电气化铁路向量特性分析
- 格式:pdf
- 大小:175.32 KB
- 文档页数:3
电气化铁道供电原理电气化铁道牵引供电装置,又称为牵引供电系统,其系统本身没有发电设备,而是从电力系统取得电能.目前我国一般由110kV以上地高压电力系统向牵引变电所供电.目前牵引供电系统地供电方式有直接供电方式、BT供电方式、AT供电方式、同轴电缆和直供加回流线供电方式四种,京沪、沪杭、浙赣都是采用地直供加回流线方式.一、直接供电方式直接供电方式(T—R供电>是指牵引变电所通过接触网直接向电力机车供电,及回流经钢轨及大地直接返回牵引变电所地供电方式.这种供电方式地电路构成及结构简单,设备少,施工及运营维修都较方便,因此造价也低.但由于接触网在空中产生地强大磁场得不到平衡,对邻近地广播、通信干扰较大,所以一般不采用.我国现在多采用加回流线地直接供电方式.二、BT供电方式所谓BT供电方式就是在牵引供电系统中加装吸流变压器(约3~4km安装一台>和回流线地供电方式.这种供电方式由于在接触网同高度地外侧增设了一条回流线,回流线上地电流与接触网上地电流方向相反,这样大大减轻了接触网对邻近通信线路地干扰.BT供电地电路是由牵引变电所、接触悬挂、回流线、轨道以及吸上线等组成.由图可知,牵引变电所作为电源向接触网供电;电力机车(EL>运行于接触网与轨道之间;吸流变压器地原边串接在接触网中,副边串接在回流线中.吸流变压器是变比为1:1地特殊变压器.它使流过原、副边线圈地电流相等,即接触网上地电流和回流线上地电流相等.因此可以说是吸流变压器把经钢轨、大地回路返回变电所地电流吸引到回流线上,经回流线返回牵引变电所.这样,回流线上地电流与接触网上地电流大小基本相等,方向却相反,故能抵消接触网产生地电磁场,从而起到防干扰作用.以上是从理论上分析地理想情况,但实际上由于吸流变压器线圈中总需要励磁电流,所以经回流线地电流总小于接触网上地电流,因此不能完全抵消接触网对通信线路地电磁感应影响.另外,当机车位于吸流变压器附近时回流还是从轨道中流过一段距离,至吸上线处才流向回流线,则该段回流线上地电流会小于接触网上地电流,这种情况称为“半段效应”.此外,吸流变压器地原边线圈串接在接触网中,所以在每个吸流变压器安装处接触网必须安装电分段,这样就增加了接触网地维修工作量和事故率.当高速大功率机车通过,该电分段时产生很大电弧,极易烧损机车受电弓和接触线.且BT供电方式地牵引网阻抗较大,造成较大地电压和电能损失,故已很小采用.三、AT供电方式随着铁路电气化技术地发展,高速、大功率电力机车地投入运行,吸—回装置供电方式已不能适应需要.各国开始采用AT供电方式.所谓AT供电方式就是在牵引供电系统中并联自耦变压器地供电方式.实践证明,这种供电方式是一种既能有效地减弱接触网对邻近通信线地感应影响,又能适应高速、大功率电力机车运行地一种比较先进地供电方式.AT供电方式地电路包括牵引变电所S、接触悬挂T、轨道R、自耦变压器AT、正馈线AF、电力机车EL等.牵引变电所作为电源向牵引网输送地电压为25kV.而接触悬挂与轨道之间地电压仍为25kV,正馈线与轨道之间地电压也是25kV.自耦变压器是并联在接触悬挂和正馈线之间地,其中性点与钢轨(保护线>相连接.彼此相隔一定距离(一般间距为10~16km>地自耦变压器将整个供电区段分成若干个小地区段,叫做AT区段.从而形成了一个多网孔地复杂供电网络.接触悬挂是去路,正馈线是回路.接触悬挂上地电流与正馈线上地电流大小相等,方向相反,因此其电磁感应影响可互相抵消,故对邻近地通信线有很好地防护作用.AT供电方式与BT供电方式相比具有以下优点:1、AT供电方式供电电压高.AT 供电方式无需提高牵引网地绝缘水平即可将牵引网地电压提高一倍.BT供电方式牵引变电所地输出电压为27.5kV,而AT供电方式牵引变电所地输出电压为55kV,线路电流为负载电流地一半,所以线路上地电压损失和电能损失大大减小.2、AT供电方式防护效果好.AT供电方式,接触悬挂上地电流与正馈线上地电流大小相等,方向相反,其电磁感应相互抵消,所以防护效果好.并且,由于AT供电地自耦变压器是并联在接触悬挂和正馈线间地,不象BT供电地吸流变压器,串联在接触悬挂和回流线之间,因此没有因励磁电流地存在而使原副边绕组电流不等,以及在短路时吸流变压器铁芯饱和导致防护效果很差等问题.