最好matlab教程全Matlab程序设计剖析
- 格式:ppt
- 大小:555.50 KB
- 文档页数:24
第二章 MATLAB 语言及应用实验项目实验一 MATLAB 数值计算三、实验内容与步骤1.创建矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a(1(2)用(3)用(42.矩阵的运算(1)利用矩阵除法解线性方程组。
⎪⎪⎩⎪⎪⎨⎧=+++=-+-=+++=+-12224732258232432143214321421x x x x x x x x x x x x x x x 将方程表示为AX=B ,计算X=A\B 。
(2)利用矩阵的基本运算求解矩阵方程。
已知矩阵A 和B 满足关系式A -1BA=6A+BA ,计算矩阵B 。
其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=7/10004/10003/1A ,Ps: format rata=[1/3 0 0;0 1/4 0;0 0 1/7];b=inv(a)*inv(inv(a)-eye(3))*6*a(3)计算矩阵的特征值和特征向量。
已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=1104152021X ,计算其特征值和特征向量。
(4)Page:322利用数学函数进行矩阵运算。
已知传递函数G(s)=1/(2s+1),计算幅频特性Lw=-20lg(1)2(2w )和相频特性Fw=-arctan(2w),w 的范围为[0.01,10],按对数均匀分布。
3.多项式的运算(1)多项式的运算。
已知表达式G(x)=(x-4)(x+5)(x 2-6x+9),展开多项式形式,并计算当x 在[0,20]内变化时G(x)的值,计算出G(x)=0的根。
Page 324(2)多项式的拟合与插值。
将多项式G(x)=x 4-5x 3-17x 2+129x-180,当x 在[0,20]多项式的值上下加上随机数的偏差构成y1,对y1进行拟合。
对G(x)和y1分别进行插值,计算在5.5处的值。
Page 325 四、思考练习题1.使用logspace 函数创建0~4π的行向量,有20个元素,查看其元素分布情况。
Ps: logspace(log10(0),log10(4*pi),20) (2) sort(c,2) %顺序排列 3.1多项式1)f(x)=2x 2+3x+5x+8用向量表示该多项式,并计算f(10)值. 2)根据多项式的根[-0.5 -3+4i -3-4i]创建多项式。
NIND=200;MAXGEN=2000;NV AR=55;max=5000000;P=0.3;M=3;N=5;L=7;A=[313000000 378000000 465000000] ;M=[20000 10000 30000 40000 40000] ;D=[165 150 200 100 150 300 200] ;f=[6000000;4000000;6000000;700000;5000000] ;V=[80;80;90;955;100] ;a=[15;20;24;20;15;20;20;15;20;24;20;15;24;20;15] ;C=[20;15;15;20;15;20;15;20;25;20;25;15;15;15;15;15;15;20;20;25;20;30;20;20;20;20;25;20;20;1 5;15;15;20;20;20;20] ;P=3;for i=l:NINDwhile 0<1for j=1:5chroml(i,j)=round(rand(i)) ;endif(sum(chroml(i,:),3)>=1)&(sum(chroml(i,:) ,3)<=P)breakendendendsumb=zeros(NIND,5) ;sumd=zeros(NIND,5);for i=l:NINDfor j=l:5if chrom1(i,j)=0chrom3(i,(2*(j-1)+1):(3*j))=0;chrom3(i, (7*(j-l)+1):(8*j))=0;elsewhile chroml(i,j)=l chrom3(i,(3*(j-1)+1):(3*j)=rand(i,3).* min(A[M(j)M(j)]);sumb(i,j)=sum(chrom3(i,(3*(j-l)+1):(3*j)),3);chrom3(j,(7*(j-1)+1):(7*j))=rand(1,7).