航天炉粉煤加压气化技术浅析
- 格式:pdf
- 大小:227.74 KB
- 文档页数:3
粉煤加压气化炉系统运行问题浅析中能公司目前使用的航天炉又名HT-L粉煤加压气化炉。
航天炉的主要特点是具有较高的热效率(可达95%)和碳转化率(可达99%);气化炉为水冷壁结构,能承受1500℃至1700℃的高温;对煤种要求低,可实现原料的本地化。
粉煤气化技术的气化室炉体均为水冷壁/耐火材料复合结构,根据不同的炉型分为垂直管结构和盘管结构,利用管内的水或蒸汽强制冷却作用带走熔融炉渣的热量,使其附着在气化室内壁,在耐火材料表面形成稳定的固渣层一熔融层一流动层的热阻结构,使得在气化炉运行期间耐火材料不与高温熔渣直接接触,实现“以渣抗渣”的工艺,从而达到气化炉长寿命运行的目标。
本文旨在将实际运行过程中存在的粉煤输送,激冷室液位异常,灰水处理等问题和应对解决方法进行剖析。
关键词:粉煤加压气化;航天炉;粉煤输送;激冷室液位异常;灰水处理1、气化炉结构组成及作用气化炉作为整套气化装置的重要设备,主要由两部分组成,分别是燃烧室和激冷室。
工艺烧嘴将氧气、蒸汽和粉煤喷射至燃烧室内迅速雾化并发生部分氧化反应,反应放出大量热,生成以CO+H2为主要成分的粗合成气,在高温的作用下,煤中的灰分会变成液态的渣然后从燃烧室流入到激冷室内,粗合成气经过激冷室的初步除尘和降温后,粗煤气会和气化后的水蒸气一起离开气化炉激冷室,经过激冷降温后的灰渣可以通过排渣系统排出气化炉。
2、常见问题分析2.1、粉煤输送不稳定,粉煤管线流量波动或出现断流。
2.2、气化炉渣口堵塞,激冷室易积灰导致液位过高或过低。
2.3、灰水系统处理难度大,水质不稳定。
3、针对以上三点问题逐条进行分析解决3.1、粉煤输送不稳定,粉煤管线流量波动或出现断流。
3.1.1、原因分析:3.1.1.1、伴热系统设计不合理,设备伴热效果差,粉煤容易板结堵塞粉煤调节阀,造成粉煤流量出现波动。
3.1.1.2、粉煤袋式过滤器顶部由于设计存在缺陷会造成雨水等进入粉煤系统设备影响伴热效果,从而导致粉煤结块,不利于粉煤的输送。
浅析航天炉粉煤加压气化技术作者:余明江来源:《中国化工贸易·下旬刊》2017年第09期摘要:随着科技的进步,我国的航天事业得到迅猛发展,为了使航天炉项目获得优质的产品,创造良好的经济效益,必须要对航天炉粉煤加压气化技术进行深入的理解和研究。
关键词:航天炉;粉煤加压气化;技术;特点;比较航天炉粉煤加压气化技术属于加压气流床工艺,是在借鉴壳牌、德士古及GSP加压气化工艺设计理念的基础上,由北京航天长征化学工程股份有限公司自主开发、具有独特创新的新型粉煤加压气化技术。
此项技术未经小试和中试,直接按照工艺设计于2008年先后在安徽临泉、河南龙宇建成2套单炉日投煤量720 t的示范装置,从当时运行情况看,基本达到设计要求,最长连续运行时间已达到128天。
发展至今,航天炉粉煤加压气化技术已应用于36个项目,已投运的有24个项目43套气化装置。
在已运行的装置中,最长年累计运行时间为365天,单炉最长的连续运行时间为407天。
本文将介绍航天炉粉煤加压气化装置以及其气化技术的主要特点,然后分析航天炉的主要特点,并将航天炉粉煤加压气化技术与其他煤制合成气相比较,探讨航天炉粉煤加压气化技术的优势,确保在煤制天燃气、油、烯烃、乙二醇、合成氨、甲醇等项目中,能利用准确的煤气化技术来生产粗合成气。
