微波电子线路
- 格式:doc
- 大小:5.37 MB
- 文档页数:8
微波感应人体传感器2008-11-12 08:531。
工作原理微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。
高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为2.4GHz的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。
内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号) ,微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。
如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。
最后输HT7610A 鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2同步显示,输出方式为电压方式,有输出时为高电平(4伏以上),没有输出时为低电平。
微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED1点亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有5秒信号输出,并由指示灯LED2同步显示。
控制器的外形上图所示,面板上设置有灵敏度调整孔,可以使监控距离在1~7米范围内可调,顺时针转动距离变远,逆时针转动距离变近, LED1、LED2用于指示TX982的工作状态,1.2米长的双芯屏蔽线用于连接电源和负载,其中红色线用来接正电源,白色线接输出,铜网屏蔽层接电源负极,必要时可以用类似电缆加长至50米以内使用。
格兰仕微波炉的结构特点及原理常见故障及故障检修微波炉作为现代厨房电器的新宠,越来越普及地走进干家万户。
微波炉以其加热速度快,省电且无污染等特点,确实给人们的生活带来方便。
目前市场上微波产品很多,但格兰仕微波炉一直是一枝独秀。
一、格兰仕微波炉型号的识别二、微波炉结构特点和工作原理微波炉主要由炉腔、炉门和控制电路等几部分组成。
3.控制电路:控制电路如图1所示,又分为低压电路,控制电路和高压电路三部分。
高压变压器次级绕组之后的电路为高压电路,主要包括:磁控管、高压电容器c、高压变压器T、高压二极管D。
磁控管是微波炉的心脏,微波能就是由它产生并发射出来的。
它的工作需要很高的脉动直流阳极电压和约3~4V的灯丝电压。
由高压变压器及高压电容器、高压二极管构成的倍压整流电路为磁控管提供了满足上述要求的工作电压。
高压变压器初级绕组之前至微波炉电源入口之间的电路为低压,电路(也包括了控制电路)主要包括:保险管Fu、热断路器保护开关sw6、sw7、联锁开关swl~sw3、照明灯、定时器及功率分配器开关sw4、sw5、转盘电机M3和风扇电机M2等。
转盘电机与风扇电机为同步电机,即微波炉工作时转盘电机转动并带动玻璃转盘,风扇电机也同步转动,对磁控管及其它主要部件进行冷却。
三、并非微波炉故障的判别对于微波炉在使用过程中出现的一些现象,有的用户因为对微波炉不太了解,常容易误认为微波炉出了故障。
1.跳闸微波炉整机的功耗大,整个启动过程要比一般家电时间长,所以启动时的耗电为微波炉输入功率的5~6倍。
微波炉的启动电流高时可达7A,工作电流在5A左右。
而有的家庭配备的保护闸容量有限或敏感度过高,常因微波炉启动时的电流冲击而出现跳闸,因此最好应配备l0A以上的保护闸。
另外,在使用微波炉加热食品时,最好不要同时打开电饭锅之类的大功率用电器具。
2.感觉声音大微波炉工作时的声音主要来自风扇,而风痢转速的高低和声音的大小成正比。
格兰仕微波炉采用高转速风扇电机,以提高对主机的冷却效果,延长磁控管及主机的使用寿命。
3 微波混频器的工作原理——复习混频机理是基于肖特基势垒二极管结电阻R的非线性管子在偏压和j本振的激励下,跨导随时间变化,加上信号电压后出现一系列频率成分的电流,用滤波器取出所需中频即可。