*(rep([M(j)],[11]));sumd(i,j)=sum(chrom3(i,(7*(j-l)+1):(7*j)),3);chrom3(i,(7*(j-l)+1):(7*j))=(sumb(i,j)/sumd(i,j))*chrom3(i,(7*(j-l)+1):(7*j));if sumb(i,j)<=1.0*M(j)breakendendendendendchrom=[chroml chrorn2 chrom3];%产生初始种群[objvalue]=calobjvaluc(chrom,M,N,L,A,C, V,f);[fitvalue,restriction]=calfitvalue(objvalue,chrom,max,M,N,L,A,M,D,P); [bestindividual,bestfit,bestrestriction,nopos]=best(chrom,fitvalue,restriction);gem=0;while gen<MAXGEN,[objvalue]=calobjvalue(chrom,M,N,L,A,C,V,D);[fitvalue,restriction]=calfitvalue(objvalue,chrom,max,M,N,L,A,M,D,P); [bestindividuall,bestfitl,bestrestrictionl,noposl]=best(chrom,fitvalue,restriction);if bestrestriction>bestrestrictionlbestindividual=bestindividual l;besttit=-bestfitl;bestrestriction=bestrestriction l;endif bestrestriction =bestrcstrictionl)&(bestfit<bestfitl)bestindividual=beStindividual l;besttit=-bestfitl;bestrestriction=bestrestrictionl:endchrom(noposl,:)=bestindividual;[newchrom]=selection(chrom,fitvalue);[newchrom]=crossover(newchrom,M,N,1);[newchrom]=mutation(newchrom,P,M,N,1);[bestindividual2,bestfit2,bestrestrietion2,nopos2]=best(newchrom,fitvalue, restrietion); If bestrestriction>bestrestriction2bestindividual=bestindividual2;bestfit=bestfit2;bestrestriction=bestrestriction2;endif(bestrestriction=bestrestriction2)&(bestfit<bestfit2)bestindividual=bestindividual2;bestfit =-bestfit2;bestrestriction =bestrestriction2;endchrom=newchrom;gen=gen+1;endbestindividual,bestfit,bestrestriction%目标函数Function[objvalue]=ealobjvalue(chrom,M,N,L,A, V,f)Chrom1= chrom(:,1:N);Chrom2=chrom(:,(N+1):(N+M*N));chrom3= chrom (:,(N+M*N+1):(N+M*N+N*L));[NIND,NV AR]=size(chrom);for i=l:NINDfor j=l:Nu(i,j)=7300*sum(chrom2(i,(2*(j-l)+1):(2*j)),2);endendobjvalue=chrom2*a*7300+chrom3*c*3650+sqrt(u).* chroml*V+chroml*f; %适应度计算和约束判断Function[fitvalue restrection]=ealfitvalue(objvalue,chrom, max,M,N,l,A,M,D,P)Global gen;[NIND,NV AR]=size(chrom);Chroml=chrom (:,1:N);chrom2=Chrom(:,(N+1):(N+M*n));chrom3=Chrom(:,(N+M*N*N+1):(N+M*N+N*1));restriction=zeros(NIND,1);r=zeros(NIND,M);s=zeros(NIND,N);t=zeros(NIND,1);u=zeros(NIND,3);p=zeros(NIND,n);for i=l:NINDfor j=l:Mr(i,j)=A(j)-sum((chrom2(i,j:m:m*}n)),2);if r(i,j)<0restriction(i,1)=restriction(i,1)+1;endendfor j=l:lt(i,j)=sum((chrom3(i,j:l:n*1)),2)-D(j);if