1 航天炉粉煤加压气化技术特点1.1 航天炉粉煤加压气化技术必须使用适应性较强的原料煤航天炉粉煤加压气化装置经过试烧之后,试烧人员观察得知,煤粉粒度会对碳的转化率造成影响;另外,如果煤粉含水量过高就会降低粉煤加压输送单元的输送效率;如果原料煤的灰分含量较少,试烧过后渣无法顺利挂在水冷壁上,因而航天炉燃烧室内无法形成稳定的保护渣层。
综上所述,航天炉粉煤加压气化技术必须要使用适应性较强的原料煤。
1.2 应用此技术缩短了开停车的时间,提高了负荷升降的速度通过对装置的运行情况进行观察,开停车时间大大缩短,并且负荷升降的速度得以提高。
航天粉煤加压气化技术的研究作者:刘才来源:《西部论丛》2019年第01期摘要:本文首先论述了有关航天粉煤加压气化装置建设及开车情况,之后对航天粉煤加压气化成套技术的有关工艺流程作了阐述,并对主要设备——气化烧嘴与气化炉的特点、原理进行了分析。
此项技术目前在朝节能化、大型化方向发展,也正在得到市场愈来愈广泛的肯定与认可。
关键词:发展应用示范装置烧嘴气化炉航天粉煤加压控制系统前言随着我们国家国民经济的腾飞式增长,市场对化工产品的需求也愈来愈大,在我国化学工业中,以煤为原料的煤化工将占有愈来愈重要的地位。
一、装置建设及开车情况(一)安徽晋煤中能化工股份有限公司装置项目的鉴定情况2009年9月15日,安徽晋煤中能化工股份有限公司与北京航天煤化工工程公司开展的72h性能考核;装置顺利通过,2009年10月下旬,在中国石油化工协会组织的现场考核中装置顺利通过;安徽晋煤中能化工股份有限公司的相关装置在2009年10月底通过中国石油化工协会组织的鉴定。
如下为考核期间的运行指标:碳转化率98%;有效气产率 l.6447m3/kg煤;合成气产率1.767m3/kg煤;有效气成分93.1%。
比氧耗300-310m3/1000m3(CO+H2)比煤耗608kg/1000m3(CO+H2)此装置操作不复杂、方便维护,较广的煤种适应性,运行成本与投资费用不高,气化炉的故障率低,开工率高。
(二)装置的运行情况2010年,安徽晋煤中能化工股份有限公司该装置年计划生产15.85万t甲醇,实际生产18.30万t甲醇,完成整年计划的115.5%;实际消耗25.47万t原料煤,折标煤1.13t,平均吨甲醇耗1.392t原料煤。
2010年,安徽晋煤中能化工股份有限公司气化装置计划运行317d,实际累计运行338 d,开工率大于90%,完成整年计划的106.6%,最高日产601t甲醇,日均产量560t甲醇,生产比较稳定。
二、主要工艺流程航天煤气化装置主要包含渣及灰水处理单元、气化及合成气洗涤单元、粉煤加压及输送单元、磨煤及干燥单元。
航天炉粉煤加压气化技术分析摘要:本文主要介绍了航天炉粉煤加压气化技术的工艺原理、技术特点及控制技术,以供参考。
关键词:航天炉;技术特点;结构一、航天炉煤气化的工艺原理原料煤经过磨煤、干燥后储存在低压粉煤储罐,然后用N2(正常生产后用CO2输送)通过粉煤锁斗加压、粉煤给料罐加压输送,将粉煤输送到气化炉烧嘴。
干煤粉(80℃)、纯氧气(200℃)、过热蒸汽(420℃)一同通过烧嘴进入气化炉气化室,瞬间发生升温、挥发分裂解、燃烧及氧化还原等物理和化学过程(1—10 s)。
该反应系统中的放热和吸热的平衡是自动调节的,既有气相间反应,又有气固相间的反应。