另外也不存在“半段效应”问题.3、AT供电方式能适应高速大功率电力机车运行.因AT供电方式地供电电压高、线路电流小、阻抗小(仅为BT供电方式地1/4左右>、输出功率大,使接触网有较好地电压水平,能适应高速大功率电力机车运行地要求.另外,AT供电也不象BT供电那样,在吸流变压器处对接触网进行电分段,当高速大功率电力机车通过时产生电弧,烧坏机车受电弓滑板和接触线,对机车地高速运行和接触网和接触网地运营维修极为不利.4、AT供电牵引变电所间距大、数量少.由于AT供电方式地输送电压高、线路电流小、电压损失和电能损失都小,输送功率大,所以牵引变电所地距离加大为80~120km,而BT供电方式牵引变电所地间距为30~60km,因此牵引变电所地距离大大减少,同时运营管理人员也相应减少,那么,建设投资和运营管理费用都会减少.四、同轴电缆供电方式同轴电力电缆供电方式(简称CC 供电方式>,是一种新型地供电方式,它地同轴电力电缆沿铁路线路埋设,内部芯线作为供电线与接触网连接,外部导体作为回流线与钢轨连接.每隔5~10km 作一个分段.由于供电线与回流线在同一电缆中,间隔很小,而且同轴布置,使互感系数增大.由于同轴电力电缆地阻抗比接触网和钢轨地阻抗小得多,因此牵引电流和回流几乎全部经由同轴电力电缆中流过.同时由于电缆芯线与外层导体电流大小相等,方向相反,二者形成地磁场相互抵消,对邻近地通信线路几乎无干扰.由于电路阻抗小,因而供电距离长.但由于同轴电力电缆造价高、投资大,很少采用.五、直供加回流线供电方式直供加回流线供电方式结构比较简单.这种供电方式由于在接触网同高度地外侧增设了一条回流线,回流线上地电流与接触网上地电流方向相反,这样大大减轻了接触网对邻近通信线路地干扰.与直供方式比较,能对沿线通信防干扰;比BT供电减少了BT装置,既减少了建设投资,又便于维修.与AT供电方式比较,减少了AT所和沿线架设地正馈线,不仅减少了投资,还便于接触网维修.所以自大秦线以后地电气化铁道,基本都采用这种方式.我段所管辖地京沪、沪昆都采用这种供电方式.直供加回流线供电方式地原理如下图所示.六、牵引变电所向接触网供电有单边供电和双边供电两种方式.接触网在牵引变电所处及相邻地两个变电所中央是断开地,将两个牵引变电所之间地接触网分成两独立地供电分区,又叫供电臂.每个供电臂只从一端地牵引变电所获得电能地供电方式称为单边供电.每个供电臂同时从两侧变电所获得电能地供电方式称为双边供电.双边供电可提高供电质量,减少线路损耗,但继电保护等技术存在问题.所以我国及多数国家均采用单边供电.但在事故情况下,位于两变电所之间地分区亭可将两个供电臂连接进来,实行越区供电,越区供电是在非常状态下采用地,因供电距离过长,难以保证末端地电压质量,所以只是一种临时应急措施,并且在实行越区供电时,应校核供电末端地电压水平是否符合要求.在复线区段同一供电臂上、下行接触网接地是同相电,但在牵引变电所及分区亭内设有开关装置,可将上、下行接触网连通,实行并联供电,以减小线路阻抗,降低电压损失和电能损失,提高接触网地电压水平.在事故情况下,又可将上、下行接触网分开,互不影响,使供电更加灵活可靠.牵引变电所馈电线馈出地两供电臂上地电压是不同相位地.为了减少对电力系统地不平衡影响,各牵引变电所要采用换连接,不同相位地接触网间要设置电分相装置.为了灵活供电和缩小事故范围,便于检修,接触网还设置了许多电分段装置.。
高速列车供电系统的电气特性分析研究高速列车已经成为现代交通运输中不可或缺的一部分,随着科技的发展,高速列车的速度和运行效率也在不断提高。
在高速列车的运行过程中,供电系统的稳定性和可靠性成为越来越重要的问题,因此,对高速列车供电系统的电气特性进行研究和分析具有重要的理论和实际意义。
一、高速列车供电系统的概述高速列车的供电系统是高速铁路运输中不可或缺的一部分。
高速列车的供电系统包括接触网、架空线、变电所、牵引变流器、动车组等组成。
供电系统能否稳定、可靠地供电,直接影响着高速列车的运行效率及客户体验。
1.接触网高速列车的接触网是一种垂直于铁路轨道的装置,它与列车的受电弓相接触,实现列车对外供电的功能。
一般来说,接触网由接触线和支架组成。
