2018届高三2月湖北省七校联考理科数学答案
- 格式:pdf
- 大小:108.34 KB
- 文档页数:3
湖北2018年高考理科数学试卷答案解析
5
c
4坐标系与参数方程
【36】(A,湖北,理16)椭圆c的方程可以化为,圆的方程可化为,直线l的方程可化为,因为直线l经过椭圆的焦点,且与圆相切,则,,,所以椭圆的离心率
【10】(B,湖北,理17)在△ 中,角,,对应的边分别是,,已知
(Ⅰ)求角A的大小;
(Ⅱ)若△ 的面积,,求的值
考点名称解三角形
【10】(B,湖北,理17)(Ⅰ)由,得 ,
即,解得或(舍去)
因为,所以
(Ⅱ)由得又,知
由余弦定理得故
又由正弦定理得
【19】(B,湖北,理18)已知等比数列满足,
(Ⅰ)求数列的通项式;
(Ⅱ)是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由
考点名称等比数列
【19】(B,湖北,理18)(Ⅰ)设等比数列的比为q,则由已知可得
解得或
故,或
(Ⅱ)若,则,故是首项为,比为的等比数列,。
湖北四地七校2018届高三理科综合2月联考试卷(附答案)绝密★启用前荆、荆、襄、宜四地七校考试联盟2018届高三2月联考理科综合试题命题学校:龙泉中学本试卷共16页,38题(含选考题)。
全卷满分300分。
考试用时150分钟。
可能用到的相对原子质量:H-1C-12O-16N-14Cl-35.5K-39Cu-64I-127一、选择题:本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列相关叙述中,正确的是A.人在尽力憋气后呼吸运动会加深加快,其原因是氧气浓度过低刺激了呼吸中枢B.酶、载体、抗体、激素、神经递质均会与相应的分子发生特异性结合,且发挥作用后即被灭活C.皮肤中的油脂腺分泌的油脂参与人体对抗病原体的第二道防线D.胰岛素受体和溶菌酶可以在人体的同一细胞中产生2.下列操作能达到实验目的的是A.在普通光学显微镜下观察紫色洋葱鳞片叶外表皮细胞,其细胞核清晰可见B.在探究光照强度对光合作用强度影响的实验中,将所用台灯的灯管涂成红色,可以缩短小圆形叶片上浮的时间C.将14C标记的大肠杆菌在12C培养基中培养,提取子代DNA进行密度梯度离心,证明其进行半保留复制D.在“探究a-萘乙酸促进插条生根的最适浓度”实验中,用高浓度的a-萘乙酸溶液浸泡插条基部一天后,观察生根情况以确定最适浓度3.在玻璃温室中,研究小组分别用三种单色光对某种绿叶蔬菜进行补充光源(补光)试验,结果如图所示。
补光的光强度为150μmolm-2s-1,补光时间为上午7:00-10:00,温度适宜。
下列叙述正确的是A.给植株补充580nm光源,对该植株的生长有促进作用B.若680nm补光后植株的光合色素增加,则光饱和点将下降C.若450nm补光组在9:00时突然停止补光,则植株释放的O2量增大D.当对照组和450nm补光组的CO2吸收速率都达到6μmolm-2s-1时,450nm补光组从温室中吸收的CO2总量比对照组少4.若不考虑突变,细胞核中的遗传物质一定相同的是A.来自同一株花生的不定芽B.来自同一株紫花豌豆的花粉C.来自同一红眼雌果蝇的卵细胞D.来自同一个玉米果穗的籽粒5.糖尿病是一种以高血糖为特征的代谢性疾病。
2018年3月湖北省七市(州)教科研协作体高三联合考试理 科 数 学包括:十堰市 孝感市 恩施州等七市州本试卷共6页,23题(含选考题),全卷满分150分。
考试用时120分钟。
★祝考试顺利★一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知N 是自然数集,设集合N}16{∈+=x x|A ,{}43210,,,,B =,则=B A I A .{}2,0 B .{}2,1,0C .{}3,2D .{}4,2,02.已知复数1z i =+(i 为虚数单位),则22z z+=A .13-B . 13- C. 13 D .13 4.已知椭圆C :1222=+y x 的离心率与双曲线E :()0012222>>=-,b a by a x 的一条渐近 线的斜率相等,则双曲线E 的离心率为A.2B. 3C.25 D. 26 5.将函数()x x x f cos sin 3-=的图像向左平移65π个 单位得到函数()x g y =的图像,则)(127πg 的值为 A.2- B. 2C. 3-D.3 6.一个几何体的三视图如图所示,则该几何体的各个面中, 面积小于6的面的个数是 A.1 B.2 C .3 D.4 侧视图俯视图7.函数()x f y =是定义在R 上的奇函数.0≥x 时()()m x x a x x f +++++-=2log )1(2,其中m a 、是常数,且0>a ,若()1=a f ,则=-m aA.5-B. 5C. 1-D. 18.函数2()sinf x x x x =-在区间[-,]ππ上的图象大致为9.若正整数N 除以正整数m 后的余数为n ,则记为 ()m n m od N ≡,例如()6m od 583≡.执行如图所示的程序框图,则输出的结果为A. 2019B. 2023C. 2031D. 204710.如图,在矩形ABCD 中, 2,1AB AD ==,以A 为顶点且过点C 的抛物线的一部分在矩形内;若在矩形ABCD 内随机地投一点,则此点落在阴影部分内的概率为A.12 B. 32 C. 53 D. 3411.已知圆E :2222r y x =++)(与抛物线)0(2:2>=p px y C 相交于A ,B 两点,分别以 点A ,B 为切点作圆E 的切线.若切线恰好都经过抛物线C 的焦点F ,则=∠AEF sin A.215- B. 213- C. 212- D. 21 12.已知函数)()(2R a ax e x f x ∈+=在点())1()(,>m m f m P处的切线为l ,若直线l在y 轴上的截距恒小于1,则实数a 的取值范围是 A. 1(,)2-+∞ B. [)1,-+∞ C.1[,)2-+∞ D. 1(1,)2--二、填空题:本题共4小题,每小题5分,共20分。
