武大电子信息学院毕业设计-《变容二极管调频倍频》
- 格式:pptx
- 大小:1.82 MB
- 文档页数:37
成绩评定表课程设计任务书目录摘要 (4)1 •弓I言 (5)2 • Protel 99 SE 简介 (6)3•实验步骤 (7)3.1 Protel 99 SE 绘图环境设置 (7)3.1.1新建一个设计库 (7)3.1.2 添加元件库 (10)3.2绘制原理图 (12)3.2.1 选取元件 (12)3.2.2摆放元件 (13)3.2.3元件连接 (13)3.2.4放置输入/输出点 (14)3.2.5更改元件属性 (15)3.2.6 ERC(电气规则检查) (16)3.3 PCB 制图 (16)3.3.1自动生成PCB文件 (16)3.3.2自动布线 (18)3.4仿真应用 (20)4 •课设总结 (22)5 •参考文献 (22)摘要本次课设的要求和目的是掌握Protel的应用。
本文以Protel99SE为例,详细具体地介绍这个软件的用法与应用。
文章首先介绍了Protel99SE基本知识,然后提出需用该软件解决的实际问题,结合实际问题一步步介绍Protel99SE的用法,如:基础原理图设计,印制电路板基础,PCB元件的制作,电路仿真分析,综合案例演练等。
接着分析应用Protel99SE软件的过程中可能遇到的问题及一些应对方法。
课设最后进行总结,检查课设的完整性和彻底性,检验自己对Protel99SE软件的掌握程度及应用情况。
Protel 99 SE 应用课程设计――变容二极管的调频电路1 •引言人类社会已进入到高度发达的信息化社会,信息社会的发展离不开电子产品的进步。
现代电子产品在性能提高、复杂度增大的同时,价格却一直呈下降趋势,而且产品更新换代的步伐也越来越快,实现这种进步的主要原因就是生产制造技术和电子设计技术的发展。
前者以微细加工技术为代表,目前已进展到深亚微米阶段,可以在几平方厘米的芯片上集成数千万个晶体管;后者的核心就是EDA技术。
EDA是指以计算机为工作平台,融合了应用电子技术、计算机技术、智能化技术最新成果而研制成的电子CAD通用软件包,主要能辅助进行三方面的设计工作:IC设计,电子电路设计以及PCB设计。
目录摘要 (2)1 系统设计 (2)1.1 总体设计方案 (2)1.1.1 设计思路 (2)1.1.2 系统各模块论证与选择 (3)1.1.3 系统各模块的组中组成 (4)2 设计实现与理论计算 (4)2.1 LC振荡电路部分 (4)2.2 放大器电路部分 (4)3 电路工作过程与理论计算 (4)4 测试与数据分析 (5)4.1 测试仪器 (5)4.2 测量结果 (5)4.3 误差分析 (6)4 结论 (6)参考文献 (6)附录 (7)元器件清单 (10)变容二极管调频电路的设计摘要:本设计基于LC振荡器原理,通过变化变容二极管两端的电压来改变电容,以达到改变频率,从而实现设计的要求。
整个设计由三点式振荡器模块、放大器模块组成,完成了调频的要求。
随着电子与通信技术的不断进步,各种电子新产品的开发速度越来越快。
现代计算机和微电子技术的进一步结合和发展,使得电子电路和通信线路的设计出现了两个分支。
一个是朝着更高集成度的集成电路发展;而另一个是利用分立元件和硬件描述语言对新型器件进行专门设计.调频广播具有抗干扰性能强、声音清晰等优点,获得了快速的发展。
调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。
由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的范围内。
在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。
目前,许多中小功率的调频发射机都采用变容二极管直接调频技术,即在工作于发射载频的LC振荡回路上直接调频,采用晶体振荡器和锁相环路来稳定中心频率。
较之中频调制和倍频方法,这种方法的电路简单、性能良好、副波少、维修方便,是一种较先进的频率调制方案.调频器广泛用于调频广播、电视伴音、微波通信、锁相电路和扫频仪等电子设备。