t(i,j)<0restriction(i,1)=-restriction(i,l)+1;endendfor j=l:ns(i,j)=chroml(i,j)*M(j)-sum(chrom2(i,(M*(j-1)+1):(M*j)),2);p(i,j)=abs(sum(chrom3(i,(1*(j-1)+1):(1*j)),2)-sum(chrom2(i,(M*(j-1)+1):(M*j)),2));if s(i,j)<0restrietion(i,1)=restriction(i,1)+l;endif p(i,j)>=l e-3restriction(i,1)=restriction(i,l)+l;endendu(i,1)=P-sum(chroml(i,:),2);if u(i,1)<0restriction(i,1)=restriction(i,l)+1;endu(i,2)=sum(chroml(i,:),2)-1;if u(i,2)<0restrigtion(i,1)=restriction(i,1)+l;endif(objvalue(i,1)<max)fitvaluc(i,1)=max-objvaluc(i,1);elsefitvalue(i,1)=0.0;endend%找出最优个体和最差个体function[bestindividual,bestfit,bestrestriction,nopos]=best(chrom,fitvalue,restriction); [NIND,NV AR]=size(chrom);pos=l;for i=l:NINDif restriction(pos,1)>restriction(i,1)pos=i;endif(restriction(pos,1)=restriction(i,1))&(fitvalue(pos,1)<fitvalue(i,1)) pos=i;endendbestindividual=chrom(pos,:);bestfit=fitvalue(pos);bestrestriction= restriction (pos,:);nopos=1;for i=l:NINDif restriction(nopos,1)<restriction(i,1)nopos=i;endif(restriction(nopos,1)=restriction(i,1))&(fitvalue(nopos,1)>fitvalue(i,1)) nopos=i;endend%选择Function[newchrom]=selection(chrom,fitvalue)totalfit=sum(fitvalue);fitvalue=:fitvalue/totalfit;fitvalue=cumsum(fitvalue);[NIND,NV AR]=size(chrom);ms=sort(rand(NIND,1));fitin=1;newin=1;while newin<=NINDif(ms(newin))<fitvalue(fitin)temp(newin,:)=chrom(fitin,:);newin=newin+1;elsefitin=fitin+1;endif fitin>=NINDfitin=NIND;endendnewchrom=temp;%交叉Function[newchrom]=crossover(chrom,M,N,1)global gen;[NIND,SVAR]=size(chrom);chrom1=chrom(:,l:n);chrom2=chrom(:, (N+1) : (N+M*N)) ;chrom3=chrom(:, (N+m*n+1) : (N+M*N+N*1)) ; newchrom=zeros(NIND,NV AR) ;P=0.75;for i=l:2:NIND-1if(rand<P)point=ceil(rand*(N-1));ifpoint<5newchrom(i,:)=[chroml(i,l:point)chromI(i+1,point+1:n) ... chrom2(i,l:M*point)chrom2(i+l,M*point+1:M*N) ... chrom3(i,1:l*point)chrom3(i+l,1*point+l:N*1)]; newchrom(i+l,:)=[chroml(i+l,1:point)chroml(i,point+l:n) ... chrom2(i+l,l:m*point)chrom2(i,M*point+l:M*N) ...chrom3(i+1,1:l*point)chrom3(i,1*point+l:N*1)];elsenewchrom(i,:)=chrom(i,:);newchrom(i+1,:)=chrom(i+l,:);endelsenewchrom(i,:)=chromo,:);newchrom(i+l,:)=chrom(i+l,:);endend%变异Function[newchrom]=mutation(chrom,P,M,N,L)global