(完整版)二次根式知识点复习
- 格式:doc
- 大小:171.92 KB
- 文档页数:5
二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a≥0,b≥0);=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质例1、下列各式1)-,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)xx--+315;(2)22)-(x例3、在根式1) ,最简二次根式是()A.1) 2) B.3) 4) C.1) 3) D.1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=xyyxxyyxxxy例5、已知数a,b,若=b-a,则( )A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值 (1)、根式变形法当0,0a b >>时,①如果a b >>a b <<例1、 比较与(2)、平方法当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
二次根式复习【知识回忆】1. 二次根式: 式子 a 〔 a ≥ 0〕叫做二次根式。
2. 最简二次根式: 必定同时满足以下条件:⑴被开方数中 不含开方开的尽的因数或因式 ; ⑵被开方数中 不含分母 ; ⑶分母中 不含根式 。
3. 同类二次根式:二次根式化成最简二次根式后,假设被开方数相同,那么这几个二次根式就是同类二次根式。
4. 二次根式的性质:〔1〕〔2〔 a ≥ 0〕;〔2〕a 〕 = a 2aa 5. 二次根式的运算: ⑴二次根式的加减运算:先把二次根式化成最简二次根式,尔后合并同类二次根式即可。
⑵二次根式的乘除运算:a 〔 a >0〕0 〔 a =0〕;a 〔 a < 0〕① ab =a ?b 〔 a ≥ 0,b ≥ 0〕;②aaba 0,b 0b【例题讲解】例 1 计算:〔1〕 (3)2 ;〔2〕 (2 ) 2 ; 〔3〕 ( a b )2〔a+b ≥ 0〕3解析:依照二次根式的性质可直接获取结论。
例 2 计算:⑴6·15⑵ 1 ·24⑶ a 3 · ab 〔 a ≥ 0,b ≥ 0〕2解析:本例先利用二次根式的乘法法那么计算, 再利用积的算术平方根的意义进行化简得出计算结果。
例 3计算:〔1〕32+23-22+3〔 2〕12 +18 - 8 -32〔 3〕40 -1 +10510【基础训练】1.化简:〔 1〕72____ ;〔2〕252242___ __;〔3〕612 18 ____;〔4〕75x3 y2 (x0, y0) ____;〔5〕204_______ 。
2.(08 ,安徽 ) 化简42=_________。
3. 〔 08,武汉〕计算 4 的结果是A .2B.± 2C. -2D. 44. 化简:〔1〕〔 08,泰安〕9 的结果是;〔 2〕〔 08,南京〕12 3 的结果是;〔3〕(08 ,宁夏 ) 528 =;〔 4〕〔 08,黄冈〕 5 x -2x =_____ _;5.〔 08,重庆〕计算82的结果是A、 6B、 6C、 2D、 26.〔 08,广州〕 3 的倒数是。
二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.;2.;3.;4.积的算术平方根的性质:;5. 商的算术平方根的性质:.6.假设,那么.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意每一步运算的算理;2.二次根式的加减运算先化简,再运算,3.二次根式的混杂运算(1) 明确运算的序次,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2) 整式、分式中的运算律、运算法那么及乘法公式在二次根式的混杂运算中也同样适用.一. 利用二次根式的双重非负性来解题〔a0 〔a≥0〕,即一个非负数的算术平方根是一个非负数。
〕1.〕。
A、3;B、x ;C、x21;D、x1以下各式中必然是二次根式的是〔2.等式(x 1)2=1- x 成立的条件是 _____________ .3.当 x____________ 时,二次根式2x 3 有意义.4.x 取何值时,以下各式在实数范围内有意义。
〔 1〕〔 2〕1〔3〕5x 2 x1x4〔 4〕假设x( x1)x x1,那么 x 的取值范围是〔 5〕假设x3x3,那么 x 的取值范围是。
