实验一 CTAB提取拟南芥基因组DNA
- 格式:doc
- 大小:37.00 KB
- 文档页数:1
《分子生物学》实验报告实验一植物基因组DNA的提取及其定性、定量分析【实验目的】通过本实验学习利用CTAB法从植物组织中提取DNA并通过琼脂糖凝胶电泳及紫外分光光度法对DNA进行定性定量分析。
【实验原理】CTAB(十六烷基三甲基溴化铵)是一种阳离子型去污剂,可溶解细胞膜,在高离子强度下(大于0.7 M NaCl),与蛋白和中性多糖形成复合物沉淀出来。
利用液氮对植物组织进行研磨,从而破碎细胞。
然后加入CTAB缓冲液将DNA溶解出来,再用酚、氯仿抽提的方法去除蛋白,最后经乙醇沉淀得到DNA。
琼脂糖凝胶电泳是分离和纯化DNA片段的常用技术。
把DNA样品加入到一块包含电解质的多孔支持介质(琼脂糖凝胶)的样品孔中,并置于静电场上。
DNA分子在高于等电点的pH 溶液中带负电荷,在电场中向正极移动。
DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。
由于糖-磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此,在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即DNA分子本身的大小和构型。
DNA分子的迁移速度与相对分子质量的对数值成反比关系,分子量小的DNA分子比分子量大的DNA分子迁移速率快,迁移距离远,由此得到分离。
凝胶电泳也可以分离相对分子质量相同,但构型不同的DNA分子,超螺旋质粒DNA(cccDNA)泳动最快,其次为线状DNA(L DNA),最慢的为开环质粒DNA(ocDNA)。
核酸分子(DNA或RNA)由于含有嘌呤环和嘧啶环的共轭双键,在260 nm波长处有特异的紫外吸收峰,其吸收强度与核酸的浓度成正比,这个物理特性为测定核酸溶液浓度提供了基础。
1 OD260相当于dsDNA 50 μg/mL,ssDNA 33 μg/mL和ssR NA 40 μg/mL。
可以此来计算核酸样品的浓度。
紫外分光光度法不但能确定核酸的浓度,还可通过测定260 nm和280 nm 的紫外线吸收值的比值(A260/A280)估计核酸的纯度,若DNA的A260/A280比值高于2.0,则可能有RNA污染,低于1.8则有蛋白质污染。
遗传学实验报告拟南芥T-DNA插入突变体的鉴定一、实验目的:1、学习和掌握基本的植物DNA的CTAB提取法,掌握PCR、琼脂糖凝胶电泳等基本实验操作技能2、了解T-DNA插入突变体的鉴定原理,掌握其方法。
二、实验原理1、拟南芥(Arabidopsis thaliana)十字花科,植物遗传学、发育生物学和分子生物学的模式植物。
植株形态个体小,高度只有30cm左右;生长周期快,从播种到收获种子一般只需8周左右;种子多,每株可产生数千粒种子;形态特征简单,生命力强,用普通培养基就可作人工培养;遗传转化简单,转化效率高;基因组小,只有5对染色体,125MB;在2000年,拟南芥成为第一个基因组被完整测序的植物。
2、突变体突变体是遗传学研究的最重要材料。
突变体可以通过自然突变和人工诱变的方法获得。
拟南芥诱变常用方法有EMS诱变、T-DNA插入突变、激活标签。
由于T-DNA插入突变体便于对突变基因进行追踪,目前拟南芥、水稻中已经有大量的T-DNA插入突变体;SALK中心提供的拟南芥T-DNA插入突变体超过十万种。
3、T-DNA插入突变原理T-DNA,转移DNA(transferred DNA ),是根瘤农杆菌Ti质粒中的一段DNA序列,可以从农杆菌中转移并稳定整合到植物基因组。
人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,获得转基因植株。
除用于转基因以外,T-DNA插入到植物的基因中可引起基因的失活,从而产生基因敲除突变体,T-DNA大多为单拷贝插入,使其利于进行遗传分析。