接触线是一条由钢丝绳或电缆制成的杆状物,它的截面积大小以及材质对接触网的供电性能影响较大。
支架则是接触线的支撑设备,负责支撑和固定接触线。
2.架空线架空线也是高速列车的重要组成部分,它是接触网与变电所之间的连接桥梁。
架空线通常由一系列的铁塔及其上的导线或电缆组成,这些铁塔通过埋入地下的钢筋混凝土基础固定。
架空线的电气特性影响着列车受电弓与接触网之间的传输效率。
3.变电所变电所是高速列车供电系统的主要集中发电设备,它将电力从电网输送到接触网,为列车提供驱动能源。
变电所的技术水平和电气特性直接影响着列车供电系统的可靠性和运行效率。
4.牵引变流器高速列车的牵引变流器是列车供电系统的核心设备。
它能够将接触网提供的交流电能转换为列车所需要的直流电能,驱动列车正常运行。
牵引变流器的电气特性包括输出电流、输出电压、输出频率等,它们直接影响着列车的运行速度和效率。
5.动车组动车组是高速列车的主要运行设备,它的设计和性能也与列车的供电系统密切相关。
动车组的电气特性包括电气驱动系统的设计、功率特性、能量回收等方面,这些因素直接影响着列车的运行效率和能源利用率。
二、高速列车供电系统的电气特性分析高速列车供电系统的电气特性研究涉及到多个方面,包括电力系统的稳定性、能量回收和能源利用效率、电气设备的先进性和可靠性等。
摘要由于目前电气化铁路牵引供电电能计量中力率的考核采用正送倒计的方式,若采用常规的固定电容进行无功补偿,其综合力率无法达到供电部门的要求,而静态无功补偿装置(SVC)能够很好的解决这一问题。
本文正是针对静态无功补偿装置(SVC)的工程设计进行专题研究。
本论文首先,针对电气化铁道牵引供电系统及其负荷的特点,分析了牵引供电系统功率因数低的原因,并提出应用静止型动态无功补偿装置(SVC)对牵引负荷进行动态无功补偿。
其次,介绍了目前牵引供电系统中普遍应用的晶闸管投切电容器TSC和固定电容器+晶闸管可控电抗器FC+TCR两种SVC补偿装置;接着,对FC+TCR型SVC系统的一次接线方式进行简单介绍,提出了SVC装置在施工设计中应该注意的一些问题;最后,列举了110kV牵引变电所FC+TCR型SVC补偿装置二次系统设计,并进行保护定值计算。
静止型动态无功补偿(SVC)装置采用大功率晶闸管调相技术,通过对补偿系统中的相控支路电流的调节,达到动态调节SVC装置输出无功的目的,使之适应动态补偿牵引变电所变化负荷的需要。
本论文中的设计方法及经验值得设计和施工人员参考借鉴。
关键词:电气化铁路;功率因数;SVC;FC+TCR;系统设计AbstractAt present because electrified railway traction power supply electricity measurement of the assessment using force rate was sending pour millions of the conventional way, if the fixed capacitance reactive power compensation, which are unable to achieve comprehensive force rate power supply departments requirement, and static var compensation device (SVC) can be good to solve this problem. This thesis is aimed at static var compensation device (SVC) engineering design keynote research.At first, this thesis mainly aims at electrified railway traction power supply system and its load characteristics, it analyzes the traction power supply system causes of low power factor, and put out the application of static var compensation