gen;FieldDR=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;20000 20000 10000 10000 30000 30000 40000 40000 40000 40000];RANGE=[0 0 0 0 0 0 0;165 150 200 100 150 300 200];[NIND,NV AR]=size(chrom);chroml=chrom(:,l:N);chrom2=chrom(:, (N+1):(N+M*N));chrom3=chrom(:, (N+M*N+1):(N+M*n+ 1));newchrom=zeros(NIND,NV AR);newchroml=zeros(NIND,N);newchrom2=zeros(NIND,M*N);newchrom3=zeros(NIND,N*1);for i=1:NINDfor j=l:Nif chrom l(i,j)=0newchrom2(i,(M*(j-1)+1):(M*j))=0;newchrom3(i,1*(j-l)+1):(1*j)=0;elseif round(rand)=0newchrom2(i,(M*(j-1)+1):(M*j))=chrom2(i,(M*(j-1)+1):(M*j)+ ...(FieldDR(2,(M*(j-1)+1):(M*j))=chrom2(i,(M*(j-1)+1):(M*j)))*(1-rand^((1-gen/2000)^10));newchrom3(i,(1*(j-1)+1):(1*j)=chrom3(i,(1*(j-1)+1):(1*j) + ...([165 150 200 100 150 300 200]-chrom3(i,(1*(j-1)+1):(1*j)))*(1-rand^((1*gen/2000)^10));elseif round(rand)=lnewChrom2(i,(M*(j-1)+1):(M*j) ) = Chrom2 (i,(M*(j-1)+1):(M*j)) ...(chrom2(i,(M*(j-1)+1):(M*j))-[00])*(1-rand^((1-gen/2000)^10));newchrom3(i,(1*(j-1)+1):(1*j)):chrom3(i,(1*(j-1)+1):(1*j)) ...(chrom3(i,(1*(j-1)+1):(N))-[0 0 0 0 0 0 0 0])*(1-rand^((1*gen/2000)^10));endendendendnewchrom1=chrom1;newchrom=[newchrom1 newchrom2 newchrom3];endendnewchrom1=chrom1;newchrom=[newchrom1 newchrom2 newchrom3];bestindividualbestindividual=columms 1 through 171.0000 1.0000 0 0 1.000 80.3686 20.6636 0 0 23.7458 50.7648 63.57695 0 0 123.6753 39.7648 19.5769 0 0 289.6753 columms 18 through 3419.5849 50.7648 45.7985 64.2875 19.9768 53.6843 135.6752 32.6437 24.5342 27.9485 9.9873 24.7638 125.7958 27.8745 columms 35 through 510 0 0 0 0 0 00 0 0 0 0 0 0columms 52 through 5595.7482 35.9862 83.4768 28.4769 74.5867 113.4786 44.4873。
MATLAB程序设计教程总结MATLAB程序设计是一项广泛应用于科学计算、工程仿真、数据分析和可视化等领域的编程语言和环境。
它以其简单易用、高效快捷的特点,受到了众多研究者、工程师和学生的喜爱。
下面是对MATLAB程序设计教程的总结。
整体结构:MATLAB程序一般由多个函数文件和脚本文件组成,其中主要的计算功能和算法实现都在函数文件中完成,而脚本文件主要用于调用和展示函数文件的功能。
1. 变量和数据类型:MATLAB中的变量是不需要事先声明的,可以根据需要直接赋值创建。
常用的数据类型有数值型、字符串、逻辑型和结构数组等。
数值型包括整型、浮点型和复数型,可以进行基本的算术运算,并且具有丰富的内置数学函数。
2. 控制流程:MATLAB中的控制流程语句包括条件语句和循环语句。
条件语句包括if-else语句和switch-case语句,用于根据不同的条件执行不同的代码块。
循环语句包括for循环和while循环,用于重复执行某个代码块。