1400—1600℃的合成气出气化室通过激冷环、下降管被激冷水激冷冷却后,进入激冷室水浴洗涤、冷却,出气化炉的温度为210~220℃,然后经过文丘里洗涤器增湿、洗涤,进入洗涤塔进一步降温、洗涤,温度约为204℃、粉尘含量小于10×10-6的粗合成气送到变换、净化工段。
[1]二、航天炉的主要设备1、气化炉HT—L炉的核心设备是气化炉。
HT—L炉分上下两个部分:上部是气化室,由内筒和外筒组成,包括盘管式水冷壁、环行空间和承压外壳。
盘管式水冷壁的内侧向火面焊有许多抓钉,抓钉上涂抹一层耐火涂层,其作用是保护水冷壁盘管、减少气化炉热鼍损失。
盘管式水冷壁的结构简单,材质为碳钢,易制作且造价较低。
水冷壁盘管内的水采用强制密闭循环,在这循环系统内,有一个废热锅炉生产5.4MPa(G)的中压蒸汽,将热量迅速移走,使水冷壁盘管内水温始终保持一恒定的范围。
下部为激冷室,包括激冷环、下降管、破泡条和承压外壳。
激冷室为一承压空壳,外径和气化室一样,上部和水冷壁相连的为激冷环,高温合成气经过激冷环和下降管煤气温度骤降。
向下进入激冷室,激冷室下部为一锥形,内充满水,熔渣遇冷固化成颗粒落入水中,顺锁斗循环水排入灰锁斗。
粗合成气从激冷室上部引出。
2、烧嘴HT—L炉烧嘴是一个组合烧嘴,由一个主烧嘴、一个点火烧嘴和一个开工烧嘴组成。
航天炉煤气化技术运行情况航天, 煤气化, 技术, 运行HT-L煤气化技术的生产应用HT-L煤气化工艺是航天十一所借鉴荷兰SHELL、德国GSP、美国TEXACO煤气化工艺中先进技术,配置自己研发的盘管式水冷壁气化炉而形成的一套结构简单、有效实用的煤气化工艺。
现将该工艺在煤化工项目中的应用介绍如下:一、工艺介绍1、磨煤与干燥系统磨煤与干燥系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,两套系统一开一备,单套能力35吨/小时,目的是制造出粒度小于90微米的大于80%、水含量小于2%的煤粉。
没有单独的石灰石加入系统,只是利用皮带秤通过比值调节将粒状石灰石加到输煤皮带上,一块进入磨煤机研磨。
2、加压输送系统加压输送系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,目的是将制出的合格煤粉利用压差输送至气化炉进行燃烧气化。
不同是V1205下面是三条腿,三条线输送,到烧嘴处汇合从烧嘴环隙呈螺旋状喷入炉膛。
3、气化及净化烧嘴设计同GSP,采用单烧嘴顶烧式气化,气化炉采用TEXACO激冷工艺,气化炉升压到1MPa时,煤粉及氧、蒸汽混合以一定的氧煤比进入气化炉,稳压1小时挂渣,炉膛内设置有8个温度检测点,可以作为气化温度的参考点,也可以判断挂渣的状态。
设计气化温度1400-1600℃,气化压力4.0MPa。
热的粗煤气和熔渣一起在气化炉下部被激冷,也由此分离,激冷过程中,激冷水蒸发,煤气被水蒸汽饱和,出气化炉为199℃ ,经文丘里洗涤器、洗涤塔洗涤后,194℃、固体含量小于0.2mg/m3的合成气送去变换。
4、渣及灰水处理系统渣及灰水处理系统的工艺流程、运行原理、控制参数都与TEXACO工艺相同。
渣经破渣机,高压变低压锁斗,排到捞渣机,进行渣水分离,水回收处理利用;灰水经高压闪蒸、真空闪蒸后到沉降池,清水作为激冷水回收利用,浆水经真空抽滤后制成滤饼。
