圆柱坐标型工业机器人设计
- 格式:doc
- 大小:275.50 KB
- 文档页数:25
三自由度圆柱坐标型工业机器人设计引言工业机器人在现代制造业中起着至关重要的作用。
圆柱坐标型工业机器人是一种具有三个自由度的机器人,它可以在三维空间内进行精确的定位和操作。
本文将着重讨论三自由度圆柱坐标型工业机器人的设计原理和关键技术。
一、设计原理三自由度圆柱坐标型工业机器人的设计原理基于坐标变换。
它由一个立柱状的垂直轴和一个平行于地面的基座组成。
机器人的主要部件包括立柱、支撑臂、关节和末端执行器。
机器人的立柱可以在垂直方向上运动,提供Z轴位移。
支撑臂位于立柱的顶部,可以绕水平方向的Y轴旋转,提供Y轴位移。
末端执行器连接在支撑臂的末端,可以绕垂直方向的Z轴旋转,提供X轴位移。
二、关键技术1.位置传感器:为了实现精确的定位和操作,对机器人的运动进行准确的测量是必不可少的。
位置传感器可以用来测量机器人各个关节的角度以及末端执行器的位置信息。
2.逆运动学:逆运动学是指通过末端执行器的位置和姿态计算出机器人各个关节的角度。
通过逆运动学算法,可以实现机器人在三维空间内的精确定位。
3.控制系统:控制系统是三自由度圆柱坐标型工业机器人的核心。
它接收来自传感器的反馈信息,计算机器人的位姿,并输出相应的指令控制机器人的运动。
控制系统需要具备实时性和稳定性,以确保机器人的运动精度和安全性。
4.动力学分析:动力学分析可以帮助我们理解机器人在运动过程中的力学特性。
通过动力学分析,可以确定机器人在给定任务下所需的扭矩和力,并进行相应的力矩配平和选型。
三、设计步骤1.确定任务需求:在开始机器人设计之前,首先需要明确机器人所要完成的任务和工作环境。
2.选择结构参数:根据任务需求和工作环境,选择机器人的结构参数,包括立柱高度、支撑臂长度和末端执行器负载能力等。
3.逆运动学分析:根据机器人的结构参数和任务需求,进行逆运动学分析,得到机器人各个关节的角度和末端执行器的位姿。
4.控制系统设计:设计机器人的控制系统,选择合适的控制算法和硬件设备,实现机器人的运动控制和姿态调整。
(完整版)圆柱坐标系工业搬运机器人结构毕业设计以下文档格式全部为word格式,下载后您可以任意修改编辑。
摘要文章综述了机器人近几十年来的发展状况及有关的问题,并对圆柱坐标系机器人进行了结构方面的设计。
对在圆柱坐标系机器人设计的过程中所遇到的问题进行了初步的研究和分析:对其结构选型、设计计算作了定量的研究;对其定位、精度确定等问题进行了初步研究;对其发展历史、现状及其未来的发展趋势做了一定程度的分析和探讨。
本测量机结构为通过两根丝杠轴在电机的带动下转动,实现Y,Z轴的移动,通过电机带动谐波齿轮,实现Z轴的转动,进而使机械手有三个自由度。
圆柱坐标系机器人已广泛应用于工业生产的各个领域,关键词:圆柱形机器人,误差,精度,伺服电机ABSTRACTThis paper reviewed the development of robots in recent decades the situation and related issues, and cylindrical coordinate system for the structure of the robot design. Cylindrical coordinate system in the process of robot design issues encountered in the preliminary research and analysis: Selection of its structure, design and calculation of quantitative research; its position on issues such as accuracy to determine a preliminary study ; their development and future development trend of doing a certain degree of analysis and discussion. Structure