一、混频器的本振激励特性以单管混频器为例,输入:本振、偏压、信号、输出、中频()u f i =()au sa au Sa e I e I ≈-=1由图t V t V V u S S L L ωωcos cos 0++=S u 远小于L u ,故可视为微分增量u ∆ ()u u f i ∆+=∴()()+∆+'++=u t V V f t V V f L L L L ωωc o s c o s 00…...u ∆很小,忽略平方以后高次项,只取一阶导数项。
一阶导数表示了小信号电流与小信号电压之间的关系,即变频跨导()tL V V u dudiuu i i i ωcos 0+=∆+=∆+()()t ug u i ∆+= 式中 ()()t V V a Sa L L e aI dudit g ωcos 0+==现 ()t g 是t 的周期偶函数,可展成以下形式的级数 ()∑∞=+=10cos 2n L n n t g g t g ωn g 为n 阶变混频跨导,是t n L ωcos 的付利叶系数平均混频跨导()⎰=πωπ20021t d t g g L ()⎰+=πωπ20cos 021t V V a Sa L L e aI t d L ω()L aV Sa aV J e aI 00= n 阶变混频跨导1g ()⎰+=πωπ20cos 021t V V a Sa L L e aI tdt L ωcos()L aV Sa aV J e aI 10=……n g ()⎰+=πωπ20cos 021t V V a Sa L L e aI tdt L ωcos()L n aV Sa aV J e aI 0= J n (x),第一类贝赛尔函数本振电压作用下,混频器为一周期时变电导0g 为平均电导,n g 为n 次变频跨导(对本振n 次而言)与本振信号有关的电流 ()t V V f i L L ωcos 0+= ∑∞=+=10cos 2n L n t n I I ω平均电流 ()L aV Sa aV J e I I 000=基波电流 ()L aV Sa L aV J e I I J 11022==L aV 足够大 ,大宗量近似, ()LLn dV eaV J π2aV L ≈代入上两式 02I I L ≈本振激励功率为L L L L V I I V P 021== 本振电导 LL L L V I V I G 02==可通过0I 和L V 来调节L P L G ,测量L P 和0I 可以了解本振工作性质 ——具有工程意义,直流和本振大小使混频器特性好二、非线性电阻的电流频谱1、小信号一次混频结果。
射频微波pcb射频微波PCB(印制电路板)在现代无线通信、雷达系统、卫星通信以及其他高频应用中扮演着至关重要的角色。
这些特殊的电路板被设计用于处理射频(RF)和微波信号,这些信号通常具有高频率和复杂的传输特性。
本文将深入探讨射频微波PCB 的设计原则、关键特性、材料选择、制造工艺以及其在各种应用中的重要性。
一、射频微波PCB设计原则设计射频微波PCB时,需要遵循一系列原则以确保信号完整性、最小化传输损耗、降低电磁干扰(EMI)和优化系统性能。
1. 布局与布线:合理的布局和布线是确保高频信号传输质量的基础。
信号线应尽可能短且直接,以减少传输损耗和信号延迟。
同时,应避免锐角和直角转弯,以减少反射和辐射。
2. 地层与电源层设计:地层和电源层的设计对于控制阻抗、减少噪声和提供稳定的参考平面至关重要。
地层通常用作回流路径,需要足够大以提供低阻抗的回流路径。
3. 阻抗匹配:在高频电路中,阻抗匹配是减少信号反射和最大功率传输的关键。
设计时需要精确控制传输线的特性阻抗,通常通过调整线宽、线间距和介质厚度来实现。
4. 串扰与隔离:高频信号容易产生串扰,即信号线之间的不期望耦合。
通过增加线间距、使用屏蔽结构或差分信号传输等技术可以有效减少串扰。
5. 散热设计:高频电路中的元件可能会产生大量热量,因此散热设计是确保电路可靠性和性能稳定的重要因素。
二、射频微波PCB的关键特性射频微波PCB具有一些独特的特性,这些特性对于高频应用至关重要。
1. 高频介电常数(Dk):介电常数是描述材料在电场中极化能力的物理量。
在高频下,材料的介电常数会发生变化,影响传输线的特性阻抗和信号传播速度。
2. 损耗角正切(Df):损耗角正切描述了材料在交变电场中的能量损耗。
低损耗角正切的材料可以减少信号传输过程中的能量损失。
3. 热稳定性:高频电路在工作时会产生热量,因此要求PCB材料具有良好的热稳定性,以保持电路性能的稳定。
4. 尺寸稳定性:尺寸稳定性指的是材料在温度变化或机械应力作用下保持其尺寸不变的能力。