x1x16.假设3m 1 有意义,那么m能取的最小整数值是;假设 20m 是一个正整数,那么正整数m的最小值是________.7.当 x 为何整数时,10x11有最小整数值,这个最小整数值为。
8. 假设2004 a a2005a ,那么a2004 2=_____________;假设y x33x 4 ,那么x y9.设 m、n 满足n m299m22mn =。
m 3,那么10. 假设三角形的三边a、 b、 c 满足a24a 4 b 3 =0,那么第三边c的取值范围是11. 假设|4x8 |x y m0 ,且 y 0 时,那么〔〕 A 、0m1 B 、m2C、m 2 D、 m 2利用二次根式的性质2a(a b)(即一个数的平方的算术平方根等于这个数的绝对值)来解题二. a =|a|=0(a0)a(a0)1.x33x2=-x x 3 ,那么〔〕 A.x≤0 B. x≤- 3C. x≥- 3 D.- 3≤x≤ 02.. a<b,化简二次根式 a 3b 的正确结果是〔〕A.a ab B .a ab C. a ab D .a ab3.假设化简 | 1-x |-28x16 的结果为2x-5 那么〔〕 A 、 x 为任意实数B、1≤ x≤ 4C、 x≥1 D 、x≤ 4 x4. a, b, c 为三角形的三边,那么(a b c)2(b c a) 2(b c a) 2=5.当 -3<x<5 时,化简26921025 =。
⼆次根式总复习总复习(⼀)⼆次根式知识点:1.⼆次根式的有关概念:(1)形如的式⼦叫做⼆次根式. (即⼀个的算术平⽅根叫做⼆次根式⼆次根式有意义的条件:被开⽅数⼤于或等于零(2)代数式:⽤基本的运算符号(包括加、减、乘、除、乘⽅、平⽅)把数或表⽰数的字母连接起来的式⼦叫做代数式。
(3)最间⼆次根式:满⾜下列两个条件的⼆次根式,叫做最简⼆次根式:①被开⽅数不含分母;②被开⽅数中不含能开得尽⽅的因数或因式;(4)同类⼆次根式:⼏个⼆次根式化成最简⼆次根式后,如果被开⽅数相同,那么这⼏个⼆次根式叫做同类⼆次根式。
2.⼆次根式的性质:(1)双重⾮负性3.⼆次根式的运算:⼆次根式乘法法则⼆次根式除法法则⼆次根式的加减: (⼀化,⼆找,三合并 )(1)将每个⼆次根式化为最简⼆次根式;(2)找出其中的同类⼆次根式;(3)合并同类⼆次根式。
0()a a ≥ ≥0 2(2))(0)a a (= ≥ a =2(3) (4)(0,0)ab a b = ≥ ≥(5)(00)a a b b = ≥> (0,0)a b a b ?= ≥≥ (0,0)a a b b= ≥>Ps:类似于合并同类项,关键是把同类⼆次根式合并。
⼆次根式的混合运算:原来学习的运算律(结合律、交换律、分配律)仍然适⽤填空题:1、n 24是整数,则正整数n 的最⼩值是()A.4B.5C.6D.72、下列各式中,不是⼆次根式的是() A.45 B.π-3 C.22+a D.213、若使⼆次根式 21+-x x 在实数范围内有意义,则x 的取值范围是()A .x ≥-2B .x >-2C .x>-2 且x ≠1D .x ≤-24、(1)若 2)(11y x x x +=---,则x-y 的值为()A .-1B .1C .2D .3(2)若实数a 、b 满⾜11122+-+-=a a a b ,则a+b 的值是() 5、(1)已知a 为实数,那么 2a -等于()A .aB .-aC .-1D .0(2)若 a a -=-1)1(2,则a 的取值范围是()A .a >1B .a ≥1C .a <1D .a ≤1(3)若)3(692a a a --=+-,则a 的取值范围是()A.a>3B.a<3C.a ≥3D.a ≤3(4)如果代数式ab 1+a 有意义,则直⾓坐标系中点A (a ,b )的位置()A .第⼀象限B .第⼆象限C .第三象限D .第四象限6、(1)已知a <0,那么| 2a -2a|可化简为()A .-a B.a C.-3a D.3a(2)如果表⽰a ,b 两个实数的点在数轴上的位置如图所⽰,那么化简|a-b|+ 2)(b a +的结果等于() A.-2b B.2b C.-2a D.2a7、下列根式中3,8,,2,543a x b a a ,最简⼆次根式的个数是()A.4B.3C.2D.18、下列各式中正确的是()A .2-2=-4B .