device (SVC) for dynamic var compensation of traction's load. Secondly, the thesis introduces the current traction power supply system in general useing thyristor threw cutting capacitor TSC and fixed capacitors + thyristor controlled reactor FC + TCR two kinds of SVC compensation devices; After then, FC + TCR type SVC system once connection mode is simple introducted, and construction design device in an SVC is put forward some problems which should be paid attention to; Finally, the thesis cites FC + TCR type SVC compensation devices second system design of 110 kv traction substation, and protection setting value calculation.Static var compensation (SVC) device adopts high-power thyristor phase-modulation technology, it throughs to the compensation system of phased branch current regulation, and achieves dynamic adjusting SVC device the purpose of reactive power output, to make it adapt the need of changing of compensation traction substation. This thesis of the design method and experience is worth reference for designers and construction personnel.Key words:Electrified railway,Power factor,SVC,FC + TCR,System design目录摘要 (I)Abstract (II)1 绪论 (1)1.1 牵引变电所SVC无功补偿的背景与意义 (1)1.1.1 电气化铁道牵引供电系统的组成及功能 (1)1.1.2 电气化铁道牵引供电系统的主要特点 (3)1.1.3 牵引变电所的负荷特点 (3)1.1.4 牵引变电所的功率因数 (5)1.2 牵引变电所SVC无功补偿的研究现状 (6)1.3 本课题的研究内容与目标 (7)2 牵引变电所继电保护 (8)2.1 继电保护的作用和意义 (8)2.2 主变保护 (9)2.2.1 主变保护的基本要求 (9)2.2.2 主变保护的原理 (9)2.3 馈线保护 (10)2.3.1 馈线保护的基本要求 (10)2.3.2 馈线保护的原理 (11)2.4 电容保护 (11)2.4.1 电容保护的基本要求 (11)2.4.2 电容保护的原理 (11)3 牵引变电所SVC装置一次接线方式 (13)3.1SVC的作用及其原理 (13)3.1.1SVC的作用 (13)3.1.2SVC的工作原理 (16)3.2SVC系统的一次接线方式 (19)3.3SVC系统的容量选择 (20)3.4SVC装置设计中需要注意的几点问题 (21)4 牵引变电所SVC装置二次系统设计 (22)4.1 牵引变电所SVC装置的二次系统设计 (22)4.1.1 交流回路设计 (22)4.1.2 控制回路设计 (23)4.1.3 遥信回路设计 (23)4.2 牵引变电所SVC装置保护定值计算的一般方法 (23)4.2.1 电流保护的保护定值计算 (24)4.2.2 电压保护的保护定值计算 (26)4.3包兰线皋兰牵引变电所SVC装置的保护定值计算 (29)4.3.1 固定电容器组(FC)的保护定值计算 (30)4.3.2 晶闸管可控电抗器(TCR)的保护定值计算 (31)4.3.3 包兰线皋兰牵引变电所SVC装置保护定值的输入 (32)结论 (33)致谢 (34)参考文献 (35)附录A (36)附录B (38)1 绪论1.1 牵引变电所SVC无功补偿的背景与意义1.1.1 电气化铁道牵引供电系统的组成及功能电气化铁道供电系统由外部电源系统和牵引供电系统组成。