高频电子线路电子线路是现代电子技术的基石,广泛应用于通信、计算机、消费电子、医疗等领域。
高频电子线路是其中的一个重要分支,主要应用于高频通信、雷达、微波技术等领域。
本文将介绍高频电子线路的基本概念、分类、常用器件以及设计方法,并对其在实际应用中的一些问题进行了探讨。
一、基本概念高频电子线路是指工作频率在几百MHz至数GHz范围内的电子线路。
相比于低频电子线路,高频电子线路所涉及的频率更高,信号波形更为复杂,传输和反射效应更为显著,因此需要采用特殊的设计技术和器件来满足其特殊要求。
高频电子线路的特点主要包括以下几个方面:1. 器件的尺寸和结构对电路性能影响显著,需要进行精细化设计和工艺。
2. 信号传输中存在大量的反射和损耗,需要采用返波抑制和匹配技术来提高传输效率和信号质量。
3. 线路的电磁兼容性问题更为突出,需要进行屏蔽和抗干扰设计。
4. 信号时延和相位误差对系统性能有较大的影响,需要进行相位同步和时延补偿等技术处理。
二、分类根据其应用领域和特点,高频电子线路可以分为不同的分类,其中主要包括以下几类:1. 射频线路射频线路主要用于高频通信和无线电技术中,其特点是工作频率在几十MHz至数GHz范围内,需要采用匹配、滤波、放大、混频等技术来实现信号的调制、解调、传输和放大。
射频线路所用的器件包括晶体管、二极管、集成电路等。
2. 微波线路微波线路是指工作频率在数十GHz至数百GHz范围内的电子线路,是雷达、卫星、电视等高速通信系统的核心部件之一。
微波线路需要采用宽带、低损耗、高阻抗、稳定性好的器件和材料,如微带线、同轴线、波导等。
3. 毫米波线路毫米波线路是指工作频率在数百GHz至数千GHz范围内的电子线路,主要用于高速通信、毫米波雷达、太阳能辐射测量等领域。
毫米波线路需要采用特殊的器件和制备工艺,如基于硅基集成电路的器件和图案化的微波印刷技术。
三、常用器件1. 晶体管晶体管是高频电子线路中应用最广泛的器件之一,可用于放大、调制、解调、混频等应用。
微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的计算机辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例第1章概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。
此外,还有毫米波(30~300GHz)及亚毫米波(150GHz~3000GHz)等。
实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频(RF)电路”等等。
由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。
作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。
另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。
在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。
以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
第2章微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用分离元件及分布参数电路混合集成。
微波集成电路(MIC):采用管芯及陶瓷基片。
微波单片集成电路(MMIC):采用半导体工艺的微波集成电路。
图6微波混合集成电路示例图7 微波集成电路(MIC)示例图8微波单片集成电路(MMIC)示例2.1.3 按源分微波电路还可以按照有源电路和无源电路分类。
第1章绪论高频电子线路是信息工程和通信工程的专业必修课程,也是相关专业硕士研究生入学考试科目之一。
高频电子线路的研究对象:研究无线电通讯中关于信号的产生、发射、传输和接收的一门科学,即研究信号传输与处理的一门科学。
更具体地说是研究模拟无限通讯系统中的发送设备和接收设备,重点是研究它们的组成原理、基本电路和分析方法。
电子线路的分类:低频电子线路f<300k按工作频率分高频电子线路300k<f<300mhz微波电子线路f>300mhz模拟电子线路传输、交换模拟信号按信号的流通形式分数字电子线路传输、交换数字信号集成电路线性电子线路按集成度分按元件工作特性分非线性电子线路分立元件电路时变电子线路一、无线电发展简史从无线到有线:麦克斯韦方程提供了坚实的理论基础(赫兹证明了迈克斯韦的理论)。