(33)2=35 C. 1)12)(12(=-+ D .x 8÷x 4=x 29、(1)若)6(6-=-?x x x x ,则()A .x ≥6B .x ≥0C .0≤x ≤6D .x 为⼀切实数(2)1a 3-a 13-=--a a 成⽴的条件是() A.a ≠1 B.a ≥3且a ≠1 C.a >1 D.a ≥3 10、已知实数a 满⾜|2008-a|+=a ,那么a-20082的值是()A.2009B.2008C.2007D.200911、化简20092009)23()23(+-的结果是() A.-1 B.23- C.23+ D.23--12、(1)把)2(12---的根号外的(-2)移到根号内的结果是()(2)把b b 1-的根号外的因式移到根号内的结果是()A.b -B.b --C.bD.b -13、(1)下列各组⼆次根式中,属于同类⼆次根式的为()A .和B .和C .和D .和(2)(填空)如果最简⼆次根式83-a 和a 217-同类⼆次根式,则a=()(3)如果最简根式63-a 与4+a 是同类⼆次根式,那么使x a 24-有意义的x 的取值范围是()A .x ≤10B .x ≥10C .x <10D .x >1014、下列计算正确的是() A.228=- B. 14931227=-=- C.()()15252=+- D.23226=- 简答题:1、(1)先化简,在求值:21244422--++++--x x x x x x x 其中x=2-2(2)(x-1-)÷,其中x=3-2、(1)若1<x <4,则|x ?5|+2)1(-x 的值为?(2)若3,m,5为三⾓形三边,化简:-3、已知:实数a ,b 在数轴上的位置如图所⽰,化简:4、计算题:12323-24-27314)3218)(1223(33)154276485(2)3352()3352(122?+-÷+--+)、、、、 5、 )3()23(235a b b a b a b ÷-?(其中a>0 ,b>0)5、找规律:;23231;12)12)(12(12121-=+-=-+-=+...,34341-=+=+=+9910019101)1((2)从计算结果找出规律:(3)利⽤此规律计算:()12006200520061...341231121+??? ??++++++++的值。
二次根式知识点复习二次根式是指形如√a的数,其中a是一个非负实数。
在数学中,√a叫做a的平方根。
一、基本知识点1.开方运算:开方就是求一个数的平方根的运算,开方运算的结果可以是正数、负数或零。
如果b^2=a,那么√a=b。
2.平方根的性质:(1)非负性质:对于非负实数a,√a≥0。
(2)唯一性质:一个非负实数的平方根是唯一的。
(3)分段性质:对于非负实数a和b,如果a≥b,则√a≥√b。
(4)乘法性质:对于非负实数a和b,√(a×b)=√a×√b。
3.平方根的化简:(1)平方根的化简法则:对于一个正整数a,如果存在正整数b,使得a=b^2,则√a=b。
(2)因式分解法则:如果一个正整数a可以分解成几个不同的素数的积,那么√a可以化为这些素数的乘积的积的平方根。
二、运算法则1.加减法运算:(1)只有当二次根式的根号里的数字部分相同才能相加或相减。
(2)将相同的根号里的数字部分加或减,系数部分保持不变。
(3)化简结果时,可根据需要将结果合并化简。
2.乘法运算:(1)二次根式相乘,根号里面的数字相乘,系数也相乘。
(2)系数和根号右下角的数字不能再进行化简,即不能再进行平方根的运算。
(3)化简结果时,可根据需要将结果合并化简。
3.除法运算:(1)二次根式相除,根号里面的数字相除,系数也相除。
(2)系数和根号右下角的数字不能再进行化简,即不能再进行平方根的运算。
(3)化简结果时,可根据需要将结果合并化简。
4.乘方运算:(1)二次根式进行乘方运算时,指数乘方,根号里面的数字也乘方,系数不变。
(2)在进行乘方运算后,如果结果可以进行根号运算,则进行根号运算并化简。
三、实际运用1.二次根式的应用:(1)二次根式经常在几何图形的计算中出现,如计算正方形、长方形的对角线、圆的周长和面积等。
(2)二次根式还可以用来表示距离、速度、力等物理量。
2.二次根式的化简:(1)二次根式的化简可以简化计算过程,提高计算效率。
二次根式数学知识点(8篇)二次根式数学知识点1知识点一:二次根式的概念形如a(a0)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a0是a为二次根式的前提条件,如5,(x2+1),(x-1)(x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,a没有意义。