of the measuring machine screw through the two-axis motor driven in rotation, the realization of Y, Z axis movement, through the of Z-axis of rotation, so that there are three degrees of freedom manipulator. Cylindrical coordinate system the robot widely used in various fields of industrial production,Key words: cylindrical robot, error, precision, servo motor目录第1章绪论 (1)1.1机器人工业发展史 (1)1.2工业机器人的定义 (1)1.3机器人的结构 (1)1.4机器人的几何模型 (2)1.5机器人的主要技术参数 (3)1.6工业机器人的分类 (3)第2章工业机器人结构总体设计 (5) 2.1确定机器人类型 (5)2.2 机器人基座 (5)2.3 谐波齿轮传动 (5)2.3.1谐波齿轮构成 (6)2.3.2谐波齿轮特点 (6)2.3.3谐波齿轮传动的工作原理 (6) 2.4 丝杠 (7)2.5 伺服电机 (7)2.3.3伺服电机类型选择 (7)2.3.3交流伺服电机工作原理 (8) 2.3.3交流伺服电机控制方法 (8)第3章结构强度分析与计算 (10) 3. 1Y轴设计 (10)3.1.1滚珠丝杠副的选择和计算 (10) 3.1.2丝杆校验 (12)3.1.3伺服电机的选择 (14)3.1.4轴承的选择 (17)3. 2Z轴设计 (18)3.2.1滚珠丝杠副的选择和计算 (18) 3.2.2丝杆校验 (21)3.2.3伺服电机的选择 (24)3.2.4轴承的选择 (27)3.3谐波齿轮的选择和计算 (28)3.4主轴上伺服电机的选择和计算 (30)3.5螺栓的计算 (31)3.5.1连接Z轴与Y轴的螺栓的计算 (31)第4章结构强度分析与计算 (34)致谢 (35)参考文献 (36)第1章绪论1.1机器人工业发展史1958年,美国推出了世界上第一台工业机器人实验样机。
圆柱坐标机械手结构设计圆柱坐标机械手是一种常见的机器人结构,其可灵活地工作于三维空间内,并可实现各种各样的操作任务。
设计一台圆柱坐标机械手需要考虑多个方面,如机械结构的安全性能、控制系统的精度和可靠性等等。
在本文中,我们将对圆柱坐标机械手结构设计进行详细讨论,并介绍其在不同领域的应用。
1.结构设计圆柱坐标机械手结构设计需要考虑其空间可达性、负载能力、动力学性能、稳定性等因素。
其中空间可达性是一个重要的指标,它决定了机械手能够工作的范围和精度。
一般来说,机械手的可达范围应该涵盖整个工作空间,且在整个范围内的精度应该足够高。
在设计机械手结构时,我们可以采用链式结构或者纵向结构。
链式结构包括末端链式机械手和中心链式机械手,其构造简单、操作灵活,但其负载能力和精度较低。
纵向结构包括柱形机械手和底座机械手,其结构稳定、负载能力高,适用于重载和高精度的操作。
2.控制系统圆柱坐标机械手的控制系统包括机械运动控制和机器视觉控制。
机械运动控制采用轴控制和运动控制器实现机械手在三维空间内的操作。
在轴控制中,机械手的每个关节都由一个电机控制,通过给电机施加不同大小的电流来控制关节的运动。
运动控制器负责管理机械手的所有电机,并根据运动的需求控制各个关节以实现所需运动。
机器视觉控制也是圆柱坐标机械手中不可缺少的一部分。
机器视觉控制可以通过摄像机来实现对机械手末端的精确控制,从而确保其在执行任务时的精确性和准确性。
此外,还可以利用机器学习技术来对机械手运动进行优化和改进,从而提高机械手的智能化水平。
3.应用领域圆柱坐标机械手在工业、医疗、科研等领域都有广泛的应用。
在工业领域,机械手可以承担自动化生产线上的装配和加工任务,提高生产效率和降低劳动成本;在医疗领域,机械手可以用于手术等高精度操作,避免对患者的人为破坏;在科研领域,机械手可以用于承担各种测量和实验任务,对工程技术的发展做出贡献。
