(优选)粉体的制备与合成
- 格式:ppt
- 大小:7.18 MB
- 文档页数:74
实验三十二粉体的化学合成近代发展起来的特种矿物材料,如高性能的功能陶瓷和新型玻璃,要求原料有很高的纯度和超细的粒度,因此,大多采用化工原料来人工合成粉体。
由于其需要较高的投入,增加了粉体的成本,所以,只用于生产高性能的功能材料方面。
一、实验目的本实验要求使用氧氯化锆(ZrOC12·8H2O)、氧化镁为原料,用共沉淀法制备氧化镁部分稳定的氧化锆固体电解质超细粉末。
二、实验原理纯氧化锆的烧结体晶型是不稳定的,在升温过程中,1140℃会发生单斜相~四方相的转变,同时产生7%的体积收缩;在1400℃时发生四方相~立方相的转变;降温时又会发生反方向的相变。
如果在氧化锆中掺人足够的氧化钇、氧化钙或氧化镁,可以使氧化锆在室温时也能保持稳定的立方相结构,晶型不再随温度变化;称为全稳定的氧化锆(FSZ)。
同时,由于掺人的低价金属离子(Ca2、Mg2十、Y3+)进人氧化锆晶格后,产生了大量的氧离子空位,所以,氧化锆在高温(> 550℃)时,允许氧离子通过氧离子空位迁移,形成氧离子导体。
如果原料很纯净(特别是没有变价的金属离子杂质),可以得到电子导电很低的氧离子导体,用于制作高温传感器(气体中的氧传感器)。
为了制作测定钢液中氧含量的传感器,要求氧化锆固体电解质管状元件(Φ 5mm × 1mm × 35mm )具有很好的抗热冲击能力,在突然插人1700℃钢液的情况下,不允许产生裂纹。
这时,需要采用部分稳定的氧化锆材料。
减少氧化锆中稳定剂的含量,可以得到部分稳定的氧化锆(PSZ)。
常温下,部分稳定的氧化锆烧结体中,三种晶型(单斜、四方和立方)混合存在,使升温过程中元件的热膨胀,可以被单斜相~四方相转变时的体积收缩所抵消(如果单斜相的比例合适时);如果原料粉末很细小,烧结体中的晶粒也很细小,微小的单斜晶粒可以在低一些的温度(600 -1000℃)时提前、逐步地发生相转变,大大地减缓了热冲击带来的热应力;并且,微细的四方相晶粒(<0.2的四方相晶粒才能在室温下存在=有助于提高材料的韧性;另外,烧结后相变时产生的微裂纹,也有助于阻止裂纹扩展的作用;烧结体晶粒很细小,使得元件强度得到了提高;这些因素都有利于提高元件的抗热冲击能力。
粉体制备方法摘要:本文列举了几种粉体制备合成方法,包括物理方法和化学方法。
物理方法有粉碎法,蒸发冷凝法等,化学方法有气相合成法,液相反应法,固相合成法。
同时比较了三种化学方法的优缺点,浅诉了近年来的几种物理新技术。
关键词:粉体制备合成方法物理方法化学方法优缺点新技术Abstract:This paper lists several powder preparation synthesis methods ,including physical method and chemical methods. The physical methods have comminuting method, evaporative cooling method, etc. Chemical methods include gas agree the diagnosis, liquid phase reaction methods, solid agree the diagnosis. And compares the advantages and disadvantages of the three kinds of chemical methods. Describes several new physical technologies in recent yearsKeywords: powder preparation synthesis methods physical methods chemical methods advantages and disadvantages new physical technologies如今,粉体的合成制备经过多年的发展,制备合成方法已经变得各种各样按理论也可分为物理和化学方法等纳米粒子的制备方法很多,可分为物理方法和化学方法[1]。