3. 函数和脚本:函数是MATLAB程序设计的核心,用于封装和重复使用代码。
函数文件以.m为后缀名,包含函数名、输入参数和输出参数等。
脚本文件以.m为后缀名,也是一段可执行的MATLAB代码,主要用于调用和展示函数文件中的功能。
4. 矩阵和向量运算:MATLAB以矩阵和向量为基本的数据结构,支持矩阵和向量的运算和操作。
矩阵和向量运算可以使用MATLAB提供的丰富的运算符和函数,如加法、减法、乘法、除法、转置、逆矩阵、特征值等。
5. 图形绘制和数据可视化:MATLAB提供了强大的图形绘制功能,可以用于生成各种类型的二维和三维图形。
可以通过简单的命令和函数实现数据的可视化,如线图、散点图、柱状图、三维图等。
同时,还可以通过设置图形属性和样式来美化图形的效果。
6. 文件输入输出和数据处理:MATLAB可以进行文件的读写操作,包括文本文件、二进制文件、图像文件等。
可以使用内置的函数读取和处理数据文件,进行数据分析和处理。
《MATLAB教案》PPT课件第一章:MATLAB概述1.1 MATLAB简介介绍MATLAB的历史和发展解释MATLAB的含义(Matrix Laboratory)强调MATLAB在工程和科学计算中的应用1.2 MATLAB界面介绍MATLAB的工作空间解释MATLAB的菜单栏和工具栏演示如何创建、打开和关闭MATLAB文件1.3 MATLAB的基本操作介绍MATLAB的数据类型演示如何进行矩阵运算解释MATLAB中的向量和矩阵运算规则第二章:MATLAB编程基础2.1 MATLAB脚本编程解释MATLAB脚本文件的结构演示如何编写和运行MATLAB脚本强调注释和代码的可读性2.2 MATLAB函数编程介绍MATLAB函数的定义和结构演示如何创建和使用MATLAB函数强调函数的重用性和模块化编程2.3 MATLAB编程技巧介绍变量和函数的命名规则演示如何进行错误处理和调试强调代码的优化和性能提升第三章:MATLAB数值计算3.1 MATLAB数值解算介绍MATLAB中的数值解算工具演示如何解线性方程组和不等式解释MATLAB中的符号解算和数值解算的区别3.2 MATLAB数值分析介绍MATLAB中的数值分析工具演示如何进行插值、拟合和数值积分解释MATLAB中的误差估计和数值稳定性3.3 MATLAB优化工具箱介绍MATLAB优化工具箱的功能演示如何使用优化工具箱进行无约束和约束优化问题解释MATLAB中的优化算法和参数设置第四章:MATLAB绘图和可视化4.1 MATLAB绘图基础介绍MATLAB中的绘图命令和函数演示如何绘制二维和三维图形解释MATLAB中的图形属性设置和自定义4.2 MATLAB数据可视化介绍MATLAB中的数据可视化工具演示如何绘制统计图表和散点图解释MATLAB中的数据过滤和转换4.3 MATLAB动画和交互式图形介绍MATLAB中的动画和交互式图形功能演示如何创建动画和交互式图形解释MATLAB中的图形交互和数据探索第五章:MATLAB应用案例5.1 MATLAB在信号处理中的应用介绍MATLAB在信号处理中的基本概念演示如何使用MATLAB进行信号处理操作解释MATLAB在信号处理中的优势和应用场景5.2 MATLAB在控制系统中的应用介绍MATLAB在控制系统中的基本概念演示如何使用MATLAB进行控制系统分析和设计解释MATLAB在控制系统中的优势和应用场景5.3 MATLAB在图像处理中的应用介绍MATLAB在图像处理中的基本概念演示如何使用MATLAB进行图像处理操作解释MATLAB在图像处理中的优势和应用场景《MATLAB教案》PPT课件第六章:MATLAB Simulink基础6.1 Simulink简介介绍Simulink作为MATLAB的一个集成组件解释Simulink的作用:模型化、仿真和分析动态系统强调Simulink在系统级设计和多领域仿真中的优势6.2 Simulink界面介绍Simulink库浏览器和模型窗口演示如何创建、编辑和运行Simulink模型解释Simulink中的块和连接的概念6.3 Simulink仿真介绍Simulink仿真的基本过程演示如何设置仿真参数和启动仿真解释Simulink仿真结果的查看和分析第七章:MATLAB Simulink高级应用7.1 Simulink设计模式介绍Simulink的设计模式,包括连续、离散、混合和事件驱动模式演示如何根据系统特性选择合适的设计模式解释不同设计模式对系统性能的影响7.2 Simulink子系统介绍Simulink子系统的概念和用途演示如何创建和管理Simulink子系统解释子系统在模块化和层次化设计中的作用7.3 Simulink Real-Time Workshop介绍Simulink Real-Time Workshop的功能演示如何使用Real-Time Workshop进行代码解释代码对于硬件在环仿真和嵌入式系统开发的重要性第八章:MATLAB Simulink库和工具箱8.1 