ⊥BC ,∴|CP |=|AP |=|BP |=12|AB |, 由垂径定理知|OP |2+|AP |2=|OA |2,即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9,化简得,x 2-x +y 2=4.法二:设A (x 1,y 1),B (x 2,y 2),P (x ,y ),根据题意知,x 12+y 12=9,x 22+y 22=9,2x =x 1+x 2,2y =y 1+y 2,∴4x 2=x 12+2x 1x 2+x 22,4y 2=y 12+2y 1y 2+y 22故4x 2+4y 2=(x 12+y 12)+(2x 1x 2+2y 1y 2)+(x 22+y 22)=18+2(x 1x 2+y 1y 2)①又∵AC →·BC →=0,∴(1-x 1,-y 1)·(1-x 2,-y 2)=0∴(1-x 1)×(1-x 2)+y 1y 2=0,故x 1x 2+y 1y 2=(x 1+x 2)-1=2x -1,代入①式得,4x 2+4y 2=18+2(2x -1),化简得,x 2-x +y 2=4.(2)根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px 上,其中p 2=1,∴p =2,故抛物线方程为y 2=4x , 由方程组⎩⎪⎨⎪⎧ y2=4xx2-x +y2=4得,x 2+3x -4=0, 解得x 1=1,x 2=-4,由于x ≥0,故取x =1,此时y =±2,故满足条件的点存在,其坐标为(1,-2)和(1,2).。
高中抛物线试题及答案一、选择题1. 抛物线方程 \( y = ax^2 + bx + c \) 中,若 \( a > 0 \),则抛物线开口方向为()A. 向上B. 向下C. 向左D. 向右答案:A2. 对于抛物线 \( y = -2x^2 + 4x + 1 \),其顶点坐标为()A. (-1, 3)B. (1, 3)C. (-1, -3)D. (1, -3)答案:B3. 抛物线 \( y = 3x^2 - 6x + 2 \) 与 \( x \) 轴的交点个数是()A. 0B. 1C. 2D. 3答案:C二、填空题4. 若抛物线 \( y = x^2 - 4x + 3 \) 与 \( y \) 轴相交于点 \( P \),则点 \( P \) 的坐标为______。
答案:(0, 3)5. 抛物线 \( y = -x^2 + 2x + 3 \) 的对称轴方程是______。
答案:\( x = 1 \)三、解答题6. 已知抛物线 \( y = 2x^2 - 4x + 1 \),求抛物线的顶点坐标和开口方向。
答案:抛物线的顶点坐标为 (1, -1),开口方向向上。
7. 抛物线 \( y = 3x^2 + 6x + 2 \) 与 \( x \) 轴相交于点 \( A \) 和点 \( B \),求 \( AB \) 的长度。
答案:\( AB \) 的长度为 2。
8. 已知抛物线 \( y = -x^2 + 4x - 3 \) 经过点 \( (2, 1) \),求抛物线与 \( y \) 轴的交点坐标。
答案:抛物线与 \( y \) 轴的交点坐标为 (0, -3)。
高中数学《抛物线》练习题一、选择题:1. (浙江 )函数 y =ax 2+1 的图象与直线 y =x 相切,则 a =()(A)1(B)1(C) 1(D)18422. (上海)过抛物线 y 2 4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线()A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在3. 抛物线 x24 y 上一点 A 的纵坐标为 4,则点 A 与抛物线焦点的距离为()(A) 2(B) 3(C) 4(D) 5y 24. (辽宁卷)已知双曲线的中心在原点,离心率为 3 .若它的一条准线与抛物线4x 的准线重合,则该双曲线与抛物线 y24x的交点到原点的距离是()A .2 3+ 6B . 21C .18 12 2D . 215 .(江苏卷) 抛物线 y=4 x 2 上的一点 M 到焦点的距离为 1,则点 M 的纵坐标是 ()1715( C )7 (D)0( A )( B )816166. (湖北卷)双曲线 x2y 21(mn0) 离心率为 2,有一个焦点与抛物线 y 2 4x 的焦点重合,则 mnmn的值为()A .3B .3C .16D .816833二、填空题:7.顶点在原点,焦点在 x 轴上且通径长为 6 的抛物线方程是 . 8.若抛物线 y1 x2 2x m 的焦点在 x 轴上,则 m 的值是.29.过(- 1, 2)作直线与抛物线 y24x 只有一个公共点,则该直线的斜率为.10.抛物线 y2x 2 为一组斜率为 2 的平行弦的中点的轨迹方程是.三、解答题:yM11. (江西卷) 如图, M 是抛物线上 y 2=x 上的一点, 动弦 ME 、MF 分别交 x 轴于 A 、 BB 两点,且 MA=MB.OAx( 1)若 M 为定点,证明:直线 EF 的斜率为定值;E( 2)若 M 为动点,且∠ EMF=90 °,求△ EMF 的重心 G 的轨迹F12. (上海)本题共有 3 个小题 ,第 1 小题满分 4 分, 第 2 小题满分 6 分, 第 3 小题满分 6 分.已知抛物线y2=2px(p>0) 的焦点为 F,A 是抛物线上横坐标为4、且位于x 轴上方的点 ,A 到抛物线准线的距离等于5,过 A 作 AB 垂直于 y 轴 ,垂足为 B,OB 的中点为M.(1)求抛物线方程 ;(2)过 M 作 MN ⊥ FA, 垂足为 N,求点 N 的坐标 ;(3)以 M 为圆心 ,MB 为半径作圆M. 当 K(m,0) 是 x 轴上一动点时,丫讨论直线AK 与圆 M 的位置关系 .当 m<1 时 , AK 与圆 M 相交 .13、 (全国卷III)设 A x1,y1 , B x2,y2 两点在抛物线y 2x2上,l是AB 的垂直平分线。