4、T-DNA插入突变体PCR鉴定图 1 结果鉴定图 2 PCR引物设计三、实验材料1、材料:T-DNA插入的突变拟南芥植株;2、仪器:离心管,离心机,水浴锅,移液枪,PCR仪,电泳槽等;3、试剂:液氮,CTAB提取液,氯仿/异戊醇(24:1),无水乙醇,70%乙醇,10xTaq buffer,MgCl2,引物,琼脂糖,溴化乙锭(EB)。
CTAB法小量制备植物基因组DNA【原理】CTAB分离DNA的方法最初用于细菌,后来经修改用于从植物中获取DNA。
CTAB(即十六烷基三乙基溴化铵)是一种阳离子去污剂。
CTAB可与核酸形成复合物,该复合物仅溶于高盐溶液。
此外,CTAB可十分有效地促进DNA和RNA与多糖的分离并去除多糖。
可通过提高NaCl的浓度和沉淀核酸去除CTAB。
残留的CTAB可用76%~80%乙醇洗涤核酸沉淀去除;CTAB较易溶于乙醇因而可通过洗涤溶液去除。
某些植物组织包含高浓度的酚类物质。
除去这些化合物至关重要,因为酚类化合物可氧化形成醌,后者可与核酸交联。
聚乙烯吡咯烷酮(PVP)和β-巯基乙醇(BME)——裂解混合液中的常见组分,是有效的还原剂,可将因酚类化合物氧化形成的醌降至最低。
PVP在某种程度上相当于一种巨大的多糖,本质上它可占据物理空间从而增加其它分子的有效浓度并使得这些分子的沉淀更为容易。
任何基因组DNA制备技术的目的是分离足够纯的、高分子量的DNA。
有两种因素会影响所分离DNA的尺寸:剪切力和核酸酶活性。
因此裂解应当温和处理从而将剪切力降至最小。
植物细胞富含核酸酶。
大多数核酸酶需要Mg2+作为辅因子。
为了降低核酸酶活性,组织应当快速冷冻并在包含有去污剂和高浓度EDTA的提取缓冲液中解冻。
【材料】植物组织,新鲜液氮2× CTAB提取缓冲液氯仿:异戊醇【24:1(v/v)】异丙醇洗涤缓冲液95%乙醇TE 缓冲液(pH 8.0)10 mg/mL 无DNase的RNase A 金属匙研钵和研杵37°C和65°C水浴微量离心机移液器涡旋仪微型真空泵记号笔灭菌的1.5 mL一次性微量离心管灭菌吸头手套【步骤】1. 称取100 mg叶片组织,并在液氮预冷的研钵中研磨为细粉末。
然后将粉末转移至1.5 mL微量离心管中。
2. 添加700 μL新鲜的2× CTAB提取缓冲液并用涡旋仪混匀。
拟南芥T-DNA插入突变纯合体的鉴定余振洋(高山山、潘红芳)、09级生技1班、200900140156、2011/12/14摘要本实验通过CTAB法提取目的拟南芥的DNA,再用三引物法PCR扩增所需的目的基因后,用电泳检测该拟南芥是否为转基因的拟南芥,并判断其是纯合突变还是杂合突变。
关键词拟南芥;T-DNA;突变纯和体1.引言T-DNA是根癌农杆菌Ti质粒上的一段DNA序列,它能稳定地整合到植物基因组中并稳定地表达。
T—DNA在植物中一般都以低拷贝插入,多为单拷贝。
单拷贝T-DNA一旦整合到植物基因组中,就会表现出孟德尔遗传特性,在后代中长期稳定表达,且插入后不再移动,便于保存。
T—DNA插入突变在反向遗传学和功能基因组学研究中发挥着重要作用。
,T—DNA插入突变能方便地进行正向和反向遗传学研究,因而受到重视。
同时,基因组测序工作的完成使得从位点到表型的反向遗传学研究成为可能,从而使通过T—DNA插入技术构建突变体来研究功能的反向遗传学技术逐渐取代了传统的化学诱变、图位克隆等技术。
借助于农杆菌介导的遗传转化技术,T—DNA插入技术已被广泛应用于拟南芥等模式植物的突变体库构建中。
以T—DNA作为插入元件,不但能破坏插入位点基因的功能,而且能通过插入产生的功能缺失突变体的表型及生化特征的变化,为该基因的研究提供有用的线索。
由于插入的T—DNA序列是已知的,因此可以通过已知的外源基因序列,利用反向PCR、TAIL-PCR、质粒挽救等方法对突变基因进行克隆和序列分析,并对比突变的表型研究基因的功能。
还可以利用扩增出的插入位点的侧翼序列,建立侧翼序列数据库,对基因进行更全面的分析。
由此可见,T—DNA 插入标签技术已成为发现新基因、鉴定基因功能的一种重要手段。
CTAB法提取植物叶片中的DNA是我们常用的方法。