电气化铁路负荷特性分析和计量方案分析【摘要】随着我国电气化建设工程的快速发展,为人们的生活和工作带来了很大程度上的方便。
但是电气化铁路在一定程度上是会对电力系统产生一定的危害。
因此,在本文中,可以对电气化铁路负荷特性进行全面的分析,并建立有效的计量算法,制定科学有效的计量方案,以此提供准确有效的电能计量装置方案,保证电气化铁路的准确性。
【关键词】电气化铁路;负荷特性;计量方案随着电力技术的快速发展和科学技术的迅速提高,使我国电气化铁路得到了迅速的发展。
在进行电气化铁路运行过程中,通常需要将高次谐波电流注入电力系统中,会在一定程度上影响了电力系统的电压波形。
在影响了电力运行系统时,会对电网安全和经济运行产生一定的危害,并且也需要制定科学合理的电能计量方案,以此保证电气化铁路的准确性。
1 电气化铁路的影响以及负荷特点(1)电气化铁路对电网波形的影响。
在电气化铁路中注入高次谐波电流,会对电网波形产生一定的影响。
电气化铁力对电网波形产生的影响,使得电网波形发生畸变的现象,而在电网电压电流的信号中,使信号也不再是周期正弦信号,没有具备一定的平稳性。
在对其进行分析时,电气化铁路会对电力系统谐波产生一定的影响,通常出现污染的现象,由于多次谐波的组合。
在组合的多次谐波中,主要是奇次谐波。
(2)电气化铁路符合的特点。
在电力系统中,电气化铁路是其主要的不平衡负荷和谐波源负荷。
在电气化铁路中,通常是采用单相电力牵引,作为电力机车。
当出现不对称的电流时,会对电力系统中的对称运行条件造成一定的影响,使运行条件出现损坏的现象,导致电力系统的负序分量大幅度增加。
其次电力机车主要是整流型负荷,它会产生多次的谐波,并且注入电网中。
在交流侧方面,电力机车会产生全部的频次谐波,并包括基波。
当产生负序分量和谐波时并注入电网,从而会对电力系统产生严重的影响。
在电气化铁路中,电气牵引网的特点主要包括:用电量大、通常分布在较广的铁道线,并覆盖在广泛的公用供电区等。
高铁列车接触网电气特性研究高速铁路是现代化交通运输的一种重要形式,具有运行速度快、效率高、舒适度好、安全性高等优点。
高速铁路的发展离不开接触网的支持,由于接触网的稳定性和安全性直接关系到高铁列车的运行,因此,对于高铁列车接触网电气特性的研究变得尤为重要。
本文将探讨高铁列车接触网电气特性研究的意义、发展现状和研究内容等方面。
一、高铁列车接触网电气特性研究的意义接触网作为高速铁路的输电和回流系统,直接关系到高铁列车的正常运行和安全。
接触网的设计和施工,需要考虑多种因素包括气候条件、线路长度和列车类型等等。
另外,新技术的不断发展,对于接触网的结构和材料提出了更高要求。
接触网与列车之间的电气特性是需要考虑的一个重要因素,在满足电气规范及相关法律法规的条件下,同时保证列车的稳定运行,这就需要对其进行研究和优化。
二、高铁列车接触网电气特性研究的发展现状高铁列车接触网电气特性的研究在国内外都已经进行了多年,通过多项实验和研究,相关专家深入探讨了高铁列车接触网电气特性的复杂性,其中包括了接触网合适的高度、导线、跨距、保护装置等因素的研究。
此外,高速列车通常采用交流传输电能,高速列车接触网的阻抗对于电力传输的影响是不可忽略的因素。
直流配电系统的导线阻抗比交流配电系统小得多。
在接触网上线路下颠簸时,高速列车产生了类似于阻抗变化的电动势。
这些阻抗因素,不仅影响了高速列车接触网电气特性,如果不得当,还会对接触网的安全造成风险。
三、高铁列车接触网电气特性研究的主要内容高铁列车接触网电气特性的研究主要包括以下几个方面的内容:1、高铁列车接触网仿真模拟:在计算机模拟下对高铁列车接触网进行仿真,通过各种算法实现动态过程,以及对系统传输特性的模拟计算。