由于抗干扰能力强、功率利用率高、信息传输保真度高等优点,频率调制广泛应用于各种通信系统和电子设备中。
变容二极管调频实验一、实验目的1、掌握变容二极管调频电路的原理。
2、了解调频调制特性及测量方法。
3、观察寄生调幅现象,了解其产生及消除的方法。
二、实验内容1、测试变容二极管的静态调制特性。
2、观察调频波波形。
3、观察调制信号振幅时对频偏的影响。
4、观察寄生调幅现象。
三、实验仪器1、信号源模块1块2、频率计模块1块3、 3 号板1块4、双踪示波器1台5、万用表1块6、频偏仪(选用)1台四、实验原理及电路1、变容二极管工作原理调频即为载波的瞬时频率受调制信号的控制。
其频率的变化量与调制信号成线性关系。
常用变容二极管实现调频。
变容二极管调频电路如图1所示。
从P3处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从P2处输出为调频波(FM)。
C15为变容二级管的高频通路,L2为音频信号提供低频通路,L2可阻止外部的高频信号进入振荡回路。
本电路中使用的是飞利浦公司的BB910型变容二极管,其电压-容值特性曲线见图12-4,从图中可以看出,在1到10V的区间内,变容二极管的容值可由35P到8P左右的变化。
电压和容值成反比,也就是TP6的电平越高,振荡频率越高。
图2表示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。
在(a )中,U 0是加到二极管的直流电压,当u =U 0时,电容值为C 0。
u Ω是调制电压,当u Ω为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小;当u Ω为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。
在图(b )中,对应于静止状态,变容二极管的电容为C 0,此时振荡频率为f 0。
因为LCf π21=,所以电容小时,振荡频率高,而电容大时,振荡频率低。
从图(a )中可以看到,由于C-u 曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,但是由于LCf π21=,f 和C 的关系也是非线性。
目录摘要 01、方案选择 (1)2、变容二极管直接调频原理 (1)3、变容二极管直接调频 (3)3.1 变容二极管工作原理 (3)4、电路实现 (4)4.1课程设计指标 (4)4.2元件参数选择 (5)4.3电路设计仿真图 (5)4.4电路仿真结果 (6)4.5 PCB如图4.4所示 (7)总结与体会 (8)参考文献 (9)摘要调频电路具有抗干扰性能强、声音清晰等优点,获得了快速的发展。
主要应用于调频广播、广播电视、通信及遥控。
调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。
由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz 的范围内。
在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。
变容二极管调频电路是一种常用的直接调频电路,广泛应用于移动通信和自动频率微调系统。
其优点是工作频率高,固有损耗小且线路简单,能获得较大的频偏,其缺点是中心频率稳定度较低。
较之中频调制和倍频方法,这种方法的电路简单、性能良好、副波少、维修方便,是一种较先进的频率调制方案。
本课题载波由LC电容反馈三端振荡器组成主振回路,振荡频率有电路电感和电容决定,当受调制信号控制的变容二极管接入载波振荡器的振荡回路,则振荡频率受调制信号的控制,从而实现调频。
关键词:变容二极管 LC电容反馈三端振荡器调频1、方案选择变容二极管调频方式有两种:间接调频和直接调频。
(1)间接调频先将调制信号进行积分处理,然后用它控制载波的瞬时相位变化,从而实现间接控制载波的瞬时频率变化的方法,称为间接调频法。