通常采用机械研磨的方法破碎植物的组织和细胞,由于植物细胞匀浆含有多种酶类(尤其是氧化酶类)对DNA的抽提产生不利的影响,在抽提缓冲液中需加入抗氧化剂或强还原剂(如巯基乙醇)以降低这些酶类的活性。
【实验目的】1、采用CTAB法从植物叶片中提取基因组DNA,并用PCR方法鉴定T-DNA插入纯合突变体和琼脂糖凝胶电泳。
2、掌握CTAB法从植物叶片中提取DNA的原理和方法。
3、掌握应用PCR技术扩增目的基因的原理和方法。
4、掌握琼脂糖凝胶电泳的操作和原理及分析方法。
【实验原理】DNA是分子生物学研究的基本材料,依不同实验目的采取相应的抽提DNA方法,获取数量、质量不等的DNA。
CTAB(十六烷基三甲基溴化铵,也称六癸基三甲基溴化铵)是一种非离子去污剂,用CTAB法抽提植物总DNA,操作简便、快速、产量高,但纯度稍次,适用于一般分子生物学操作。
在DNA提取过程中,第一步就是使组织细胞破裂后释放出DNA,第二步就是DNA与其他细胞组分如蛋白质、碳水化合物、膜和细胞壁相分离。
在这个方法中,植物细胞首先在液氮中冰冻,然后用研钵或植物粉碎机研磨,使组织细胞破裂后释放出D14A。
研磨好的组织置于预热的1.5×CTAB(高盐1.05mol/L NaCl)缓冲溶液中,加热至65℃。
此时CTAB可与核酸形成复合物,这种复合物在高盐(>0.7mol/L)溶液中是可溶的,并且可以稳定存在,而细胞壁纤维和大部分变性蛋白质则沉淀,从而从DNA中去除污染物,而部分蛋白质及多糖(酶抑制剂)仍溶于溶液中。
β-琉基乙醇可抑制多酚氧化酶的氧化,防止植物组织发黄变褐。
经过初次保温后,氯仿/异戊醇抽提就可除去仍溶于溶液中的蛋白质、多糖,最后用乙醇沉淀DNA(CTAB-核酸复合物在低盐溶液中因溶解度降低而沉淀),并洗去CTAB。
分离纯化核酸总的原则,一是要保证核酸一级结构的完整性;二是要排除其他分子的污染。
抽提的DNA中不应存在对酶有抑制作用的有机溶剂和过高浓度的金属离子,且其他生物大分子的污染应降到最低程度。
Ti质粒和T-DNA:Ti质粒是土壤农杆菌的天然质粒,该质粒上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移进植物细胞,并插入植物染色体DNA中。
实验一、植物DNA的提取(CTAB法)实验内容采用CTAB法从植物叶片中提取基因组DNA,并进行纯度分析和琼脂糖凝胶电泳。
目的要求掌握CTAB法从植物叶片提取DNA的原理和方法。
实验原理CTAB(十六烷基三甲基溴化铵),是一种阳离子去污剂,具有从低离子强度溶液中沉淀核酸与酸性多聚糖的特性。
在高离子强度的溶液中(>0.7mol/L NaCl),CTAB 与蛋白质和多聚糖形成复合物,只是不能沉淀核酸.通过有机溶剂抽提,去除蛋白、多糖、酚类等杂质后加入乙醇沉淀即可使核酸分离出来。
DNA的浓度测定和纯度分析紫外光吸收法:纯的DNA的A260/A280在1.8左右,纯的RNA的A260/A280在2.0左右。
试剂和器材:(1) CTAB分离缓冲液2% CTAB,2% PVP,0.15M EDTA,2.1M NaCl, 0.1M Tris-Base(pH8.0), 1%巯基乙醇,pH 8.0。
(2) 洗涤缓冲液75%乙醇,75mL无水乙醇,加水到100mL。
(3) TE缓冲液 10mmol/L Tris-HCL (pH7.4),1mmol/L EDTA(4) 氯仿-异戊醇(24:1)。
(5) 液氮。
(6) 研钵,恒温水浴(37-100℃),离心机,离心管。
操作方法:(1) 将CTAB分离缓冲液,置于65摄氏度水浴中预热。
(2) 称取约10g叶片,置于预冷的研钵中,倒入液氮,尽快将叶片研碎。
(3) 取粉末于10ml离心管,加预热的CTAB分离缓冲液4ml,轻轻转动混匀。
65℃保温30分钟。
(4) 加等体积(4mL)的氯仿-异戊醇,轻轻颠倒混匀,4度下12000rpm离心10分钟。
(5) 取上清液转移至新管,重复(5)(6) 取上清液转移至新管,加入2倍体积预冷的无水乙醇,常温静置5min,用无菌牙签挑出DNA,转至新管,用70%乙醇洗涤3次,(7) 去净所有液体,风干,用适量的无菌水溶解DNA。