1 物理方法1.1 粉碎法:借用各种外力,如机械力、流能力、化学能、声能、热能等使现有的块状物料粉碎成粉体。
粉体的制备方法-------机械法和化学合成法一、粉体的定义:粉体是大量颗粒的集合体,即颗粒群,又称为粉末;颗粒是小尺寸物资的通称,其几何尺寸相对于所测的空间尺度而言比较小,从厘米级到纳米级不等,又称为粒子;颗粒是粉体的组成单元,是研究粉体的出发点。
粉体是由诸多颗粒组成,是大量颗粒的宏观表现,其性质取决于各颗粒,并受颗粒堆积情况、颗粒之间的介质、外界作用力的影响。
二、机械法制备粉体用机械力进行粉碎,可以将各种金属矿物、非金属矿物、煤炭等制成粉体,适用于大规模工业生产。
在粉碎过程中,大块物料在机械力作用下发生破坏而开裂,经破碎成为许多小块、小颗粒,进一步经粉磨成为细粉体。
在出现破坏之前,固体受外力作用,先发生可恢复原形的弹性变形,当外力达到弹性极限时,固体县发生永久变形而进入塑性变形阶段;当塑性变形达到极限时,固体开裂,被破坏。
作用在固体上的应力按作用方向可分为压应力和剪应力。
观察固体破坏时的断面的形状可知,固体在压应力的作用下被压裂,或是在剪应力的作用下产生滑移,或是在两者的共同作用下开裂。
粉碎是在外力作用下使大物块料克服内聚力碎裂成若干小颗粒的加工过程,所使用的外力可以是各能量产生的机械力;粉碎是以单个颗粒的破坏为基础的,是大颗粒破坏的总和。
根据所得产物的粒度不同,可将粉碎分为破碎与粉磨;破碎是使大块物料碎裂成小块物料的加工过程,粉磨是使小块物料碎裂成细粉体的加工过程。
粉碎机械:按照主要作用力的类型(压应力、剪应力)和排料粒度,可以将粉碎机械大致分为破碎机械、粉磨机械、超细粉碎机械。
粉碎作用力以压应力为主、排料中以粒径大于3mm颗粒为主的称为破碎机械;粉碎作用力以压应为主、排粒中以粒径小于3mm颗粒为主的称为粉磨机械;排料中以粒径小于10微米颗粒为主的称为超细粉碎机械。
常用的破碎机械有锤式破碎机、鄂式破碎机、圆锥破碎机、反击式破碎机、锤式破碎机等;粉磨机械有雷蒙磨、轮碾机、筒磨机、振动磨、高压锟式机等。
粉体样品的制备方法全文共四篇示例,供读者参考第一篇示例:粉体样品是实验室研究中常见的一种样品形式,广泛应用于材料科学、化学、生物学等领域。
制备粉体样品的方法有很多种,可以根据实验需求选择合适的制备方法。
本文将介绍几种常见的粉体样品制备方法,希望能为读者提供一些参考。
1. 溶剂沉淀法溶剂沉淀法是一种常用的粉体样品制备方法。
其原理是将沉淀剂与需要沉淀的物质溶解在适当的溶剂中,通过调节溶剂中的温度、pH 值等条件,使得沉淀剂与物质发生反应生成沉淀,进而得到粉体样品。
操作步骤:1)称取适量的沉淀剂和需沉淀的物质,并将它们溶解在适量的溶剂中。
2)通过搅拌等方式充分混合反应液,使其达到均匀溶解的状态。
3)根据实验需要调节溶液的温度、pH值等条件,促使反应发生。
4)随着反应的进行,产生沉淀并逐渐沉积到容器底部,最终形成粉体样品。
5)将得到的粉体样品通过过滤、洗涤等步骤得到纯净的样品。
2. 气相沉积法气相沉积法是一种制备薄膜和纳米颗粒的常用方法,也可以用于制备粉体样品。
其原理是通过在高温环境下将挥发性原料气体输送到反应器中,使其在反应器内发生化学反应,从而生成粉体样品。
操作步骤:1)将挥发性原料气体通过适当的管道输送到高温反应器中。
2)反应器内部的高温环境促使挥发性原料气体发生化学反应。
3)反应结束后,粉体样品在反应器内沉积并生成。
4)将反应器内的粉体样品取出,并通过洗涤、干燥等步骤得到最终的样品。
3. 机械球磨法机械球磨法是一种常用的粉体样品制备方法,其原理是通过高速旋转的球磨机将粉末放在磨杯中进行机械研磨,从而得到所需的粉体样品。
操作步骤:1)将需要制备的粉体样品放入机械球磨机的磨杯中。
2)启动球磨机,调节合适的转速和研磨时间。
3)通过高速旋转的磨球对样品进行机械研磨,使其逐渐变为粉体状态。