综上所述,圆柱坐标机械手是一种重要的机器人结构,其结构设计、控制系统和应用领域都有着广泛的应用前景。
圆柱坐标机械手结构设计概述随着工业自动化技术的不断发展,机器人应用的范围越来越广泛。
其中,机器人的结构设计是机器人性能的重要保障。
圆柱坐标机械手是一种常见的机器人结构,其结构特点是工作空间呈现为一个圆柱体,机器人工作的方向沿z轴方向。
在本文中,我们将对圆柱坐标机械手的结构设计进行概述。
一、机械手的基本结构圆柱坐标机械手主要由机械结构、执行机构、传感器等几部分组成。
其中,机械结构包含底座、竖杆、横臂、前倾臂、手腕等几部分。
整个机械臂的结构呈现为一条圆柱体,机械手的工作方向沿z轴方向。
执行机构包括电机、减速器、传动系统等部分。
传感器主要用于监测机器人的位置和运动状态。
二、机械手的结构设计1、底座设计底座是机械手的支撑结构,需要具有足够的稳定性和承载能力。
在圆柱坐标机械手中,底座为圆形或者方形,对底座的设计需要考虑到整个机械臂的重心和稳定性。
2、竖杆设计竖杆支撑着整个机械臂的横向移动,需要具有足够的强度和刚度。
在竖杆的设计中需要考虑到挠度和加工精度,并确保竖杆能够承受机械手在工作时的负载和震动。
3、横臂设计横臂是圆柱坐标机械手的重要组成部分,需要具有足够的强度和刚度。
在横臂的设计中需要考虑到挠度和加工精度,并确保横臂能够承受机械手在工作时的负载和震动。
4、前倾臂设计前倾臂能够在xz平面内移动,其结构需要具有足够的强度和刚度。
在前倾臂的设计中需要考虑到挠度和加工精度,并确保前倾臂能够承受机械手在工作时的负载和震动。
5、手腕设计手腕是机械手的末端执行机构,需要具有很高的精度和稳定性。
在手腕的设计中需要考虑到机械手的负载和精度要求,并采用适当的传动系统和控制算法来保证机械手的运动精度。
三、结论圆柱坐标机械手是一种常见的机器人结构,其结构特点是工作空间呈现为一个圆柱体,机器人工作的方向沿z轴方向。
机械手的结构设计对机器人性能具有非常重要的影响,需要考虑到机械臂的稳定性、强度、刚度和精度等因素。
因此,在机械手的设计中需要采用适当的设计方法和工艺流程,以确保机械手的质量和性能。
圆柱型坐标机器人的设计与制作1. 引言圆柱型坐标机器人是一种灵活可编程的自动化设备,它能够在三维空间内完成各种复杂的操作任务。
本文将介绍圆柱型坐标机器人的设计与制作过程,并给出相应的步骤和注意事项。
2. 基本构造圆柱型坐标机器人主要由以下几个部分组成:•圆柱形框架:为机器人提供结构支撑和运动平台。
•输送系统:用于将物料或工件送到机器人操作点。
•驱动系统:包括电机、轴承等,用于控制机器人在空间内的移动。
•控制系统:负责机器人的运动控制和指令处理。
•末端执行器:根据实际需求选用,用于完成具体的工作任务。
3. 设计步骤3.1 确定需求和功能在设计圆柱型坐标机器人之前,首先需要明确机器人的使用需求和功能。
确定机器人所需的工作空间范围、负载能力、速度要求等参数,以便后续的设计和选材。
3.2 进行结构设计根据需求和功能,进行圆柱型坐标机器人的结构设计。
确定机器人的整体尺寸、关节数量和类型,设计机器人的运动轨迹和工作台面等。
3.3 选材与制造选择适合的材料来构建圆柱型坐标机器人的框架和其他零部件。
考虑材料的强度、刚度和重量等因素,并考虑材料的可加工性和成本。
制造圆柱型坐标机器人的框架和其他零部件,可以采用数控机床、激光切割和3D打印等先进制造技术。
3.4 安装和调试将制造好的各零部件组装起来,并进行安装和调试。
确保机器人的各个部件能够正常运转,并进行必要的调整和校准。
3.5 控制系统设计设计机器人的控制系统,包括硬件和软件两个方面。
选择合适的控制器和传感器,并编写相应的控制程序。
4. 制作注意事项•设计过程中要考虑安全性和可靠性,确保机器人在操作过程中不会造成伤害或事故。
•选择合适的电机和驱动器,以满足机器人的速度和负载要求。
•控制系统的设计要合理,保证机器人能够准确地执行指令,并具备一定的智能化。
5. 结语通过本文的介绍,我们了解了圆柱型坐标机器人的设计与制作过程。