(8) 取2uL稀释500-1000倍,测定A260,A280,A230吸光度,判断DNA纯度。
实验1 转基因植物PCR 检测一、植物DNA 的提取技术(CTAB 法)一、实验目的1.掌握用CTAB 法提取植物总DNA 的方法和基本原理。
2.学习根据不同的植物和实验要求设计和改良植物总DNA 抽提方法。
二、原理CTAB 法[十六烷基三甲基溴化铵(hexadyltrimethyl ammomum bromide ,简称为CTAB)]是一种快速简便的提取植物总DNA 的方法。
通常采用机械研磨的方法破碎植物的组织和细胞,然后加入CTAB ,CTAB 是离子型表面活性剂,能溶解细胞膜和核膜蛋白,使核蛋白解聚,从而使核酸(DNA 、RNA)得以游离出来。
再加入苯酚和氯仿等有机溶剂,能使蛋白质变性,并使抽提液分相,因核酸(DNA 、RNA)水溶性很强,经离心后即可从抽提液中除去细胞碎片和大部分蛋白质。
上清液中加入无水乙醇使DNA 沉淀,沉淀DNA 溶于TE 溶液中,即得植物总DNA 溶液。
三、实验材料大豆幼苗[材料的采集与保存对提取DNA 的产量和质量有很大影响。
通常应尽可能采集新鲜、幼嫩的组织材料,采集过程中应尽可能保持组织材料所含的水分。
通常的做法是取样时立即用浸湿的纱布包裹采集到的组织材料,放置在带有冷藏功能的采集箱中,这样通常使组织材料在3-5d 内仍然保持新鲜。
野外远距离采集样本时,在可能的条件下应冷冻保存(如放置于液氮中);当不具备冷冻条件时,最好用盛有无水CaSO4的瓶子分别保存,使其迅速干燥,这种方法可将材料保存数月,返回后应尽快进行DNA 的提取工作。
那些具有大量次生代谢产物(如单宁、酚类、醌类等)的植物材料,应尽可能采集幼嫩组织。
]四、试剂4.1 CTAB 提取缓冲液:100 mmol/L Tris-HCl (pH8.0),20 mmol/L EDTA-Na 2,1.4mol/L NaCl (如表1),2% CTAB ,使用前加入0.1%(V/V )的β-巯基乙醇。
表1 CTAB 提取缓冲液配制4.2 TE 缓冲液:10mmol/L Tris-HCl, 1mM EDTA ( pH8.0)。
CTAB法提取植物基因组DNACTAB法原理CTAB(Cetyl trimethyl ammonium bromide),十六烷基三甲基溴化铵,是一种阳离子去污剂,可溶解细胞膜,能与核酸形成复合物,具有从低离子强度溶液中沉淀核酸的特性。
当降低溶液盐浓度到一定程度(0.3 mol/L NaCl)时,CTAB-核酸的复合物从溶液中沉淀,通过离心就可将其与蛋白,多糖类物质分开,在经过有机溶剂抽提,去除蛋白,多糖,酚类等杂质。
最后通过乙醇或异丙醇沉淀DNA,而CTAB溶于乙醇或异丙醇而除去在高离子强度的溶液中(>0.7mol/L NaCl),CTAB与蛋白质和多聚糖形成复合物,不能沉淀核酸。
CTAB溶液在低于15℃时会形成沉淀析出,因此,在将其加入冰冷的植物材料之前必须预热,且离心时温度不要低于15℃。
另外,它还能保护DNA不受内源核酸酶的降解。
主要试剂与溶液的配制:PVP(聚乙烯吡咯烷酮K30)巯基乙醇氯仿︰异戊醇(24︰1)异丙醇70%乙醇Tris-苯酚RNaseA无水乙醇CTAB 溶液:CTAB——20g/LNaCl(58.44)——1.4 mol/L(81.816g)EDTA(292.25)——10 mmol/L(2.9225g)Tris(121.14)——100 mmol/L(12.114g)pH 8.01×TE 缓冲液:EDTA(292.25)——1 mmol/L(0.29225g)Tris(121.14)——10 mmol/L(1.2114g)pH 8.0NaAC溶液:NaAC(82.03)——3mol/L(246.09g)pH 4.0植物总DNA的提取1、取适量甘薯新鲜叶片,用液氮迅速研磨,中间加PVP(聚乙烯吡咯烷酮K30)少许,成粉末后转入10mL的离心管中,放入液氮或-80℃冰箱储存(在研磨样品时,研的细和研的粗,提出的DNA量可以相差几倍,所以,在液氮保护的很好的情况下尽量多研磨几次)。