Simulink库介绍Simulink库的结构和分类演示如何访问和使用Simulink库中的块解释Simulink库对于模型构建和功能复用的意义8.2 Simulink工具箱介绍Simulink工具箱的概念和功能演示如何安装和使用Simulink工具箱解释Simulink工具箱在特定领域仿真和分析中的作用8.3 自定义Simulink库介绍如何创建和维护自定义Simulink库演示如何将自定义块添加到库中解释自定义库对于个人和组织级模型共享的重要性第九章:MATLAB Simulink案例分析9.1 Simulink在控制系统中的应用介绍控制系统模型在Simulink中的构建演示如何使用Simulink进行控制系统设计和分析解释Simulink在控制系统教育和研究中的应用9.2 Simulink在信号处理中的应用介绍信号处理模型在Simulink中的构建演示如何使用Simulink进行信号处理仿真解释Simulink在信号处理领域中的优势和实际应用9.3 Simulink在图像处理中的应用介绍图像处理模型在Simulink中的构建演示如何使用Simulink进行图像处理仿真解释Simulink在图像处理领域中的优势和实际应用第十章:MATLAB Simulink项目实践10.1 Simulink项目实践流程介绍从需求分析到模型验证的Simulink项目实践流程演示如何使用Simulink进行项目规划和实施解释Simulink在项目管理和协作中的作用10.2 Simulink与MATLAB的交互介绍Simulink与MATLAB之间的数据交互方式演示如何在Simulink中使用MATLAB函数和脚本解释混合仿真模式对于复杂系统仿真的优势10.3 Simulink项目案例分析具体的Simulink项目案例演示如何解决实际工程问题解释Simulink在工程教育和项目开发中的应用价值《MATLAB教案》PPT课件第十一章:MATLAB App Designer入门11.1 App Designer简介介绍App Designer作为MATLAB中的应用程序开发环境解释App Designer的作用:快速创建跨平台的MATLAB应用程序强调App Designer在简化MATLAB代码部署和用户交互中的优势11.2 App Designer界面介绍App Designer的用户界面和工作流程演示如何创建新应用和编辑应用界面解释App Designer中的组件和布局的概念11.3 App Designer编程介绍App Designer中的MATLAB编程模式演示如何使用App Designer中的MATLAB代码块解释App Designer中事件处理和应用程序生命周期管理的重要性第十二章:MATLAB App Designer高级功能12.1 App Designer用户界面设计介绍App Designer中用户界面的定制方法演示如何使用样式、颜色和主题来美化应用界面解释用户界面设计对于提升用户体验的重要性12.2 App Designer数据模型介绍App Designer中的数据模型和模型视图概念演示如何创建、使用和绑定数据模型和视图解释数据模型在应用程序中的作用和重要性12.3 App Designer部署和分发介绍App Designer应用程序的部署和分发流程演示如何打包和发布应用程序解释如何为不同平台安装和运行App Designer应用程序第十三章:MATLAB App Designer案例研究13.1 图形用户界面(GUI)应用程序设计介绍使用App Designer设计的GUI应用程序案例演示如何创建交互式GUI应用程序来简化MATLAB脚本解释GUI应用程序在数据输入和结果显示中的作用13.2 数据分析和可视化应用程序设计介绍使用App Designer进行数据分析和可视化的案例演示如何创建应用程序来处理和显示大型数据集解释App Designer在数据分析和决策支持中的优势13.3 机器学习和深度学习应用程序设计介绍使用App Designer实现机器学习和深度学习模型的案例演示如何将MATLAB中的机器学习和深度学习算法集成到应用程序中解释App Designer在机器学习和深度学习应用部署中的作用第十四章:MATLAB App Designer实战项目14.1 App Designer项目规划和管理介绍App Designer项目的规划和管理方法演示如何组织和维护大型应用程序项目解释项目管理和版本控制对于团队协作的重要性14.2 App Designer与MATLAB的集成介绍App Designer与MATLAB之间的数据和功能集成演示如何在App Designer中调用MATLAB函数和脚本解释集成MATLAB强大计算和分析能力的重要性14.3 App Designer项目案例实现分析具体的App Designer项目案例实现过程演示如何解决实际工程项目中的问题解释App Designer在工程项目实践中的应用价值第十五章:MATLAB