该方法能够预测和评估高速列车驰名过程所带来的动态电气特性,进而提出控制、优化和调整高铁列车接触网的措施。
2、高铁列车接触网电气特性实验研究:通过实验研究来验证仿真模拟中预测和评估的结果,达到优化和改善高铁列车接触网电气特性的目的。
电气化铁路负荷特性分析及供电方案相关问题的建议景德炎铁道部工程设计鉴定中心(铁道部经济规划研究院)电气化咨询部摘要:在介绍电铁工作原理的基础上,详细分析了电铁牵引负荷特性及其供电需求,提出了对电铁供电方案和改善电能质量的建议,以及加强铁路、电力协商与合作,促进共同和谐发展的期待。
关健词:电铁负荷 供电方案 电能质量Abstract: On the basis of introduction of the electric railway work- principle, the specialities and power supply requirement of electric railway traction loads were detailedly analyzed, suggestion of improving electric railway power supply scheme and electric power quality, reinforcement the cooperation of electric railway with electric power, hope of accelerating jointly and harmoniously develop were put forward.Key words: electric railway traction loads, power supply scheme, electric power quality我国电气化铁路从1961年8月15日宝成线宝鸡至凤州段建成通车开始,经过四十多年的建设和发展,到2006年底,电气化总里程已达24000公里,位居世界第二位。
京广线、陇海线、京沪线、哈大线等主要干线都已实现电气化。
铁路具有占地少、能耗低、污染小、成本低、运量大、全天候的比较优势,特别是电气化铁路运输能力大,综合能源利用率高,节能减排优势明显,是我国铁路的发展方向。
一、单相(A 相)接地短路故障点边界条件...0;0;0kB kC kA U I I ===即....1200kA kA kA kA U U U U =++=又. (2)111()33kA kA kB kC kA I I a I a I I =++=. (2)211()33kA kA kB kC kA I I a I a I I =++= . 011()33k kA kB kC kA I I I I I =++= 所以...120kA kA k III== 以上就是以对称分量形式表示的故障点电压和电流的边界条件。
向量图如下:由向量图可知A相电流增大,B、C相电流为零,A相电压为零,B、C相电压增大。
二、B 、C 相接地短路。
故障点边界条件为...0;0;0kA kB kC I U U ===同上用对称分量表示,则...1200kA kA k I I I ++=...12013kA kA k kA U U U U === 相量图如下:有向量图可知,A 相电流为零,B 、C 相电流增大;A 相电压增大,B 、C 相电压为零。
故障点的边界条件为.....0;;kA kB kC kB kC I I I U U ==-=以对称分量形式表示故障点电压、电流边界条件:.....12120;;kA kA kA kA kA I I I U U ==-=向量图如下:由向量图可知,A 相电流为零,B 、C 相电流增大;A 相电压增大,B 、C 相电压减小。
故障点边界条件为......0;kA kB kC kA kB kC I I I U U U ++=== 以对称分量法表示,则...0120;0;0k kA kA I U U ===三相短路电流向量图如下:即短路电流向量仍然保持平衡,各项短路电压为零。
(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。