知识点三:二次根式a(a0)的非负性a(a0)表示a的算术平方根,也就是说,a(a0)是一个非负数,即0(a0)。
注:因为二次根式a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即0(a0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。
知识点四:二次根式(a)的性质(a)2=a(a0)文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式(a)2=a(a0)是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若a0,则a=(a)2,如:2=(2)2,1/2=(1/2)2.知识点五:二次根式的性质a2=|a|文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a(a若a是负数,则等于a的相反数-a,即a2=|a|=-a(a﹤0);2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义;3、化简a2时,先将它化成|a|,再根据绝对值的意义来进行化简。
二次根式知识点总结
一、二次根式的定义
二次根式是指形如 $\sqrt{a}$ 的无理数或代数式,其中 $a$ 是一个
非完全平方数,即 $a$ 不能表示为某个正整数的平方。
二、简化二次根式
1. 将二次根式 $\sqrt{a}$ 化简为 $\sqrt{b}$ 的形式,其中
$b$ 是 $a$ 的正因子;
2. 对于 $\sqrt{a}\pm\sqrt{b}$,可通过有理化分母的方法化为
$\frac{\sqrt{c}\pm\sqrt{d}}{e}$ 的形式,其中 $c$、$d$、$e$ 均
为整数。
三、二次根式的运算
1. 二次根式加减法:将同类项合并,并对结果进行简化;
2. 二次根式乘法:利用分配律,将每一项分别与另一个二次根式相乘,并化简结果;
3. 二次根式除法:将除数、被除数都乘以分母的共轭复数,化为分母
为整数的形式后进行约分。
四、二次根式的应用
1. 应用勾股定理求直角三角形的一条边;
2. 当面积或体积为二次根式时,可通过二次根式的运算得到结果。
五、注意事项
1. 化简二次根式时,应将完全平方因子提出;
2. 二次根式运算时,不同二次根式之间不能进行加减法;
3. 对于 $\sqrt{a}$,$a$ 不能为负数。
专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。
【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
二次根式的知识点汇总二次根式是指含有平方根(开方)的代数式。
学习和掌握二次根式的知识点,对于进一步理解和应用高等数学和物理学等学科内容至关重要。
以下是二次根式的知识点汇总:一、基本概念与性质:1.平方根与二次根式的概念:平方根的定义及其在代数中的性质,二次根式的定义与示例。
2.约分与化简:二次根式的约分、化简及约分规则。
3. 同类二次根式的合并与分解:同类二次根式的合并与分解法则,如$\sqrt{a} \pm \sqrt{b} = \sqrt{(\pm \sqrt{a})^2 + (\pm\sqrt{b})^2}$。
二、四则运算:1. 加减法:同类二次根式的加减法规则,如$\sqrt{a} \pm \sqrt{b} = \sqrt{(\pm \sqrt{a})^2 + (\pm \sqrt{b})^2}$。
2. 乘法:二次根式的乘法规则,如$(a+b)(c+d)=ac+ad+bc+bd$。
3. 除法:二次根式的除法规则,如$\frac{a+b}{c+d}=\frac{(a+b)(c-d)}{(c+d)(c-d)}$。
4.有理化方法:如分子、分母都有二次根式时的有理化方法,分别是乘以共轭式和有理化因式。
三、二次根式的化简与证明:1.合并同类项:在二次根式的化简中,将同类项合并为一个二次根式。
2.分解因式:在二次根式的化简中,将二次根式分解为若干个二次根式相乘的形式。
3.公因式提取:在二次根式的化简中,提取公因式使其化简为整数或其他形式。
四、二次根式的应用:1.代数方程的解:使用二次根式求解一元二次方程。
2.几何意义:二次根式在几何中的应用,例如计算三角形的边长、面积等。
3.物理问题:通过建立代数模型和运用二次根式,解决物理问题,如自由落体、速度、力等。