从明确需求和功能、进行结构设计,再到选材与制造、安装调试和控制系统设计,每一个步骤都需要认真对待和细致执行。
圆柱坐标型工业机器人设计1.1工业机器人研究的目的和意义工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。
自从1962年美国研制出世界上第一台工业机器人以来,机器人技术及其产品发展很快,已成为柔性制造系统( FMS) 、自动化工厂( FA) 、计算机集成制造系统(CIMS)的自动化工具。
广泛采用工业机器人,不仅可提高产品的质量与数量,而且保障人身安全、改善劳动环境、减轻劳动强度、提高劳动生产率、节约材料消耗以及降低生产成本有着十分重要的意义。
和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。
20世纪80年代以来,工业机器人技术逐渐成熟,并很快得到推广,目前已经在工业生产的许多领域得到应用。
在工业机器人逐渐得到推广和普及的过程中,下面三个方面的技术进步起着非常重要的作用。
1.驱动方式的改变20世纪70年代后期,日本安川电动机公司研制开发出了第一台全电动的工业机器人,而此前的工业机器人基本上采用液压驱动方式。
与采用液压驱动的机器人相比,采用伺服电动机驱动的机器人在响应速度、精度、灵活性等方面都有很大提高,因此,也逐步代替了采用液压驱动的机器人,成为工业机器人驱动方式的主流。
在此过程中,谐波减速器、R V减速器等高性能减速机构的发展也功不可没。
近年来,交流伺服驱动已经逐渐代替传统的直流伺服驱动方式,直线电动机等新型驱动方式在许多应用领域也有了长足发展。
2.信息处理速度的提高机器人的动作通常是通过机器人各个关节的驱动电动机的运动而实现的。
为了使机器人完成各种复杂动作,机器人控制器需要进行大量计算,并在此基础上向机器人的各个关节的驱动电动机发出必要的控制指令。
随着信息技术的不断发展,C P U的计算能力有了很大提高,机器人控制器的性能也有了很大提高,高性能机器人控制器甚至可以同时控制20多个关节。
机器人控制器性能的提高也进一步促进了工业机器人本身性能的提高,并扩大了工业机器人的应用范围。
机械制造行业圆柱坐标机械手结构设计圆柱坐标式三自由度机械手摘要机器人不仅是一种自动化的机器。
机器人是一种可重新编程的、多功能的、机械手,为实现各种任务设计成通过可改变的程序动作来移动材料、零部件、工具或是其他专用装置。
本设计设计的是一种圆柱坐标式机械手,该装置具有三个独立运动(两个直线运动、一个旋转运动),也就是所说的三个自由度。
该机构中立柱可相对于机座旋转 180 度,回转速度 15r/min,可水平伸缩距离 400,移动速度约0.2/s,机械手可上下垂直运动,其垂直升降量 1000,移动速度约 0.15/s,机械手最大夹持重量10,所夹持工件为圆柱形,直径范围:Ф30—Ф120。
本设计的旋转运动采用摆动液压马达(旋转液压缸)驱动,水平伸缩运动采用液压缸驱动,垂直升降运动仍采用液压缸驱动。
关键词:三自由度,圆柱坐标式,工业机器人,机械手CYLINDRICAL COORDINATEROBOT OF THREE DEGREES OFFREEDOMABSTRACTA robot is not simply another automated machine. A robot is a reprogrammable multifunctional manipulator designed to move material, parts, tool, or specialized devices through variable programmed motions for the performance of a variety of task.This design is a cylindrical coordinate manipulator, the device has three separate campaigns (two straight-line movement, a rotating Movement), that is to say that the device