2018年湖北省高考数学理科试卷及解读1.i 为虚数单位,=+-2)11(ii A. -1 B.1 C. -i D. i 【解题提示】利用复数的运算法则进行计算 【解读】选A . 122)1)(1()1)(1()11(2-=-=++--=+-iii i i i i i 2.若二项式7)2(x a x +的展开式中31x 的系数是84,则实数a = A. 2 B. 34 C.1 D.42【解题提示】考查二项式定理的通项公式【解读】选C . 因为1r T +=rr r r r r r x a C xax C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得a =1.3.设U 为全集,B A ,是集合,则“存在集合C 使得,UA CB C⊆⊆”是“∅=B A ”的A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件【解题提示】考查集合与集合的关系,充分条件与必要条件的判断 【解读】选C . 依题意,若C A ⊆,则UUC A ⊆,当UB C ⊆,可得∅=B A ;若∅=B A ,不妨另C A =,显然满足,UA CBC ⊆⊆,故满足条件的集合C 是存在的.4.得到的回归方程为a bx y +=ˆ,则A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a【解题提示】考查根据已知样本数判绘制散点图,由散点图判断线性回归方程中的b 与a 的符号问题【解读】选B .画出散点图如图所示,y的值大致随x的增加而减小,因而两个变量呈负相关,所以0<b,0>a5..在如图所示的空间直角坐标系xyzO-中,一个四面体的顶点坐标分别是<0,0,2),<2,2,0),<1,2,1),<2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A.①和②B.③和①C. ④和③D.④和②【解题提示】考查由已知条件,在空间坐标系中作出几何体的大致形状,进一步得到正视图与俯视图【解读】选D.在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.6.若函数f(x>,()g x满足11()g()d0f x x x-=⎰,则称f(x>,()g x为区间[-1,1]上的一组正交函数,给出三组函数:①11()sin,()cos22f x xg x x==;②()1,g()1f x x x x=+=-;③2(),g()f x x x x==其中为区间]1,1[-的正交函数的组数是< )A.0B.1C.2D.3【解题提示】考查微积分基本定理的运用【解读】选C. 对①,1111 111111(sin cos)(sin)cos|0 2222x x dx x dx x---⋅==-=⎰⎰,则)(xf、)(xg为区间]1,1[-上的正交函数;对②,1123111114(1)(1)(1)()|033x x dx x dx x x ---+-=-=-=-≠⎰⎰,则)(x f 、)(x g 不为区间]1,1[-上的正交函数; 对③,1341111()|04x dx x --==⎰,则)(x f 、)(x g 为区间]1,1[-上的正交函数. 所以满足条件的正交函数有2组.7.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为< )A.81B.41C. 43D.87 【解题提示】首先根据给出的不等式组表示出平面区域,然后利用面积型的几何概型公式求解【解读】选D. 依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在2Ω内的概率为111221722218222BDFCEFBDFSSP S⨯⨯-⨯⨯-===⨯⨯. 8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,另相乘也。
湖北省七市(州)高三年级联合考试数学试题(理工类)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|lgx≤0),B=,则A∪B=A.ø2.下列说法错误的是A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”B.已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假C.若x,y∈R,则“x=y”是的充要条件D.若命题p:∈R,则3.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似的刻画其相关关系,根据图形,以下结论最有可能成立的是A.线性相关关系较强,b的值为1.25B.线性相关关系较强,b的值为O.83C.线性相关关系较强,b的值为-0.87D.线性相关关系太弱,无研究价值4.某个几何体的三视图如图所示(其中正视图中的圆弧是半径为2的半圆),则该几何体的表面积为A.92+24 B.82+24 C.92+14 D.82+145.阅读如图所示的程序框图,则输出结果s的值为6.已知函数f(x)与g(x)的图像在R上不间断,由下表知方程f(x)=g (x)有实数解的区间是A.(-1,0) B.(0,1) C.(1,2) D.(2,3)7.已知O为坐标原点,A,B两点的坐标均满足不等式组,设与的夹角为θ,则tanθ的最大值为8.设两条直线的方程分别为x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的两个实根,且0≤c≤,则这两条直线之间的距离的最大值和最小值分别是9.如果对定义在R上的函数f(x),对任意x1≠x2,都有x1f(x1)+x2f (x2)>x1f(x2)+x2f(x1)则称函数f(x)为“H函数”.给出下列函数:①y=-x3+x+1;②y=3x-2(sinx-cosx);.其中函数式“H函数”的个数是:A.4 B.3 C.2 D.110.