根据前述调频与调相波之间的关系可知,调频波可看成将调制信号积分后的调相波。
这样,调相输出的信号相对积分后的调制信号而言是调相波,但对原调制信号而言则为调频波。
这种实现调相的电路独立于高频载波振荡器以外,所以这种调频波突出的优点是载波中心频率的稳定性可以做得较高,但可能得到的最大频偏较小。
利用变容二极管实现的倍频器
陈永泰;周明
【期刊名称】《科教文汇》
【年(卷),期】2006(000)003
【摘要】本文在详细讲解了变容二极管的基本结构后,介绍了变容二极管实现信号倍频的工作原理,然后结合一个实例分析了这种倍频电路的工作情况和实际电路中各元器件选择使用时应注意的情况,最后阐述了利用变容二极管实现信号倍频的优缺点。
【总页数】2页(P103-104)
【作者】陈永泰;周明
【作者单位】武汉理工大学信息工程学院;武汉理工大学信息工程学院;湖北武汉430070;湖北武汉430070
【正文语种】中文
【中图分类】TN771
【相关文献】
1.基于肖特基变容二极管和改进型CSMRs滤波器单级340GHz四倍频器 [J], 蒋均;刘杰;石向阳;陆彬;邓贤进;郝海龙;张健
2.使用VCO实现变容二极管直接调频 [J], 李峰;郭德淳
3.利用锁相倍频器代替直流测速电机的低速测速方法 [J], 刘绍勇
4.采用倍频器+PLL技术实现卫星通信Ku频段频率合成的一种方法 [J], 胡晓东;
佘胜团; 王明照; 李雪平
5.Q频段变容二极管二倍频器设计 [J], 郭健;许正彬;钱澄;窦文斌
因版权原因,仅展示原文概要,查看原文内容请购买。
通信电路设计变容二极管调频电路设计
变容二极管调频电路是一种用于实现快速可调调频的电路,它可以快速变化调频信号
的输出频率而不影响调频信号的波形、幅度和相位。
这种电路由于具有调节脉宽和调节频
率容易操作的优点,已广泛应用于微波信号处理、无线连接、语音处理等领域。
变容二极管调频电路由二极管、变容电容器、滤波元件和稳压电路组成,其结构如下
图所示:
图1 变容二极管调频电路示意图
二极管主要起“开关式”放大作用,根据反馈电路的不同情况,其工作的仿真模型和
电路结构可以极大的改变,其在调频方面有很大的作用。
变容电容器可以实现电容的变化,从而调节电流的充放电量,调节输出信号的频率。
滤波元件可以把调制信号从信号源中提取出来,有效地打消其他低频信号,使得其输
出信号更加清晰,从而更好地实现变频效果。
稳压电路将产生固定电压,它可以保护二极管和变容电容不受外部电压波动的影响,
以提高调频电路的稳定性。
通过以上四部分的调制电路可以实现变容二极管调频电路,可以有效控制信号的频率,提高电路的可靠性和鲁棒性。
此外,变容二极管调频电路还具有低功耗和体积小的优点,
使得它在实际应用中受到广泛的欢迎,在微波、通信等领域发挥着重要的作用。
《高频电子线路》课程设计报告{设计题目:变容二极管调频与解调器设计}姓名:分院:班级:学号:日期:目录一、课程设计目的 (3)二、课程设计题目描述及要求 (3)三、课程设计报告内容 (4)1、实验目的 (4)2、实验原理 (4)3、实验仪器 (6)四、实验总结 (6)五、参考资料 (6)一、课程设计目的通过本课程设计掌握通信系统中常用的一些基本功能电路的组成、工作原理、电路、性能特点、基本分析方法和工程计算方法,强调电路结构和单元电路的模型化,初步具有通信电子电路中的设计技能。
巩固已学的理论知识。
能将理论与实际很好的结合起来,将理论正确运用到实践当中。
能使自己更好的了解变容二极管的调频与解调,极其之间的关系。
二、课程设计题目描述及要求本次课程设计的题目是变容二极管调频与解调器设计,实现调频的方法很多,大致可分为两类,一类是直接调频,另一类是间接调频。
直接调频是用调制信号电压直接去控制自激振荡器的振荡频率(实质上是改变振荡器的定频元件),变容二极管调频便属于此类。
间接调频则是利用频率和相位之间的关系,将调制信号进行适当处理(如积分)后,再对高频振荡进行调相,以达到调频的目的直接调频的稳定性较差,但得到的频偏大,线路简单,故应用较广;间接调频稳定性较高,但不易获得较大的频偏。