has threedegrees of freedom.The bodies of the column can be compared to frame 180-degree rotation, with the rotation speed 15 r / min. The manipulator maybe stretching from the level of 400mm, with the moving speed about0.2 m/ s. From the top to the bottom, the manipulator can do vertical movement and its vertical take-off and landing is1000mm, with the moving speed about 0.15 m/ s. The largest weight that the device grip can lead to 10kg.The workpiece with the diameter from 30mm to 120mm that the device can grip is cylindrical.According to the issue demands ,besides, careful thinking andask the teacher, the rotating movements of the design opts rotating hydraulic motor (rotating cylinder) , the level of stretching movements are driven by hydraulic cylinders, vertical take-off and landing movements are still driven by hydraulic cylinders.KEY WORDS:Three degrees of freedom, Cylindrical,Industrial robot, Manipulator目录前言 (1)第1 章概述 (2)1.1工业机械手的概述 (2)1.1.1机械手的组成 (2)1.1.2机械手的运动与分类 (3)1.1.3机械手的主要参数 (4)1.1.4机械手的结构 (5)1.2工业机械手的发展 (5)1.3工业机械手在我国的发展与应用 (6)第2 章总体设计方案 (8)2.1总体设计的思路 (8)2.1.1思路 (8)2.2总体方案的确定 (8)2.2.1方案 (8)第3 章机械手相关的设计与计算 (9)3.1手指的相关设计与计算 (9)3.1.1手指夹紧力的计算 (9)3.1.2手部液压缸的选取 (11)3.1.3水平伸缩缸尺寸计算 (13)3.1.4垂直升降液压缸主要参数的确定 (14)3.2升降手臂的设计 (16)3.3立柱与托盘的设计 (17)3.4液压马达的设计与计算 (19)3.5液压泵、电机的选择 (21)3.6机械手的控制 (22)第4 章相关的校核 (23)4.1 手爪扇形齿轮与齿条强度校核 (23)结论 (24)谢辞 (25)参考文献 (26)前言机器人技术的发展,可以说是科学技术发展共同的一个综合性的结果,同时,也是为社会经济发展产生了重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。
沈阳工程学院课程设计设计题目:三自由度圆柱坐标工业机器人设计系别班级学生姓名学号指导教师职称起止日期:2014年 1 月 6 日起——至 2014 年 1 月17 日止沈阳工程学院课程设计任务书课程设计题目:三自由度圆柱坐标工业机器人设计系别班级学生姓名学号指导教师职称课程设计进行地点: F430,图书馆任务下达时间: 2014 年 1月3日起止日期:2014 年 1 月6日起——至 2014 年 1 月17日止教研室主任2013年 12月 2 日批准三自由度圆柱坐标工业机器人设计1 设计主要内容及要求1.1 设计目的:(1)了解工业机器人技术的基本知识以及单片机、机械设计、传感器等相关技术;(2)初步掌握工业机器人的运动学原理、传动机构、驱动系统及控制系统,并应用于工业机器人的设计中;(3)掌握工业机器人的驱动机构、控制技术,并使机器人能独立执行一定的任务。