4)研磨结束后,取出磨杯中的粉体样品,经过筛选、干燥等步骤得到最终的样品。
以上是几种常见的粉体样品制备方法,每种方法都有其独特的用途和特点。
粉体的合成制备方法发展状况如今,粉体的合成制备经过多年的发展,制备合成方法已经变得各种各样按理论也可分为物理和化学方法等纳米粒子的制备方法很多,可分为物理方法和化学方法。
1.物理方法(1)真空冷凝法用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。
其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。
2)物理粉碎法通过机械粉碎、电火花爆炸等方法得到纳米粒子。
其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。
(3)机械球磨法采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。
其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。
2. 化学方法(1)气相沉积法利用金属化合物蒸气的化学反应合成纳米材料。
其特点产品纯度高,粒度分布窄。
(2)沉淀法把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。
其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。
(3)水热合成法高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。
其特点纯度高,分散性好、粒度易控制。
(4)溶胶凝胶法金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。
其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。
(5)微乳液法两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。
其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备。
按照反应物的相可分为三类气相合成法,固相合成法和液相合成法。
一、气相合成法(1)电阻加热法是通过电阻加热来实现气相粉体制备的方法,典型工艺如蒸发冷凝工艺及化学气相沉积工艺。
前者可制备多种金属纳米粉体;后者可制备氧化物粉体,也可制备氮化物和碳化物等非氧化物粉体。
(2)电子束加热法同样有蒸发冷凝和CVD两种工艺,只是以电子束加热。
该法是从制模工艺发展而来,为避免形成薄膜材料,采用流动油面积。
二氧化钒粉体的制备及其应用研究二氧化钒粉体制备主要有以下几种方法:
1. 化学合成法:通过化学反应合成二氧化钒粉体。
这种方法成本
较低,粉体质量优良,但需要控制反应温度和化学试剂的品质。
2. 水热法:将钒酸化合物和还原剂置于高压水容器中,在高温高
压条件下反应制备出二氧化钒粉体。
这种方法制备出来的粉体分布均匀,颗粒度小,但设备成本较高,制备过程复杂。
3. 溶胶-凝胶法:将二氧化钒溶胶制备好后,在高温下凝胶化并
进行烧结制备出二氧化钒粉体。
这种方法制备出来的粉体表面平整光滑,颗粒度均匀一致,是高纯度、高品质的制备方法之一,但也需要
设备成本较高,对化学试剂的纯度要求较高。
二氧化钒粉体的应用主要有以下几个领域:
1. 电子材料:二氧化钒粉体可作为电子元器件的介质和电极材料,具有良好的电阻率和介电常数。
2. 催化剂:二氧化钒粉体可作为催化剂,常用于催化氧化反应、
脱氧反应等。
3. 光学材料:二氧化钒粉体可作为制备高折射率玻璃和红外窗口
材料的原材料。
4. 陶瓷材料:二氧化钒粉体可作为制备高温陶瓷、氧化铝合金和碳化硅陶瓷的原材料之一。
综上所述,二氧化钒粉体制备方法多种多样,应用领域广泛,具有广泛的市场前景。