1895年,意大利的马克尼首次用电磁波通信获得成功;1901年,又完成了横渡大西洋两岸的通信;这意味着无线电通信进入实用化的阶段。
1904年,电子二极管被发明,进入无线电电子学时代;1907年,电子三极管诞生,是电子技术发展史上第一个里程碑;1948年,晶体三极管发明,电子技术发展史上第二里程碑;上世纪60年代,集成电路的诞生是电子技术史上的第三个里程碑。
无线电技术的核心任务是传输信息,高频电路所涉及到的单元电路都是以传输信息、处理信息为核心。
二、无线电信号传输原理1. 传输信号的基本方法如果导体内有高频电流通过(变化的电场),则有电磁能以电磁波的形式向空间辐射。
高频电流为载波电流或载波,这种频率称为载波频率或射频(射频电子)。
载有载波电流使电磁能以电磁波形式向空间辐射的导体称为发射天线。
我们设法控制载波电流,使其含有基带信号的信息,即为无线电信号的发送过程。
无线电信号的接收:接收天线把接收到的电磁波还原为与发送端相似的高频电流,然后想法取出原来信号。
所以完整的通信系统由发送设备、传输媒质、接收设备组成。
微波电子线路课程教学设计摘要微波电子线路课程是一门电子专业的专业基础课。
对微波电子线路课程的教学进行研究和探讨,教学实践证明其有效性。
关键词微波电路;教学实践;教学效果中图分类号:g642.4 文献标识码:b 文章编号:1671—489x(2012)30—0056—021 课程特点微波电子线路课程是一门研究在微波频段工作的电子器件及其电路组成的专业基础课。
微波电子线路一般泛指构成微波系统中各种功能模块的元器件与电路结构,也称为微波有源电路。
随着微波半导体材料技术和工艺水平的发展,先后出现半导体二极管、砷化镓金属半导体场效应管、pin二极管和变容管等微波半导体器件,并在微波系统中获得广泛的应用。
这种以半导体为核心组成的微波电子线路称为微波固态电路。
在微波半导体器件发展的同时,又研制出微波混合集成电路(mic)和单片微波集成电路(mmic),同时,低噪声集成电路、大规模和超大规模微波集成电路发展迅速,中功率微波发射机实现固态化,但是大功率微波振荡和放大必须依靠微波电真空器件,比如行波管、速调管、磁控管等。
这些微波器件在雷达、通信、导航、卫星地面站等得到广泛应用。
微波电子线路课程所学习的内容具有应用广泛、技术难度高、内容更新较快的特点,这要求微波电子线路课程的教学要不断地探索和研究,以适应微波频段电子装备教学和工作的需要。
该课程的学习可以采用微波技术的分析方法,从电磁场的角度去分析,但是比较复杂;也可以等效成电路去分析,这是习惯的分析方法,在分析过程中做一些等效和近似在工程上是允许的,是不影响本质的。
学习过程中强调物理概念原理分析、重视实践能力的培养以及最新技术发展在课程中的体现。
教学方法体现启发性,重视知识能力、素质的协调发展,注重实践能力和创新能力的培养。
2 教学内容设计根据人才培养方案的要求,该课程教学时间为30大纲学时。
依据该课程的课程标准、课程设计,理论教学20学时,实践学时10学时;授课方式上采用理论和实践相结合的教学方式,理论教学上突出岗位任职所需的基础理论,借助实际微波器件的应用介绍,分析微波电子器件和微波设备的发展前景。
微波电路简介 1 微波电路简介1.1 微波无源器件微波无源器件由传输线的组合构成。
除了微波传输线以外,微波无源电路主要有功率分配器,定向耦合器,环行器,滤波器,隔离器,均衡器,短路器,衰减器,极化器,吸收负载,天线等无源器件。
我们在这里主要介绍其中主要类型。
一.定向耦合器定向耦合器是常用无源微波器件.可以作为信号的检测,合成及耦合使用。
如图1-4分别为微带环形定向耦合器;侧耦合定向耦合器;矩形微带定向耦合器和波导定向耦合器。
定向耦合器一般有四个端口。
如图4中的波导定向耦合器,如信号由1端口输入,则2端口为信号的主通道,3端口为1端口的耦合端,而4端口则是隔离端口。
图2环行定向耦合器 图3矩形微带定向耦合器图4波导定向耦合器图4.1 侧耦合侧耦合侧耦二.滤波器滤波器是典型的常用的无源微波网络器件,在微波电路中占有重要的地位。
滤波器从响应函数的角度可以分为最大平滑式,等波纹式和椭圆函数滤波器三种。
从结构上可以分为微带,波导和同轴腔体等结构的滤波器。
由信号的导通或截止可以分为高通,低通和带通滤波器。