1.2 基本要求(1)要求设计一个微型的三自由度的圆柱坐标工业机器人;(2)要求设计机器人的机械机构(示意图),传动机构、控制系统、及必需的内外部传感器的种类和数量布局。
(3)要有控制系统硬件设计电路。
1.3 发挥部分自由发挥2 设计过程及论文的基本要求:2.1 设计过程的基本要求(1)基本部分必须完成,发挥部分可任选;(2)符合设计要求的报告一份,其中包括总体设计框图、电路原理图各一份;(3)设计过程的资料保留并随设计报告一起上交;报告的电子档需全班统一存盘上交。
2.2 课程设计论文的基本要求(1)参照毕业设计论文规范打印,包括附录中的图纸;项目齐全、不许涂改,不少于3000字;图纸为A4,所有插图不允许复印。
(2)装订顺序:封面、任务书、成绩评审意见表、中文摘要、关键词、目录、正文(设计题目、设计任务、设计思路、设计框图、各部分电路及相应的详细的功能分析和重要的参数计算、工作过程分析、元器件清单、主要器件介绍等)、小结、参考文献、附录(总体设计框图与电路原理图)。
圆柱坐标型工业机器人设计第一章绪论1.1工业机器人研究的目的和意义工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。
自从1962年美国研制出世界上第一台工业机器人以来,机器人技术及其产品发展很快,已成为柔性制造系统( FMS) 、自动化工厂( FA) 、计算机集成制造系统(CIMS)的自动化工具。
广泛采用工业机器人,不仅可提高产品的质量与数量,而且保障人身安全、改善劳动环境、减轻劳动强度、提高劳动生产率、节约材料消耗以及降低生产成本有着十分重要的意义。
和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。
20世纪80年代以来,工业机器人技术逐渐成熟,并很快得到推广,目前已经在工业生产的许多领域得到应用。
在工业机器人逐渐得到推广和普及的过程中,下面三个方面的技术进步起着非常重要的作用。
1. 驱动方式的改变20世纪70年代后期,日本安川电动机公司研制开发出了第一台全电动的工业机器人,而此前的工业机器人基本上采用液压驱动方式。
与采用液压驱动的机器人相比,采用伺服电动机驱动的机器人在响应速度、精度、灵活性等方面都有很大提高,因此,也逐步代替了采用液压驱动的机器人,成为工业机器人驱动方式的主流。
在此过程中,谐波减速器、R V减速器等高性能减速机构的发展也功不可没。
近年来,交流伺服驱动已经逐渐代替传统的直流伺服驱动方式,直线电动机等新型驱动方式在许多应用领域也有了长足发展。
2. 信息处理速度的提高机器人的动作通常是通过机器人各个关节的驱动电动机的运动而实现1楼渊:四自由度圆柱坐标机器人设计的。
为了使机器人完成各种复杂动作,机器人控制器需要进行大量计算,并在此基础上向机器人的各个关节的驱动电动机发出必要的控制指令。
随着信息技术的不断发展,C P U的计算能力有了很大提高,机器人控制器的性能也有了很大提高,高性能机器人控制器甚至可以同时控制20多个关节。
机器人控制器性能的提高也进一步促进了工业机器人本身性能的提高,并扩大了工业机器人的应用范围。
近年来,随着信息技术和网络技术的发展,已经出现了多台机器人通过网络共享信息,并在此基础上进行协调控制的技术趋势。
3. 传感器技术的发展机器人技术发展初期,工业机器人只具备检测自身位置、角度和速度的内部传感器。
近年来,随着信息处理技术和传感器技术的迅速发展,触觉、力觉、视觉等外部传感器已经在工业机器人中得到广泛应用。
各种新型传感器的使用不但提高了工业机器人的智能程度,也进一步拓宽了工业机器人的应用范围。
1.2工业机器人在国内外的发展现状与趋势目前,工业机器人有很大一部分应用于制造业的物流搬运中。
极大的促进物流自动化,随着生产的发展,搬运机器人的各方面的性能都得到了很大的改善和提高。
气动机械手大量的应用到物流搬运机器人领域。