三、课程设计报告内容1、实验目的(1)、了解变容二极管调频电路原理及构成;(2)、了解调频器调制特性及测量方法。
(3)、了解相位鉴频器的工作原理及电路构成(4)、了解相位鉴频器特性及测量方法。
2、实验原理许多中小功率的调频发射机都采用变容二极管直接调频技术,即在工作于发射载频的LC振荡回路上直接调频,采用晶体振荡器和锁相环路来稳定中心频率。
变容二极管直接调频原理是二极管通过改变外加反向电压可以改变空间电荷区的宽度,从而改变电容的大小。
在LC振荡器的振荡回路上接入变容二极管,由于变容二极管结电容C j 随所加反向偏压而变化,如果在变容二极管两端加上直流反向偏压和调制信号,当调制信号为零时,变容二极管的结电容为对应直流偏压E d时的结电容C Q,此时振荡器频率为固定的载波频率,当加上调制信号uΩ=UΩcosΩt时,结电容C j随所加调制信号的规律变化,振荡频率也跟着结电容的规律变化,从而可实现调频。
变容二极管调频器实验报告
《变容二极管调频器实验报告》
实验目的:通过实验,掌握变容二极管调频器的工作原理和调频过程,加深对电子电路的理解。
实验原理:变容二极管调频器是一种常用的调频电路,其原理是通过改变电容二极管的电容值,从而改变电路的频率。
在实际应用中,变容二极管调频器常用于无线电通信设备中,用于调节无线电信号的频率。
实验步骤:
1. 搭建变容二极管调频器电路。
根据实验指导书提供的电路图,搭建变容二极管调频器电路。
2. 测量电路参数。
使用万用表测量电路中各个元件的参数,包括电容二极管的电容值、电感的电感值等。
3. 调节电容二极管的电容值。
通过旋转电容二极管的旋钮,改变电容二极管的电容值,观察电路的频率变化。
4. 测量频率。
使用频率计或示波器测量电路的频率,并记录下不同电容值下的频率变化情况。
实验结果:
通过实验,我们观察到随着电容二极管电容值的改变,电路的频率也发生了相应的变化。
当电容值增大时,电路的频率减小;当电容值减小时,电路的频率增大。
这验证了变容二极管调频器的工作原理,也加深了我们对电子电路的理解。
实验总结:
通过本次实验,我们深入了解了变容二极管调频器的工作原理和调频过程,掌
握了实际搭建和调节电路的方法。
这对我们今后的学习和工作具有重要的意义,也为我们的理论知识与实际操作相结合提供了宝贵的经验。
变容二极管调频器实验报告到此结束。
希望通过这次实验,能够对大家的学习
有所帮助。
南华大学《通信线路》设计报告变容二极管调频电路设计姓名: 王佳杰学号: 20114400218专业班通信1102班级:指导老邓贤君师:电气工程学院所在学院:2014年6月12日摘要随着电子与通信技术的不断进步,各种新兴电子产品的开发速度越来越快。
现代计算机技术和微电子技术的进一步结合和发展使得电子电路和通信线路出现了二个分支。
一个是朝着更高集成度的集成电路发展:而另一个是利用分立元件和硬件描述语言对新型器件进行专门设计。
调频广播具有抗干扰性能强、声音清晰等优点,获得了快速的发展。
调频电台的频带通常大约是200〜250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。
由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30〜8000Hz的范围内。
在调频时,可以将音频信号的频率范围扩大至30〜15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。
目前,应用最广泛的是采用变容二极管直接调频技术,即利用二极管反偏工作的PN结呈现的势垒电容,它与回路中的电感共同构成振荡器的振荡回路,从而作为振荡频率直接调频电路。
它具有工作频率咼、固有损耗小和使用方便等优点。
变容二极管为特殊二极管的一种。
当外加顺向偏压时,有大量电流产生,PN (正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,贝U会产生过渡电容效应。