如图5为侧边耦合微带带通滤波器。
图6为一种简单的椭圆函数滤波器。
图5侧边耦合微带滤波器图6微带滤波器图6为波导膜片滤波器。
由微带构成的谐振电路Q 值一般小于波导腔体的Q 值,所以微带滤波器的插入损耗一般要大于波导腔体滤波器。
图7 波导膜片滤波器三.微波功率分配器虽然定向耦合器在一定情况下具有功率分配的作用,但是原则上定向耦合器是一四端口器件。
功率分配功能可以由一三端口器件来完成。
如图8为Wilkinson 功率分配器/合成器。
由2, 3端口输入的功率可以无反射地传输到1 端口。
相反由1端口输入的微波功率图8 Wilkinson 功率分配器/合成器可以在2,3端口分为二路。
如电路上下是对称的,则射频功率在2,3端口是平分的。
微波功分配器还有其他许多种类。
四 微波阻抗匹配器。
阻抗匹配是许多微波电路的基本要求。
单片微波集成电路(MMIC),有时也称射频集成电路(RFIC),它是随着半导体制造技术的发展,特别是离子注入控制水平的提高和晶体管自我排列工艺的成熟而出现的一类高频放大器件。
微波集成电路 Microwave Integrated Circuit工作在300M赫~300G赫频率范围内的集成电路。
简称MIC。
分为混合微波集成电路和单片微波集成电路。
前者是用厚膜技术或薄膜技术将各种微波功能电路制作在适合传输微波信号的介质(如高氧化铝瓷、蓝宝石、石英等)上,再将分立有源元件安装在相应位置上组成微波集成电路。
这种电路的特点是根据微波整机的要求和微波波段的划分进行设计和制造,所用集成电路多是专用的。
单片微波集成电路则是将微波功能电路用半导体工艺制作在砷化镓或其他半导体芯片上的集成电路。
这种电路的设计主要围绕微波信号的产生、放大、控制和信息处理等功能进行,大部分电路都是根据不同整机的要求和微波频段的特点设计的,专用性很强。
在这类器件中,作为反馈和直流偏置元件的各个电阻器都采用具有高频特性的薄膜电阻,并且与各有源器件一起封装在一个芯片上,这使得各零件之间几乎无连线,从而使电路的感抗降至最低,且分布电容也极小,因而可用在工作频率和频宽都很高的MMIC放大器中。
目前,MMIC的工作频率已可做到40GHz,频宽也已达到15GHz,因而可广泛应用于通信和GPS, 等各类设备的射频、中频和本振电路中。
根据制作材料和内部电路结构的不同,MMIC可以分成两大类:一类是基于硅Silicon晶体管的MMIC,另一类是基于砷化镓场效应管(GaAs FET)的MMIC。
GaAs FET类MMIC具有工作频率高、频率范围宽、动态范围大、噪声低的特点,但价格昂贵,因此应用场合较少;而硅晶体管的MMIC性能优越、使用方便,而且价格低廉,因而应用非常广泛.微波集成电路是工作在微波波段和毫米波波段,由微波无源元件、有源器件、传输线和互连线集成在一个基片上,具有某种功能的电路。
微波电子线路总结一、基于肖特基势垒二极管的混频器1、PN结简介:PN结的定义:在一块本征半导体中,掺以不同的杂质,使其一边成为P型,另一边成为N型,在P区和N区的交界面处就形成了一个PN结。
PN结的形成(1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。
但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。
P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。
这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结,如图1所示。
(2)在这个区域内,多数载流子或已扩散到对方,或被对方扩散过来的多数载流子(到了本区域后即成为少数载流子了)复合掉了,即多数载流子被消耗尽了,所以又称此区域为耗尽层,它的电阻率很高,为高电阻区。
(3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场,如图2所示。
(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。
(5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。
当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡。