在手爪的机械结构方面根据所应用场合的不同以及对工件夹持的特殊要求,采取了多种形式的机械结构来完成对工件的夹紧和防止工件脱落的锁紧措施。
在针对同样的目标任务,采取多种运动方式相结合的方式来达到预定的目的。
驱动方面采用了一台工业机器人多种驱动方式的情况,有液压驱动,气压驱动,步进电机驱动,伺服电机驱动等等。
愈来愈多的搬运机器人是采用混合驱动系统的,这样能够更好的发挥各驱动方式的优点,避免缺点。
并且在它的控制精度方面和搬运效率方面有了很大的提高。
在搬运机械手的控制方面,出现了多种控制方式。
如:由原始的电控的机械手,2较先进的基于工控机控制的,基于PC控制的,进一步的嵌入式PC控制技术,还有采用PLC可编程控制的。
在物料搬运方面近年来呈现出的趋势就是系统化。
无论是我国还是国外,物料搬运的发展都是由单一设备走向成套设备,由单机走向系统。
在制造业方面,随着JIT, FMS, CIMS等现代制造技术的发展,对物料搬运系统也提出了新的要求。
其特点是力求减少库存、压缩等待和辅助时间,使多品种、少批量的物料准时到达要求的地点。
这一趋势在机械工业方面得到了很大的应用。
其中采用了机器人等先进的物料搬运技术,促进了机械工业的技术进步和生产水平提高。
当代工业机器人技术发展一方面表现在工业机器人应用领城的扩大和机器人种类的增多。
另一方面表现在机器人机械系统性能的提高和控制系统的智能化。
前者是指应用领域的横向拓宽,后者是在性能及水平上的纵向提高。
机器人应用领城的拓宽和性能水平的提高二者相辅相承、相互促进。
应用领城的扩大对机器人不断提出断的要求,推动机器人技术水平的提高.反过来,机器人性能与智能水乎的提高,又使扩大机器人应用领域成为可能。
1(工业机器人机械系统性能的提高。
进一步提高业机器人的运动精度。
机器人是一种多关节开链式结构,因此,机器人手臂的刚度一般都不高。
另外由于构件的尺寸误差和传动间隙的存在,以及机器人手臂末端误差的放大作用,使当前机器人的定位与运动还不能达到很高的精度。
度大.精度高的数控机床相比,机器人在工作精度上大为逊色。
因此,至今工业机器人在精密装配及其它精密作业中的应用仍受到了很大的限制。
除了精密作业要求高精度机器人以外.采用离线编程的工业机器人系统也要求该机器人要具有足够高的定位精度和运动精度。
进一步提高机器人工作精度的主要办法是:提高机器人的加工精度与装配精度,采用无隙传动的减速机构,采用直接驱动电机,通过标定进行3楼渊:四自由度圆柱坐标机器人设计机器人的2(误差补偿,通过实时检侧对机器人运动误差进行实时修正。
提高机器人手的灵活度和避障能力:当前常用的机器人手肴的灵活度的都不够高,即手臂末端达到某一工作点时。
手臂可能采取的姿态是有限的,有时要有很大的灵活度和很强的避障能力.例如。
当用喷涂机器人喷涂车身内表面时,要求机器人能将车身内表面的各个角落都喷上漆,必须要有高灵活度机器人手有才行。
另外,在有限空间及有障碍的复杂环境中作业的机器人,例如在核电站工作的机器人,也要求其具有高灵活度的机器人手臂。
为了提工业机器人手臂的灵活度,主要是采用具有冗余自由度的机器人手臂和在机器人手臂机构上采用膨铰关节及可双向弯曲的手臂。
3(提高机器人的运动速度和响应频率:为了提高机器人作业效率,以及提高具有感知功能机器人的反应速度,就必须提高机器人运动速度和响应频率,这一点,对装配机器人来说尤为重要。
为此,一方面可以通过采用高强度材料或轻质材料(如碳纤维复合材料)制造机器人手臂,以达到减轻手臂重量和提高手臂动态特性的目的,另一方面,也可以通过采用直接驱动电机或其它高性能驱动电机,从控制和驱动方面提高机器人系统的运动速度与响应频率。
4(提高机器人手爪或手腕的操作能力、灵活性与快速反应能力:为了使机器人能像人一样进行各种复杂作业,如装配作业、维修作业及设备操作,机器人就必须有一个运动灵活和动作灵敏的手腕和手爪。
这一点对装配作业机器人、核工业机器人和在空间站上作业的空间机器人来说是特别重要的。
5(采用模块化组合式机器人结构,提高机器人快速维修性能:根据优化设计,制造出多种不同尺寸和规格的手臂和连接器模块。
用少量的模块可组合成多种机器人配置。
这种机器人能进行快速维修,可以实现自动修复。