已知双曲线的两个焦点为F1、F2,其中一条渐近线方程为P为双曲线上一点,且满足|OP|<5(其中O为坐标原点),若|PF1|、|F1F2|、|PF2|成等比数列,则双曲线C的方程为第Ⅱ卷(非选择题,共100分)二、填空题:本大题共6小题,每小题5分,考生共需作答5题,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,横棱两可均不得分.(一)必考题:(11-14题)11.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数的共轭复数是.12.设,则a4= .13.物体A以速度v=3t2+1(t的单位:s,v的单位:m/s)在一直线上运动,在此直线上与物体A出发的同时,物体B在物体A的正前方5m处以v=10t(t 的单位:s,v的单位:m/s)的速度与A同向运动,则两物体相遇时物体A 运动的距离为 m.14.将长度为l,(l≥4,l∈N*)的线段分成n(n≥3)段,每段长度均为正整数,并要求这n段中的任意三段都不能构成三角形.例如,当l=4时,只可以分为长度分别为1,1,2的三段,此时n的最大值为3;当l=7时,可以分为长度分别为1,2,4的三段或长度分别为1,1,1,3的四段,此时n的最大值为4.则:(1)当l=12时,n的最大值为;(2)当l=100时,n的最大值为.(二)选考题:请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.15.(几何证明选讲)如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B,C两点,D是OC的中点,连接AD并延长交⊙O于点E,若PA=2;∠APB=30°,则AE= .16.(坐标系与参数方程)在直角坐标平面内,以坐标原点O为极点、x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为,曲线C的参数方程为(α为参数),则点M到曲线C上的点的距离的最小值为.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知向量,设函数(1)求函数f(x)的单调递增区间:(2)在△ABC中,角A、B、C的对边分别为a、b、c,且满足求f(C)的值.18.(本小题满分12分)已知数列{an}是等差数列,{bn}是等比数列,其中a1=b1=1,a2≠b2,且b2为a1、a2的等差中项,a2为b2、b3的等差中项.(1)求数列{an}与{bn}的通项公式;(2)记,求数列{cn}的前n项和Sn.三、解答题:本大题共5小题,共65分.解答应写出文字说明,证明过程或演算步骤.18.(本小题满分12分)己知向量设函数(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,且满足求f(C)的值.19.(本小题满分12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠ABC=90°,AD∥BC,且PA=AD=2,AB=BC=1,E为PD的中点.(Ⅰ)设PD与平面PAC所成的角为α,二面角P-CD-A的大小为β,求证:tanα=cosβ.(Ⅱ)在线段AB上是否存在一点F(与A,B两点不重合),使得AE∥平面PCF?若存在,求AF的长;若不存在,请说明理由.20.(本小题满分12分)小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.(Ⅰ)根据图中的数据信息,求出众数x0;(Ⅱ)小明的父亲上班离家的时间y在上午7:00至7:30之间,而送报人每天在x0时刻前后半小时内把报纸送达(每个时间点送达的可能性相等)①求小明的父亲在上班离家前能收到报纸(称为事件A)的概率;②求小明的父亲周一至周五在上班离家前能收到报纸的天数X的数学期望.21.(本小题满分13分)已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆C的方程;(Ⅱ)设A(-4,0),过点R(3,0)作与X轴不重合的直线l交椭圆于P、Q两点,连结AP、AQ分别交直线于M、N两点,试问直线MR、NR 的斜率之积是否为定值,若为定值,请求出;若不为定值,请说明理由.22.(本小题满分14分)已知函数(Ⅰ)设F(x)=f(x)+g(x),求函数F(x)的图像在x=1处的切线方程: (Ⅱ)求证:对任意的x∈(0,+∞)恒成立;(Ⅲ)若a,b,c∈R+,且求证:参考答案 说明1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分。
2018年普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 为虚数单位,则=+-2)11(ii ( ) A. 1- B. 1 C. i - D. i2. 若二项式7)2(xa x +的展开式中31x 的系数是84,则实数=a ( )A.2B. 54C. 1D.423. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A I ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 x 3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0), (1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A. ①和②B.③和①C. ④和③D.④和② 6.若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数: ①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f ==其中为区间]1,1[-的正交函数的组数是( ) A.0 B.1 C.2 D.37.