二、技术特点1、原料的适应性据设计方介绍,该工艺煤种适应性广,从烟煤、无烟煤到褐煤均可气化,对于高灰份、高水分、高硫的煤种同样适用。
探讨航天炉粉煤气化装置检测与优化策略航天炉粉煤气化装置是一种高效、环保的煤气化技术,广泛应用于煤化工、发电和城市供暖等领域。
为了确保航天炉粉煤气化装置的稳定运行和优化效益,需要对其进行检测和优化。
本文将探讨航天炉粉煤气化装置的检测方法和优化策略。
1.传感器监测法航天炉粉煤气化装置通过安装传感器来监测炉内温度、压力、气体成分和流量等参数,以保证其稳定运行。
其中,温度传感器用于监测炉内的温度分布,以确定反应器的温度梯度;压力传感器用于监测炉内的压力变化,以控制炉压;气体成分传感器用于监测炉内气体成分,以确定反应器反应过程是否正常。
2.化验检测法航天炉粉煤气化装置通过取样分析法来检测煤粉和气体等成分的含量。
在炉内取出样品后,将其送至化验室进行分析。
化验检测法可以精确地分析煤粉成分,以帮助工程师理解反应器内部的实际情况。
3.模拟仿真法航天炉粉煤气化装置还可通过计算机模拟仿真来进行检测。
通过建立反应器数学模型,模拟反应过程,推导煤粉和气体的流动和化学反应过程,以确定装置的性能和运行状态。
模拟仿真法可以更加精确地分析反应器的动态过程,以指导实际生产的操作。
1.定期维护保养航天炉粉煤气化装置的定期维护可以确保其长期稳定运行。
维护包括清洗反应器、更换磨损部件、调整传感器等工作,以确保反应器的正常运行和长寿命。
2.优化操作参数优化操作参数是提高航天炉粉煤气化装置效益的重要手段。
操作参数包括煤粉进料量、氧气进料量、炉内温度、压力等,通过不断调整这些参数,可以实现反应器的最佳效益。
例如,可以通过增加煤粉进料量和氧气进料量,提高产气量,降低煤粉消耗量。
另外,可以通过控制反应器温度和压力,调整反应速率,提高气体产率。
3.改进反应器结构改进反应器结构可以提高航天炉粉煤气化装置的效益。
例如,在炉内安装更多的喷嘴和增加反应器的长度,可以改善气体的混合和分布,提高反应速率和产气量。
此外,增加炉内加热面积和降低反应器的热损失,可以提高反应器的效率和热力学效益。
航天炉煤气化技术运行情况航天, 煤气化, 技术, 运行HT-L煤气化技术的生产应用HT-L煤气化工艺是航天十一所借鉴荷兰SHELL、德国GSP、美国TEXACO煤气化工艺中先进技术,配置自己研发的盘管式水冷壁气化炉而形成的一套结构简单、有效实用的煤气化工艺。
现将该工艺在煤化工项目中的应用介绍如下:一、工艺介绍1、磨煤与干燥系统磨煤与干燥系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,两套系统一开一备,单套能力35吨/小时,目的是制造出粒度小于90微米的大于80%、水含量小于2%的煤粉。
没有单独的石灰石加入系统,只是利用皮带秤通过比值调节将粒状石灰石加到输煤皮带上,一块进入磨煤机研磨。
2、加压输送系统加压输送系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,目的是将制出的合格煤粉利用压差输送至气化炉进行燃烧气化。
不同是V1205下面是三条腿,三条线输送,到烧嘴处汇合从烧嘴环隙呈螺旋状喷入炉膛。