但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。
在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,有所学的正弦波振荡器章节中,我们知道振荡器的振荡频率由谐振回路的谐振频率决定。
因此,当变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。
变容二极管调频电路实验的创新与改进
杨光义;王雪迪;金伟正;王晓艳
【期刊名称】《实验技术与管理》
【年(卷),期】2015(000)007
【摘要】以变容二极管调频实验为核心,将 LC 振荡、晶体振荡、倍频和选频等
实验巧妙组合,设计了一套综合振荡和倍频的变容二极管调频倍频实验电路。
该实验电路涉及的实验内容丰富,综合性强,学生可以通过实验全面理解和掌握相关知识。
教学实践表明,该实验效果良好,适合在高等院校推广应用。
【总页数】5页(P42-46)
【作者】杨光义;王雪迪;金伟正;王晓艳
【作者单位】武汉大学电子信息学院,湖北武汉 430072;武汉大学电子信息学院,湖北武汉 430072;武汉大学电子信息学院,湖北武汉 430072;武汉大学电子信
息学院,湖北武汉 430072
【正文语种】中文
【中图分类】TN761.2;G642.423
【相关文献】
1.提高变容二极管调频电路频率稳定度的温度补偿方法 [J], 秦亚浪;何兴道;邹文栋
2.变容二极管直接调频电路的仿真分析 [J], 黄丽贤
3.变容二极管的调频电路 [J], 杨邦文
4.变容二极管调频电路参数的高精度测量实验 [J], 曾丽蓉;姜乃卓;董英雷;葛中芹
5.一种新的提高变容二极管调频电路频率稳定度的温度补偿方法 [J], 秦亚浪;何兴道;邹文栋
因版权原因,仅展示原文概要,查看原文内容请购买。
变容二极管调频电路实现调频的法很多,大致可分为两类,一类是直接调频,另一类是间接调频。
直接调频是用调制信号电压直接去控制自激振荡器的振荡频率〔实质上是改变振荡器的定频元件〕,变容二极管调频便属于此类。
间接调频那么是利用频率和相位之间的关系,将调制信号进展适当处理〔如积分〕后,再对高频振荡进展调相,以到达调频的目的。
两种调频法各有优缺点。
间接调频器间接调频的优点是载波频率比拟稳定,但电路较复杂,频移小,且寄生调幅较大,通常需屡次倍频使频移增加。
对调频器的根本要调频频移大,调频特性好,寄生调幅小。
调频器广泛用于调频播送、电视伴音、微波通信、锁相电路和扫频仪等电子设备直接调频的稳定性较差,但得到的频偏大,线路简单,故应用较广;间接调频稳定性较高,但不易获得较大的频偏。
常用的变容二极管直接调频电路如图Z0916〔a〕所示。
图中D为变容二极管,C2、L1、和C3组成低通滤滤器,以保证调制信号顺利加到调频级上,同时也防止调制信号影响高频振荡回路,或高频信号反串入调制信号电路中。
调制级本身由两组电源供电。
对高频振荡信号来说,L1可看作开路,电源EB的交流电位为零,R1与C3并联;如果将隔直电容C4近似看作短路,R2看作开路,那么可得到图〔b〕所示的高频等效电路。
不难看出,它是一个电感三点式振荡电路。
变容二极管D的结电容Cj,充当了振荡回路中的电抗元件之一。
所以振荡频率取决于电感L2和变容二极变容二极管的正极直流接地〔L2对直流可视为短路〕,负极通过R1接+EB,使变容二极管获得一固定的反偏压,这一反偏压的大小与稳定,对调频信号的线性和中心频率的稳定性及精度,起着决定性作用。
对调制信号来说,L2可视为短路,调制信号通过隔直流电容C1和L1加到变容二极管D的负极,因此,当调制信号为正半时,变容二极管的反偏电压增加,其结电容减小,使振荡频率变高;调制信号为负半时,变容二极管的反偏压减小,其结电容增大,使振荡频率变低。
变容二极管调频电路设计在无线通信领域中,调频(Frequency Modulation,FM)是一种重要的调制技术。
其中,变容二极管(Varactor Diode)作为一种非线性元件,具有调节容值的特性,被广泛应用于调频电路中。