PN结的宽度一般为0.5um。
PN结的单向导电性PN结在未加外加电压时,扩散运动与漂移运动处于动态平衡,通过PN结的电流为零。
(1)外加正向电压(正偏)当电源正极接P区,负极接N区时,称为给pN结加正向电压或正向偏置,如图3所示。
由于PN结是高阻区,而P区和N区的电阻很小,所以正向电压几乎全部加在PN结两端。
在PN结上产生一个外电场,其方向与内电场相反,在它的推动下,N区的电子要向左边扩散,并与原来空间电荷区的正离子中和,使空间电荷区变窄。
同样,P区的空穴也要向右边扩散,并与原来空间电荷区的负离子中和,使空间电荷区变窄。
结果使内电场减弱,破坏了PN结原有的动态平衡。
于是扩散运动超过了漂移运动,扩散又继续进行。
与此同时,电源不断向P区补充正电荷,向N区补充负电荷,结果在电路中形成了较大的正向电流IF。
而且IF 随着正向电压的增大而增大。
(2)外加反向电压(反偏)当电源正极接N区、负极接P区时,称为给PN结加反向电压或反向偏置。
反向电压产生的外加电场的方向与内电场的方向相同,使PN结内电场加强,它把P区的多子(空穴)和N区的多子(自由电子)从PN结附近拉走,使PN结进一步加宽,PN结的电阻增大,打破了PN结原来的平衡,在电场作用下的漂移运动大于扩散运动。
这时通过PN结的电流,主要是少子形成的漂移电流,称为反向电流IR。
由于在常温下,少数载流子的数量不多,故反向电流很小,而且当外加电压在一定范围内变化时,它几乎不随外加电压的变化而变化,因此反向电流又称为反向饱和电流。
当反向电流可以忽略时,就可认为PN结处于截止状态。
值得注意的是,由于本征激发随温度的升高而加剧,导致电子一空穴对增多,因而反向电流将随温度的升高而成倍增长。
反向电流是造成电路噪声的主要原因之一,因此,在设计电路时,必须考虑温度补偿问题。
综上所述,PN结正偏时,正向电流较大,相当于PN结导通,反偏时,反向电流很小,相当于PN结截止。
这就是PN结的单向导电性。
PN结的伏安特性伏安特性曲线:加在PN结两端的电压和流过二极管的电流之间的关系曲线称为伏安特性曲线,如图4所示。
u>0的部分称为正向特性,u<0的部分称为反向特性。
它直观形象地表示了PN结的单向导电性。
式中 iD ——通过PN 结的电流vD ——PN 结两端的外加电压VT ——温度的电压当量,VT=kT/q=T/11600=0.026V ,其中k 为波耳兹曼常数(1.38×10–23J/K ),T 为热力学温度,即绝对温度(300K ),q 为电子电荷(1.6×10–19C )在常温下,VT ≈26mVe ——自然对数的底Is ——反向饱和电流,对于分立器件,其典型值为10-8~10-14A 的范围内集成电路中二极管PN 结,其Is 值则更小由此可看出PN 结的单向导电性。
2、肖特基势垒二极管形成过程:在金属和N 型半导体中都存在导电载流子--电子。
它们的能级不同,逸出功也不同。
当金属和N 型半导体相接触时,电子流从半导体一侧向金属一侧扩散,同时也存在金属中的少数能量大的电子跳跃到半导体中,称为热电子(漂移)。
显然,扩散运动占据明显优势,于是界面上金属中形成电子堆积,在半导体中出现带正电的耗尽层。
在界面上形成由半导体指向金属的内建电场,它是阻止电子向金属一侧扩散的。
随着扩散过程的继续,内建电场增强,扩散运动削弱。
于是在某一耗尽层厚度下,扩散和热电子发射(漂移)处于平衡状态。
宏观上耗尽层稳定,两边的电子数也稳定。
界面上就形成一个对半导体一侧电子的稳定高度势垒 ,N 半导体的参杂浓度,Wd 厚度,这个存)2/(2G W eN D D S =φ在于金属—半导体界面由扩散运动形成的势垒成为肖特基势垒,耗尽层和电子堆积区域成为金属—半导体结。
工作原理:零偏:保持前述势垒状态。
正偏:金属一侧接正极,半导体一侧接负极。
外加电场与内建电场方向相反,内建电场被削弱,耗尽层变薄,肖特基势垒高度降低,使扩散运动增强。
金属半导体结呈正向导电特性,且外加电压越大,导电性越好。
肖特基势垒二极管和PN 结二极管的伏安特性既相似,又有所不同。
它同样具有单向导电的特性,其伏安特性为:T 工作温度( 以绝对温度计) V 加在管子两端的电压反向饱和电流,典型值为 n 修正因子,取决于制造工艺,典型值 1-2K 波尔兹曼常数e 电子电荷肖特基势垒二极管和PN 结二极管的伏安特性虽然形式上类似,但电流形成方式不同(肖特基势垒二极管完全依靠多数载流子的运动)。