五、常见的二次根式:1. $\sqrt{a^2}=,a,$,其中$a$表示任意实数。
2. $\sqrt{a}\sqrt{b}=\sqrt{ab}$,其中$a$和$b$分别表示任意非负实数。
二次根式复习
【知识回顾】
1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不
含根式。
3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:
(1)(a )2=a (a ≥0); (2) 5.二次根式的运算:
⑴二次根式的加减运算:
先把二次根式化成最简二次根式,然后合并同类二次根式即可。
⑵二次根式的乘除运算:
①ab =b a •(a ≥0,b ≥0); ②()0,0>≥=b a b
a b a 【例题讲解】
例1 计算:
(1)2)3(; (2)2)3
2(; (3) 2)(b a + (a+b ≥0) 分析:根据二次根式的性质可直接得到结论。
例2 计算:
⑴6·15 ⑵2
1·24 ⑶3a ·ab (a ≥0,b ≥0) 分析:本例先利用二次根式的乘法法则计算,再利用积的算术平方根的意义进行化简得出计算结果。
例3 计算:
(1)23 + 32 - 22 + 3
(2)12 + 18 - 8 - 32
(3)40 - 10
15
+ 10
【基础训练】 a (a >0) ==a a 2 a -(a <0) 0 (a =0);
1.化简:(1
__ __; (2
=___ __; (3
=
___ _;
(4
0,0)x y ≥≥=___ _; (5)_______420=-。
2.(08,安徽)
=_________。
3.(08
A.2 B.±2 C.-2 D.4
4. 化简:
(
1)(08的结果是 ; (
2)(08
结果是 ;
(3)(08,宁夏)825-= ; (4)(
08,黄冈)
_; 5.(08,重庆)计算28-的结果是 A 、6 B 、6 C 、2 D 、2
6.(08的倒数是 。
7. (08,聊城)下列计算正确的是
A .
B .
C .
D . 8.下列运算正确的是
A 、4.06.1=
B 、()5.15.12-=-
C 、39=-
D 、3
294= 9.(08,中山)已知等边三角形ABC 的边长为
,则ΔABC 的周长是____________; 10. 11.(08x 的取值范围是 . 12.(08,常州),则x 的取值范围是 A.x >-5
B.x <-5
C.x ≠-5
D.x ≥-5
13. (08,黑龙江)函数中,自变量的取值范围是 .
33+
14.下列二次根式中,x的取值范围是x≥2的是
A、2-x
B、x+2
C、x-2
D、
1 x-2
15.(08,荆州)下列根式中属最简二次根式的是
16.(08,中山)下列根式中不是最简二次根式的是
A
B
C
D
17.(08,常德)下列各式中与是同类二次根式的是
A.2 B. C. D.
18.下列各组二次根式中是同类二次根式的是
A.
2
1
12与 B.27
18与 C.
3
1
3与 D.54
45与
19.(08,乐山)已知二次根式与是同类二次根式,则的α值可以是
A、5
B、6
C、7
D、8
20.(08,大连)若,则xy的值为
A. B. C. D.
21.(08
,遵义)若20
a-=,则2a b
-=.
22.计算:
(1)(08,长春)(2)(08,长春)
(3)(08,上海).(4)(08,庆阳).
b
a
y
b
a
x+
=
-
=,
a
2b
2b
a +b
a-
23.先将2x -÷322x x x -化简,然后自选一个合适的x 值,代入化简后的式子求值。
24.(08,广州)如图,实数a 、b 在数轴上的位置,
化简 :222()a b a b ---
【能力提高】
25.( 08,济宁)若
,则的取值范围是 A . B . C . D .
26.(08,济宁)如图,数轴上
两点表示的数分别为1和,点关于点的对称点为点
,则点所表示的数是 A . B . C . D .
27.先阅读下列的解答过程,然后作答:
有这样一类题目:将2a b ±化简,若你能找到两个数m 和n ,使22m n a +=且mn b =,
则2a b ±可变为222m n mn +±,即变成2()m n ±开方,从而使得
2a b ±化简。
例如: 526±=3226++
=222(3)(2)223(32)++⋅=+,
∴2526(32)32±=+=+
请仿照上例解下列问题:
(1(2)。