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )A.81 B.41 C. 43 D.878.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为 3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.3551139.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )C.3D.2 10.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,)32(21)(222a a x a x x f --+-=.若R x ∈∀,f(x-1)≤f(x),则实数a 的取值范围为 A .[61,61-] B .[66,66-] C .[31,31-] D .[33,33-] 二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.设向量(3,3)a =r ,(1,1)b =-r,若()()a b a b λλ+⊥-r r r r ,则实数λ=________.12.直线1l :y=x+a 和2l :y=x+b 将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数.(1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)(二)选考题15.(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为________ 17.(本小题满分11分)某实验室一天的温度(单位:)随时间(单位;h )的变化近似满足函数关系;(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?18.(本小题满分12分) 已知等差数列满足:=2,且,成等比数列.(1) 求数列的通项公式. (2) 记为数列的前n 项和,是否存在正整数n ,使得若存在,求n 的最小值;若不存在,说明理由.19.(本小题满分12分)如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP .(1)当1=λ时,证明:直线1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角?若存在,求出λ的值;若不存在,说明理由.20.(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C. (1)求轨迹为C 的方程设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围。
2018届XXX第二次联考理数试题 word含答案2018届高三第二次联考理科数学试题注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:1.设集合A={y|y=2x,x∈R},B={x|y=1-x,x∈R},则A∩B=A。
{1}B。
(0,+∞)C。
(0,1)D。
(0,1]2.若复数z满足2+zi=z-2i(i为虚数单位),z为z的共轭复数,则z+1=A。
5B。
2C。
3D。
-33.在矩形ABCD中,AB=4,AD=3,若向该矩形内随机投一点P,那么使得△ABP与△ADP的面积都不小于2的概率为A。
1/4B。
1/3C。
4/7D。
9/164.已知函数f(x)=(x-1)(ax+b)为偶函数,且在(0,+∞)单调递减,则f(3-x)<的解集为A。
(2,4)B。
(-∞,2)∪(4,+∞)C。
(-1,1)D。
(-∞,-1)∪(1,+∞)5.已知双曲线x^2/a^2-y^2/b^2=1的离心率为2,则a的值为A。
1B。
-2C。
1或-2D。
-16.等比数列的前n项和,前2n项和,前3n项和分别为A,B,C,则A。
A+B=CB。
B^2=ACC。
A+B-C=B^3D。
A^2+B^2=A(B+C)7.执行如图所示的程序框图,若输入m=0,n=2,输出的x=1.75,则空白判断框内应填的条件为此处无法插入图片,请参照原题)二、填空题:8.已知函数f(x)=x^3-3x^2+mx+n,当x=1时,f(x)取得最小值-1,当x=3时,f(x)取得最大值9,则m+n=____。
2018年高考理科数学联考试题(湖北省七市附答案)
5 c 密★启用前
i B.i c.-1 D.1
2.已知向量a=(2,1),b=(x,-2),若a∥b,则a+b=
A.(-2,-1) B.(2,1) c.(3,-1) D.(-3,1)
3.下列说法中不正确的个数是
①命题“ x∈R,≤0”的否定是“ ∈R,0”;
②若“p q”为假命题,则p、q均为假命题;
③“三个数a,b,c成等比数列”是“b= ”的既不充分也不必要条
A. B.1 c.2 D.3
4.函数f(x)=2x-sinx的零点个数为
A.1 B.2 c.3 D.4
5.一个几何体的三视图如下左图所示,则此几何体的体积是
A112 B.80 c.72 D.64
6.已知全集U=Z,Z为整数集,如上右图程序框图所示,集合A={x|框图中输出的x值},B={|框图中输出的值};当x=-1时,(cuA) B=
A.{-3,-1,5} B.{-3,-1,5,7} c.{-3,-1,7} D.{-3,-1,7,9}
7.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁不能相邻着舰,那么不同的着舰方法有
A.12种 B.18种 c.24种 D.48种
8.如右图,矩形ABc内的阴影部分由曲线f(x)=sinx(x∈(0, ))及直线x=a(a∈(0, ))与x轴围成,向矩形ABc内随机投掷一点,若落在阴影部分的概率为,则a的值为。