3、气化及净化烧嘴设计同GSP,采用单烧嘴顶烧式气化,气化炉采用TEXACO激冷工艺,气化炉升压到1MPa时,煤粉及氧、蒸汽混合以一定的氧煤比进入气化炉,稳压1小时挂渣,炉膛内设置有8个温度检测点,可以作为气化温度的参考点,也可以判断挂渣的状态。
设计气化温度1400-1600℃,气化压力4.0MPa。
热的粗煤气和熔渣一起在气化炉下部被激冷,也由此分离,激冷过程中,激冷水蒸发,煤气被水蒸汽饱和,出气化炉为199℃ ,经文丘里洗涤器、洗涤塔洗涤后,194℃、固体含量小于0.2mg/m3的合成气送去变换。
4、渣及灰水处理系统渣及灰水处理系统的工艺流程、运行原理、控制参数都与TEXACO工艺相同。
渣经破渣机,高压变低压锁斗,排到捞渣机,进行渣水分离,水回收处理利用;灰水经高压闪蒸、真空闪蒸后到沉降池,清水作为激冷水回收利用,浆水经真空抽滤后制成滤饼。
二、技术特点1、原料的适应性据设计方介绍,该工艺煤种适应性广,从烟煤、无烟煤到褐煤均可气化,对于高灰份、高水分、高硫的煤种同样适用。
粉煤加压气化技术
粉煤加压气化技术是一种将煤粉在高压下与氧气进行化学反应,产生大量合成气的技术。
该技术具有高效、节能、环保等优点,可以将煤转化为可用于化工、能源等领域的多种化学品和燃料。
该技术的核心是气化反应器,其构造与普通燃烧炉相似,但设计要求更高。
在反应器内,煤粉经过破碎、干燥、热解等过程,最终转化为一种或多种气体,主要包括一氧化碳、氢气、二氧化碳、甲烷等。
该技术的应用领域广泛,可以生产合成气、合成甲醇、合成氨、合成油和合成乙烯等化学品,也可以生产燃气、发电、加热等能源产品。
此外,该技术还可以与化工、冶金等行业的其他技术相结合,形成产业链,提高资源利用效率。
虽然该技术具有许多优点,但也存在一些挑战和问题。
例如,气化反应的过程中会产生大量的废水和废气,需要进行处理和净化;反应器的运行需要高压、高温等条件,需要耐磨、耐高温的材料支持;煤粉的质量和含硫、含灰等杂质的影响也会对气化反应产生影响。
总体而言,粉煤加压气化技术是一种重要的能源和化工技术,具有广阔的应用前景和发展空间。
未来,随着技术的不断进步和完善,该技术将逐渐成为可持续发展的重要支柱之一。
- 1 -。
航天炉炉温的影响因素分析探究摘要:航天炉(HT-L粉煤加压气化炉)是由中国航天科技集团借鉴国外先进煤气化技术自主研发的盘管式水冷壁气化炉,填补了我国粉煤加压气化技术的空白。
本文针对航天炉在正常生产过程中炉温变化情况,分析了影响炉温的主要因素,提出了避免炉温过高的预防措施,为航天炉系统的稳定运行提供参考依据。
关键词:航天炉、炉膛温度、煤质、测温系统。
1、工艺概述HT-L粉煤气化工艺采用了盘管式水冷壁气化炉,顶喷式单烧嘴,干法进料及湿法除渣,在高温(1400℃~1700℃)、高压(4.0MPa左右)下,以纯氧及少量蒸汽为气化剂,在气化炉内对粉煤进行气化反应,产生以CO、H2为主要成份的粗合成气。
在航天炉正常工作状态,炉内换热以辐射为主,兼有一定比例的对流换热。
炉内温度一般在1400℃以上,高温气体和灰颗粒通过辐射和对流将热量传向炉壁,经过渣层后温度降低到400℃~500℃,再经过耐火材料,向火面炉壁受冷却水的作用温度降低到略高于冷却水的水平。
航天炉温度监测是保障气化炉高效、稳定、安全运行的的重要辅助手段,温度在操作过程中其至能够起到操作人员“眼睛” 的作用,能够最直观、最快速的反映气化炉运行状态的变化,因此确保气化炉温度在工艺指标之内非常重要。