本文将介绍变容二极管调频电路的设计原理、电路结构以及性能优化方法。
一、变容二极管调频电路的设计原理在FM调频电路中,变容二极管的作用是通过改变电容值来实现对频率的调节。
通过调节电容值,可以改变电路中LC振荡器的频率。
变容二极管的电容-电压关系可以近似为:C=C0*(1-(V/Vr)^m)其中,C是变容二极管的电容值,C0是基准电容值,V是变容二极管的偏置电压,Vr是反向偏置电压,m是非线性指数。
通过调节V,可以改变C的数值。
二、变容二极管调频电路的结构变容二极管调频电路由变容二极管、电感器(Inductor)、电容器(Capacitor)和其他辅助元件组成。
其中,电感器和电容器组成LC振荡器,负责产生基准频率信号。
变容二极管则负责调节LC振荡器的频率。
___________________,RFIN---,,,----RFOUTLC,C1---,___,_______C2在上图中,RFIN表示输入射频信号,RFOUT表示输出射频信号。
C1和C2分别是包含变容二极管的电容器,LC是包含电感器和电容器的LC振荡器。
三、变容二极管调频电路的性能优化方法为了获取更好的调频性能,可以采取以下方法进行优化。
1.变容二极管的选择:选择具有较大非线性指数m的变容二极管,以实现更大的频率调节范围。
2.变容二极管的偏置电压控制:通过改变变容二极管的偏置电压,可以改变其电容值,从而实现频率的调节。
可以使用控制电压的变压器来实现对偏置电压的精确控制。
3.LC振荡器的设计:选择合适的电感器和电容器,以满足所需要的振荡频率范围。
4.封装和散热设计:为了保证电路的稳定性和长期可靠性,需要对变容二极管进行良好的封装和散热设计,以提供良好的工作环境和散热条件。
课程设计任务书一、课程设计内容1.课程设计目的:通过课程设计,使学生加强对通信电子电路的理解,学会查寻资料﹑方案比较,以及设计计算等环节。
进一步提高分析解决实际问题的能力,创造一个动脑动手﹑独立开展电路实验的机会,锻炼分析﹑解决通信电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与仿真分析,加深对基本原理的了解,增强学生的实践能力。
2.课题题目1)小信号谐振放大器2)晶体二极管检波器3)晶体三极管混频器4)变容二极管调频器与相位鉴频器二、课程设计要求:设计课题题目:每位同学根据自己学号除以4所得的余数加一选择相应题号的课题。
换题者不记成绩。
要求:掌握LC振荡器和晶体振荡器、晶体二极管检波器、晶体三极管混频器与变容二极管调频器与相位鉴频器的基本原理和电路设计方法;掌握应用OrCAD/Pspice软件对电路进行仿真、分析。
①培养学生根据需要选学参考书,查阅手册,图表和文献资料的自学能力,通过独立思考﹑深入钻研有关问题,学会自己分析解决问题的方法。
②通过实际电路方案的分析比较,设计计算﹑元件选取﹑OrCAD仿真分析等环节,初步掌握简单实用电路的分析方法和仿真方法。
③了解与课程有关的电子电路以及元器件工程技术规范,能按课程设计任务书的技术要求,编写设计说明,能正确反映设计和实验成果,能正确绘制电路图。
④培养严谨的工作作风和科学态度。
三、课程设计进度安排四、课程设计说明书与图纸要求课程设计说明书包括内容:1.设计任务及主要技术指标和要求。
2.选定方案的论证及整机电路的工作原理。
3.单元电路的设计计算,元器件选择,电路图。
4.整机电路仿真结果(包括偏置点分析、DC扫描、瞬态分析和AC扫描)。
5.列出元件﹑器件明细表。
6.对设计成果作出评价,说明本设计特点和存在的问题,提出改进意见;目录一、课程设计目的和要求 (6)1、目的 (6)2、主要技术指标 (6)3、要求 (6)二、设计方案和基本原理 (6)1、设计方案 (7)2、基本原理 (8)三、设计电路 (8)四、电路仿真 (10)五、元器件明细表 (12)六、总结 (13)七、课程设计评分表 (15)变容二极管调频器与相位鉴频器一、课程设计目的和要求1、目的:通过课程设计,使学生加强对通信电子电路的理解,学会查寻资料﹑方案比较,以及设计计算等环节。