App Designer的未来趋势15.1 App Designer的新功能和技术介绍App Designer的最新功能和技术发展演示如何利用新功能和技术提升应用程序的性能和用户体验强调持续学习和适应新技术的重要性15.2 App Designer在跨平台开发中的应用介绍App Designer在跨平台应用程序开发中的优势演示如何创建适用于不同操作系统的应用程序解释跨平台开发对于扩大应用程序市场的重要性15.3 App Designer的未来趋势和展望讨论App Designer在未来的发展趋势和潜在应用领域激发学生对于应用程序开发和创新的兴趣强调持续探索和创造新应用的重要性重点和难点解析本文档为您提供了一份详尽的《MATLAB教案》PPT课件,内容涵盖了MATLAB 的基本概念、编程基础、数值计算、绘图和可视化、应用案例、Simulink的基础知识、高级应用、库和工具箱的使用、案例分析以及项目实践、App Designer 的基础知识、高级功能、案例研究、实战项目和未来趋势等方面的内容。
MATLAB程序设计教程总结MATLAB程序设计教程总结MATLAB程序设计教程总结一、MATLAB操作基础1、MATLAB的主要功能:(1)数值计算和符号计算功能(2)绘图功能(3)编辑语言功能(4)拓展功能2、MATLAB的安装为执行安装盘上的setp.exe文件来启动安装过程,然后按照系统提示进行操作即可。
3、MATLAB的六种操作界面:主窗口、命令窗口、工作空间窗口、当前目录窗口、命令历史窗口、start按钮。
4、MATLAB可通过path命令或对话框设置搜索路径。
5、进入MATLAB帮助界面的3种方法:(1)单击MATLAB主窗口工具栏中的help按钮(2)选择help菜单中前4项的任意一项(3)在命令窗口中输入helpwith、helpdesk或doc命令6、Help、lookfor及模糊查询为MATLAB帮助命令二、MATLAB矩阵及计算1、在MATLAB中变量名是以字母开头,后接字母、下划线的字符序列,最多允许有63个字符,且变量区分大小写,关键字和函数名不能作为变量名。
2、预定义变量:ans、eps、pi、i、j、inf、Inf、NaN、nan、nargin、nargout、realmax、realmin、lasterr、lastwarn。
3、Clear命令删除工作空间中的变量,who和whos用于显示在工作空间中一直驻留的变量名清单。
4、数据输出格式有:formatshort、formatshorte、formatlong、formatlonge、formatbank、formathex、formatt。
5、矩阵的拆分:(1)利用冒号表达式获得子矩阵(2)利用空矩阵删除矩阵的元素(3)利用reshpe(A,m,n)函数可以改变矩阵形状.6、特殊矩阵:zeros,ones,eye,rand.randn,magic(n),vander(n),hilb(n)7、算术运算包括基本算数运算、点运算和关系运算符。
01 MATLABChapterMATLAB简介MATLAB是一种高级编程语言和环境,主要用于数值计算、数据分析、信号处理、图像处理等多种应用领域。
MATLAB具有简单易学、高效灵活、可视化强等特点,被广泛应用于科研、工程、教育等领域。
MATLAB提供了丰富的函数库和工具箱,方便用户进行各种复杂的数学计算和数据分析。
MATLAB安装与启动MATLAB界面介绍工作空间用于显示当前定义的所有变量及其值。
命令历史记录了用户输入过的命令及其输出结果。
基本运算与数据类型02矩阵运算与数组操作Chapter01020304使用`[]`或`zeros`、`ones`等函数创建矩阵创建矩阵使用`size`函数获取矩阵大小矩阵大小通过下标访问矩阵元素,如`A(i,j)`矩阵元素访问使用`disp`或`fprintf`函数显示矩阵信息矩阵信息矩阵创建与基本操作对应元素相加,如`C = A+ B`加法运算矩阵运算对应元素相减,如`C = A-B`减法运算数与矩阵相乘,如`B = k *A`数乘运算使用单引号`'`进行转置,如`B = A'`转置运算满足乘法条件的矩阵相乘,如`C = A * B`矩阵乘法使用`inv`函数求逆矩阵,如`B = inv(A)`逆矩阵数组创建数组大小数组元素访问数组操作数组操作01020304线性方程组求解数据处理与分析特征值与特征向量图像处理矩阵与数组应用实例03数值计算与数据分析Chapter数值计算基础MATLAB基本运算数值类型与精度变量与表达式函数与脚本数据分析方法数据导入与预处理学习如何导入各种格式的数据(如Excel、CSV、TXT等),并进行数据清洗、转换等预处理操作。
数据统计描述掌握MATLAB中数据统计描述的方法,如计算均值、中位数、标准差等统计量,以及绘制直方图、箱线图等统计图表。
数据相关性分析学习如何在MATLAB中进行数据相关性分析,如计算相关系数、绘制散点图等。