所以,这种机器人结构最适用于空间机器人、核工业机器人等。
如这种积4木结构能推广用于一般工业机器人,将使工业机器人的成本下降、生产周期及维修周期缩短。
1.3工业机器人的分类1.3.1按作业用途分类如前所述,各类工业机器人的应用范围非常广泛,而且还有一种机器人多种用途的情况。
通常我们依据其具体的作业用途来称呼它,如一条自动生产线上使用了相同结构的数台机器人,有的用于点焊就称为点焊机器人,有的用于搬运工件就称为搬运机器人,以此类推,便有喷漆机器人、涂(密封)胶机器人、装配机器人和测量机器人等有的作业具有一定范围,如潜入水下作勘查、采矿和铺4管道的机器人,就统称为水下机器人,类似的还有宇航机器人等。
1.3.2按操作机的运动形态分类按工业机器人操作机运动部件的运动坐标把机器人区分为:直角坐标式机器人,极(球)坐标式机器人,圆柱坐标式机器人和关节式机器人,另外还有少数复杂的机器。
人是采用以上方式组合的组合式机器人。
1.3.3按机器人的负荷和工作范围分类按照这种分类方法,工业机器人分为:超大型机器人—负荷为10KN以上。
3 大型机器人—负荷1--10KN,工作空间为1—10m以上。
3 中型机器人—负荷为100--1000N。
工作空间为0.1,1 m3 小型机器人—负荷为l--100N,工作空间为0.1 m。
3 超小型机器人—负荷小于1N ,工作空间为0.1 m。
以上所谓机器人的“负荷”是指在机器人的规定性能条件下,机器人所能搬移的重量中包括了机器人末端执行器的重量。
1.3.4按机器人具有的运动自由度数分类机器人的自由度数的定义是:操作机各运动部件独立运动的数目之和。
这种运动只有两种形态:直线运动和旋转运动,其腕端的任何复杂的运动都5楼渊:四自由度圆柱坐标机器人设计可由这两种运动来合成。
工业机器人的自由度数。
一般为2,7个,简易型的2—4个自由度,复杂型的5,7个自由度。
自由度数越多,机器人的“柔性”越大,结构和控制也就越复杂,所以并非越多越好。
1.4本课题研究的主要内容(1)确定机器人运动参数及工作行程。
(2)根据工件的负载情况,工作空间以及各个运动的实现形式对搬运机器人进行整体方案的设计;(3)对搬运机器人的手爪,,小臂,大臂,的结构设计,绘制各部分的结构草图;(4)由第2步所给定的条件和第3步的结构特点,选取驱动系统并确定驱动电机的驱动方式和传动方式;(5)对各结构的质量进行粗估,完成对手爪的夹紧气缸,小臂、大臂丝杠的驱动电机,以及腰部、腕部的旋转驱动电机的计算选型;(6)根据电机的外形尺寸及输出轴轴径,以及电机的重量完善结构草图。
(7)通过以确定的结构的质量的分析,验算重要零件的受力情况,绘制最终装配图。
6第二章总体设计方案确定 2.1结构设计概述一个机器人系统结构由下列互相作用的部分组成:机械手、环境、任务。
机械手是由具有传动执行装置的机械,它由臂,关节和末端执行装置构成,组合为一个互相连接,互相依赖的运动机构。
机械手用于执行指定的作业任务。
工业机器人的末端执行器是安装在腕端的附加装置。
机器人的手部可分为夹持式和吸附式两大类。
夹持式的是指型手,夹持方式有外夹式和内撑式之分,吸附式的分为空气负压式和电磁式两种,任务是指机器人要完成的工作。
机器人的类型是随着工作任务的特点而决定的。
例如:SCARA机器人就非常适合平面上的工件的抓取。
环境是指机器人所处的周围环境。
环境不仅由几何条件(可达空间)所决定,而且由环境和它所包含的每一个事物的全部自然特性所决定。
2.2基本设计参数根据次机械手的应用场合和实地的应用要求,其主要的设计参数要求如下: (1)抓取的重物:2kg;(2)机械手的自由度数:4个;(3)运动参数:0.02m 大臂升降: 线速度:; s0.02m 小臂伸缩: 线速度: ; srad3.14 手腕俯仰: 角速度:; s3.14rad 腰部旋转: 角速度:; s(4)运动行程:大臂升降:300mm7楼渊:四自由度圆柱坐标机器人设计小臂伸缩:300mm,腰部旋转: ,90,手腕俯仰: ,902.3工作空间分析2.4传动方案的确定:2.4.1传动方案分析<1>方案1:图2-2 传动方案一第一、二、自由度均采用伺服电机加减速器的结构形式。