I-V 表达式中决定反向饱和电流的参数不同,PN 结的反向饱和电流与外加偏压无关,而金属-半导体结的反向饱和电流实际上还对偏压有依从关系。
在伏安特性上,金属-半导体结有较低的导通电压,较高的正向电流、较强的非线性度,因而优于PN 结。
由于金属-半导体结的I-V 特性较陡,因而在同样偏压下具有较小的结电阻;当二极管工作点随大信号交流电压激励而变化时可导致微分电导(g=1/Rj)有较陡的变化,这对混频是有利的。
由表达式可见,正偏时随I 上升,Rj 变小。
3、混频混频机理是基于肖特基势垒二极管结电阻的非线性管子在偏压和本振的激励下,跨导随时间变化,加上信号电压后出现一系列频率成分的电流,用滤波器取出所需中频即可。
单管混频器为例,输入:本振、偏压、信号、输出、中频远小于UL,故可视为微分增量 ,很小,忽略平方以后高次项,只取一阶导数项。
一阶导数表示了小信号电流与小信号电压之间的关系, ⎥⎦⎤⎢⎣⎡-=1)ex p(nKT eV I I D Sa ()1-=D aV Sa e I Sa I A 5910~10--()u f i =()ausa au Sa e I e I ≈-=1t V t V V u S S L L ωωcos cos 0++=S u u ∆u ∆()t L V V u du di u u i i i ωcos 0+=∆+=∆+()()t ug u i ∆+=混频结果从表达式中可以看出:第一项为时变电流,第二项为时变电导与电压的乘积。
从中可以取出所需的中频,差频,和频等频率分量。
众多频率成分中,中频是有用成分。
越大越好,镜频和和频有利用可能。
其他均为无用的寄生频率,必须滤除掉。
二、变容二极管变容管:PN 结的结电容(主要是势垒电容)随着外加电压的改变而改变,利用了这一特性可以构成变容二极管(简称为变容管)。
变容管可以构成参量放大器、参量变频器、参量倍频器(谐波发生器)、可变衰减或调制器等。
主要工作区域为P+N 交接面的PN 结,由于耗尽层电荷随外加电压变化. 结电容也发生变化,一般加负偏压.工作在负电压区.不使其出现正向电流.所以电压最小值为击穿电压VB 对应Cmin,最大值为Φs 对应Cmax.与肖特基管相同,其等效电路为Cj 为结电容.Rs 为串联电阻Ls 为引线电感.Cp 为封装电容。
结电容特性:通过控制制造工艺过程.参数m 可以变化.m 表征结电容随电压变化的非线性程度,m 越大非线性程度越显著。
①m=0.5 突变结变容管,主要用于变频及参放。
②m>0.5 超突变结变容管,主要用于电调谐。
③m=1/3 线形缓变节变容管,主要用于倍频。
④m=0 阶跃恢复二极管,主要用于高次倍频。
给出时变电容随泵浦电压周期变化的曲线:时变电容也是周期为泵频ωp 的周期函数用傅里叶级数展开这个周期函数。
在同样的泵浦激励下,使用突变结比使用线性缓变结可以得到更大的电容调制系数,结电容 的变化范围更大,故采用突变结变容管更有利于微波电路设计。
结电容 是外加电压V=0时的结电容。
通过控制制造工艺过程,参数m 可以变化,m 表征结电容随电压变化的非线性程度,m 越大非线性程度越显著。
在偏压和大信号泵浦作用下,变容管是一个时变电容,等效为许多不同频率的周期变化的电容并联。
门雷-罗威详细研究了无耗理想非线形电抗中能量随频率的分配关系,称为门-罗关系式.该关系式极其重要.是非线形电抗变频、倍频的基础。
为每个频率的信号提供一个通路,只准该频率信号通过对其它频率呈开路,对应的负载为Ri,泵浦和信号内阻为Rp 和Rs 。
()()()()j j dc j m m dc P p p C 0C V C t V V cos t 1p cos t 1ωω==+⎡⎤--⎢⎥Φ⎣⎦m j j V C V C ⎥⎦⎤⎢⎣⎡-=φ1)0()()0(j C门——罗关系式流入C(t)和流出C(t)的功率总和为零,流入为正,流出为负.非线性电容的能量只能转换为其他频率分量的能量而全部输出。
三、阶跃恢复二极管倍频器1、阶跃二极管阶跃管倍频器多用于8-20次倍频,且有较高的频率,这归因于其核心元件阶跃恢复二极管的特殊性能。
该器件导通时能储存大量电荷,截止时载流子突然被抽走,电流骤然消失,产生具有丰富谐波分量的尖脉冲。
特点: 加正向电压时导通,但I 区载流子寿命长,复合慢,在结区有大量电荷贮存,电压反向时,由于结区的贮存电荷存在,管子仍然导通,但贮存电荷在载流子抽完后突然消失,电流截止。