2、航天炉测温系统概述气化室的温度测点包括:4个上锥段温度测点,位于上锥段的耐火材料内,测量耐火层的温度;6个炉膛插入式测温点,热电偶的头部伸出耐火料,在无结渣的情况下测量的是炉气温度,分为上中下3层,每层2个;12个炉膛埋入式测温点,热电偶的头部埋在耐火料里面贴近管壁,测量靠近壁面的耐火料温度,分为上中下3层,每层4个,和炉膛插入式测温点一起周向均布;环腔测温点,测量环腔内的气体温度;锥盘测温点,测量激冷室顶部锥盘的温度;外壳测温点,测量气化炉外壁的温度。
其中上锥段测温点和炉膛测温点是运行中重要的控制参数,关系着气化炉的操作安全。
锥盘温度一般较低(低于220℃),但是锥盘温度上涨(特别是超过操作压力下水的饱和温度时)应引起高度重视,往往是激冷室内件损坏导致,如果处理不及时会引起停车甚至设备损坏的事故。
航天炉粉煤加压气化技术及装置运行的思考探究摘要随着我国科学和技术的快速发展,我国航天事业也得到了有效发展,与航天相关的各种装置和技术也不断的提高,其中包含航天炉粉煤加压气化装置技术的提高,同时航天炉粉煤加压气化装置在航天事业中也是非常重要的装置。
本文主要通过对航天炉粉煤加压气化装置的运行情况进行有效的思考和研究,并分析航天炉粉煤加压气化装置在运行中存在的问题,并根据其中所存在的问题进行有效研究。
关键词:航天炉;粉煤加压气化技术;装置运行引言航天炉粉煤加压气化技术长久以来都是我国航天事业中最为重要的技术,并且这项技术的研发主要是根据粉煤制成气体,这样可以有效的促进传统技术的提高,同时也对我国航天炉方面的技术的发展也带来了较大的创新。
从研究的结果可以看出来,我国在关于航天炉方面技术经验经过10多年来的摸索,目前规模已经形成,从航天工程项目来讲,对于这一项技术的要求较高。
因此,粉煤加压气化技术的长久发展对我国航天系统的发展有着非常重要的意义,所以,有效研究航天炉粉煤加压气化技术的运行情况,并根据其中存在的问题进行有效的研究,从而更加有效的保证我国航天事业的长久发展。
1.航天炉粉煤加压气化工作开展的装置要求航天炉煤粉加压气化工作相对来说,拥有更加有效的运行效果,需要保证粉煤加压气化技术在使用中装置功能正常且覆盖面积较广,其中主要是包含了四种不同的单元,这些单元主要是:以磨煤与干燥处理为主要任务的11单元;以粉煤加压与输送为主要任务的12单元;以粉煤气化为主要任务的13单元;以灰水与渣处置为主要任务的14单元。
对于11单元而言,其中包括了两条生产运行线,即1开1备,以便达到维持装置持续运行的效果。
对12单元装置来讲,可以有效实现对储存粉煤的加压处理之后,需要将煤粉运送到给料罐当中,而对于13单元装置来讲,是一种煤粉的加压气化装置的核心组织部分,可以起到一定的燃烧作用,一系列复杂的氧化还原反应,同时还可以对气激冷和相关设施进行有效的清洁。
关于航天粉煤气化技术优化的探讨摘要:航天粉煤其装置在项目的施工建设中遇到了很多的问题,对水冷壁循环冷却系统、粉煤输送系统和温度测控系统进行了分析,提出了优化方案。
通过分析,认为可变调节循环水冷壁可使航天粉煤气化装置更好地适应煤种的变化,合理设置管道充气器可以补偿进煤管线压力降并维持粉煤的稳定性,增设测温盘管可以提高炉温测控系统的灵敏性和实效性。
关键词: 航天粉煤气化技术; 优化; 探讨航天粉煤气化技术的炉体设计结合了 GSP和 Texaco 的结构设计,炉体由烧嘴、气化室、激冷室及承压外壳组成。