(Ⅰ)当且仅当x1 x2取何值时,直线l 经过抛物线的焦点 F ?证明你的结论;(Ⅱ)当直线l 的斜率为2时,求 l 在y轴上截距的取值范围。
14(.广东卷)在平面直角坐标系xOy 中,抛物线y x2上异于坐标原点O的两不同动点A、B满足AO BO(如图4所示).(Ⅰ)求AOB 得重心G(即三角形三条中线的交点)的轨迹方程;(Ⅱ)AOB 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.yABxO抛物线练习题答案解答:一。
BBD BB A三 .1. 解:(1)设 M ( y 20 ,y 0),直线 ME 的斜率为 k(l>0)则直线 MF 的斜率为- k ,方程为 y y 0k( x y 02 ).∴由y y 0k( x y 02 )2y y 0 (1 ky 0 ) 0 解得 y F1 ky 0(1 ky 0 ) 2y 2x,消 x 得 kyk, x F2ky E y F1 ky 0 1 ky 02 1∴k EF k kk (定值 ) 所以直线 EF 的斜率为定值x E x F (1 ky 0 ) 2 (1 ky 0 ) 24ky 02y 0k 2k 2 k 2( 2) 当 EMF90 时, MAB45 ,所以 k 1,y y 0 k( x y 0 )oo直线 ME 的方程为2y y 0 xy 022y 0 ) 同理可得 F ((12(1y 0 )).由x得 E((1 y 0 ) ,1y 0 ) , y 2x M x E x F y 02 (1 y 0 )2 (1 y 0 ) 22 3 y 02 设重心 G ( x, y ),则有x3 33x M x E x F y 0 (1 y 0 ) (1 y 0 )y 0x333消去参数 y 0 得 y21 x2 (x 2).9 2734. [ 解 ](1) 抛物线 y 2=2px 的准线为 x=-p,于是 4+p=5, ∴ p=2.∴抛物线方程为 y 2=4x.22(2)∵点 A 是坐标是 (4,4), 由题意得 B(0,4),M(0,2), 又∵ F(1,0),4∴ k MN =-3∴ k FA =;MN ⊥FA,,34则 FA 的方程为 y=4(x-1),MN 的方程为 y-2=-3x,解方程组得 x= 8,y= 4, ∴N 的坐标(8 , 4).34 555 5(1) 由题意得 , ,圆 M. 的圆心是点 (0,2), 半径为 2,当 m=4 时 , 直线 AK 的方程为 x=4,此时 ,直线 AK 与圆 M 相离 .当 m ≠ 4 时 , 直线 AK 的方程为 y=4(x-m), 即为 4x-(4-m)y-4m=0,4 m圆心 M(0,2) 到直线 AK 的距离 d=2m 8 ,令 d>2,解得 m>1∴当 m>1 时 , AK 与圆 M 相离 ;16 (m4) 2当 m=1 时 , AK 与圆 M 相切 ; 当 m<1 时 , AK 与圆 M 相交 .8. .解:(Ⅰ) FlFAFB A 、 B 两点到抛物线的准线的距离相等,∵抛物线的准线是 x 轴的平行线, y 10, y 2 0 ,依题意 y 1,y 2 不同时为 0∴上述条件等价于22yy 2xx2 xxxx2∵ x 1x 211121∴上述条件等价于 x 1 x 2 0 即当且仅当 x 1 x 2 0 时, l 经过抛物线的焦点 F 。
(Ⅱ) 设 l 在 y 轴上的截距为b ,依 题意得 l 的方程为y 2x b ;过点 A 、B 的 直线方程可写为y1 x m ,所以 x 1、 x2 满足方程 2x 2 1 x m 0 得 x 1 x 2 12 2 1 41 A 、 B 为抛物线上不同的两点等价于上述方程的判别式 8m f0 ,即 m f4 32x x 1x 2313.解:( I )设△ AOB 的重心为 G(x,y),A(x 1,y 1),B(x 2,y 2),则( 1)y 1 y 2y3∵OA ⊥OB ∴ k OAkOB1 ,即 x 1 x2 y 1 y 21,(2)又点 A , B 在抛物线上,有 y 1x 12 , y 2x 22 ,代入( 2)化简得 x 1 x 21∴ yy 1y 2 1 ( x 12 x 22 ) 1 [( x 1 x 2 ) 2 2x 1 x 2 ] 1 (3x) 2 2 3x 2 23 3 33 3 3 所以重心为 G 的轨迹方程为y 3x 223(II ) S AOB1|OA||OB |1 (x 12 y 12 )( x 22y 22 ) 1 x 12 x 22x 12 y 22 x 22 y 12 y 12 y 22222S AOB1 x 16x 262 12 x 16 x 2621 2 ( 1)6 2 1 2 1由( I )得222 2当且仅当 x16x26即x1x2 1 时,等号成立。
所以△ AOB的面积存在最小值,存在时求最小值1;。