其中,烧嘴是由点火烧嘴、开工烧嘴及粉煤烧嘴组成的组合式烧嘴。
气化炉燃烧室内部设有水冷壁并涂有碳化硅耐火材料,其主要作用是抵抗 1 450 ~ 1 700 ℃高温及熔渣的侵蚀。
为了保护气化炉压力容器及水冷壁盘管,水冷壁盘管内的水通过中压锅炉循环泵强制循环。
激冷室为承压空壳,外径与气化炉燃烧室的直径相同,上部设有激冷环,激冷水由此喷入激冷室内。
下降管将合成气导入激冷水中进行水浴,并设有破泡条及旋风分离装置,此结构可有效解决气化炉带水问题。
粉煤加压输送单元与 Shell 粉煤气化工艺相似。
黑水处理采用高压闪蒸和低压闪蒸两级处理,与 Texaco 黑水处理工艺相似。
1 水冷壁循环冷却系统水冷壁以渣抗渣的设计要求炉内温度场的分布必须与灰渣熔融特性及水冷壁换热效能相匹配,即粉煤进入炉膛反应产生的温度场必须在水冷壁相应的换热效能下保证灰渣的熔融流动性及炉壁挂渣的稳定性。
所以,只有炉膛温度场、灰渣熔融特性及水冷壁换热效能相互匹配才能达到稳定的以渣抗渣的效果,否则将导致炉壁过度挂渣而造成下渣口堵塞或熔融灰渣流动性太强而造成对炉壁的冲刷。
因此,水冷壁气化炉以渣抗渣的设计对煤质有一定的要求,气化炉运行的稳定性受制于上述 3 种因素相互匹配的程度。
气化炉炉体的设计是基于煤在气化炉内的燃烧温度场与灰渣熔融特性及水冷壁换热效能相匹配的原则。
煤气化工艺的选择和对航天炉的看法目前国际上先进的加压气流床煤气化工艺技术主要是Shell 公司的SCGP粉煤加压气化工艺、美国德士古公司的水煤浆加压气化工艺和德国未来能源公司的GSP粉煤加压气化工艺。
近十年来,在中国的化肥工业中,美国德士古公司的水煤浆加压气化工艺已有渭河、鲁南、XX焦化、XX、浩良河、金陵石化等12套成功应用的业绩,另外还有7套装置正在建设中。
Shell公司的SCGP工艺是粉煤加压气化工艺,是近年发展起来的先进煤气化工艺之一,已成功地用于联合循环发电工厂的商业运营。
目前国内已有XX双环、XX柳化、XX洞氮、XX枝江、XX石化、X X、XX沾益、云天化、XX大化、永煤集团、XX开祥、中原大化等19套装置,有5套投料试运行,其余在建或已签合同。
GSP工艺技术采用气化炉顶干粉加料与反应室周围水冷壁结构,是较为先进的气化技术。
目前国内多家企业计划引进该技术建设大型煤化工装置。
但XX宜兴和淮化在与德国未来能源公司签订引进协议并进行了用XX煤在德国的试烧后,因未来能源公司的工程能力等问题而终止了协议。
煤气化工艺实质上是在Texaco工艺、Shell工艺、GSP工艺和国内煤气化工艺中选择。
(1)Texaco水煤浆气化工艺Texaco工艺采用水煤浆进料、液态排渣、在气流床中加压气化,水煤浆与纯氧在高温高压下反应生成煤气。
Texaco水煤浆气化工艺具有如下特点:★对煤种有一定适应性。
国内企业运行证实水煤浆气化对使用煤质有一定的选择性:气化用煤的灰熔点温度t3值低于1350℃时有利于气化;煤中灰分含量不超过15%为宜,越低越好,煤的热值高于26000 kJ/kg,并有较好的成浆性能,使用能制成60~65%浓度的水煤浆之煤种,才能使运行稳定。
★气化压力高。
工业装置使用压力在2.8~6.5MPa之间[MS6],可根据使用煤气的需要来选择。
★气化技术成熟。
制备的水煤浆可用隔膜泵来输送,操作安全又便于计量控制。