光纤色散的补偿方法
- 格式:ppt
- 大小:979.50 KB
- 文档页数:15
色散补偿方法一、背景介绍色散是光在介质中传播时,不同频率光的传播速度不同所引起的现象。
在光纤通信中,色散会导致光脉冲扩展,从而限制了信号传输的速率和距离。
为了克服色散对光纤通信系统性能的影响,人们提出了各种色散补偿方法。
二、色散的分类根据色散现象的产生原理,色散可以分为两种类型:色散和相位色散。
色散是由于介质导致光在传播过程中速度的频率依赖性而引起的;相位色散则是由于介质对光的频率的相位响应不同而引起的。
在光纤通信中,我们主要关注两种类型的色散:色散和相位色散。
三、色散补偿方法1. 电子色散补偿电子色散补偿是通过使用光纤通信系统中的电子器件来减小或消除色散效应。
常见的电子色散补偿方法包括预计算和数字后处理两种。
1.1 预计算预计算方法通过事先对传输系统的特性建立模型,利用数值计算方法来评估和补偿色散效应。
它需要在系统设计阶段进行复杂的计算和建模工作,预测色散对光信号的影响,并提前进行补偿。
预计算方法的优点是可以准确地估计和补偿色散效应,但需要大量的计算和建模工作,并且对系统的实时性要求较高。
1.2 数字后处理数字后处理方法是通过对接收到的光信号进行数字信号处理来补偿色散效应。
这种方法在接收端引入了一些算法和电子器件,对接收到的光信号进行补偿。
数字后处理方法的优点是不需要对系统进行复杂的计算和建模,且实时性较好。
然而,它需要更高的计算能力和复杂的信号处理算法,且对噪声和非线性效应敏感。
2. 光纤色散补偿器光纤色散补偿器是一种被动光学元件,通过引入具有逆色散特性的光纤来补偿传输过程中产生的色散效应。
光纤色散补偿器通常包括光纤光栅和光纤光波导等结构。
它能够在光信号传输过程中引入逆色散效应,可以有效地补偿色散引起的脉冲扩展问题。
光纤色散补偿器的优点是结构简单、易于集成和应用,并且具有较好的逆色散特性。
但是,光纤色散补偿器的逆色散效应对频率的补偿范围有限。
3. 相位共轭相位共轭是一种通过光学器件来反转光波的相位特性,从而消除色散效应的方法。
光纤通信系统中的色散赔偿问题综述1.Introduction光纤通信含有高速率、大容量、长距离以及抗干扰性强等特点。
但损耗和色散是长久妨碍光纤通信向前发展的重要因素。
随着着损耗问题的解决,色散成为决定光纤通信系统性能优劣的重要因素。
如何控制色散方便提高光纤通信系统的性能,成为光纤通信研究的热门课题之一。
现在对于光纤的色散已经提出了诸多赔偿办法,重要有色散赔偿光纤(DCF),啁啾光纤光栅,均匀光纤光栅,相位共轭(中点谱反转),全通滤波器、预啁啾等。
随着以上各办法缺点的暴露,学者们提出了光孤子色散赔偿技术,又相继提出了色散管理孤子,密集色散管理孤子等技术。
色散管理成为近年来光纤通信前沿研究的重要热点。
2.Concept of Dispersion由于信号在光纤中是由不同的波长成分和不同的模式成分来携带的,这些不同的波长成分和模式成分有不同的传输速率,从而引发色散。
也能够从波形在时间上展宽的角度去理解,也就是说光脉冲在通过光纤传输期间,其波形随时间发生展宽,这种现象称为光纤的色散。
3.Dispersion Causes普通把光纤中的色散分为三种类型:模式色散、模内色散和偏振色散。
a)模式色散模式色散是多模光纤才有的。
多模光纤中,即使是同一波长,模式不同传输速度也不同,它所引发的色散称为模式色散。
不同模式的光在光纤中传输时的传输常数不同,从而使传输同样长的距离后,不同模式的光波之间产生了群时延差,假设光纤能够传输多个模式,其中高次模达成输出端所需的时间较长,成果使入射到光纤的脉冲,由于不同模式达成的时间不同,或者说群时延不同,在输出端发生了脉冲展宽。
b)模内色散模内色散亦称颜色色散或多色色散。
重要是由于光源有一定带宽,信号在光纤中会有不同的波长成分,信号的不同波长分量含有不同的群速度,成果造成光脉冲的展宽。
模内色散涉及材料色散和波导色散。
c)偏振色散普通的轴对称单模光纤是违反“单模”名称的。
事实上有可能传输着两个模,即在光纤横截面上的两个正交方向(设为x 方向与y 方向)上偏振的(即在这些方向上含有场分量的)偏振模,同时由于实际的光纤中必然存在着某些轴不对称,那么,光纤会存在双折射,模传输常数β对于x,y 方向偏振模稍有不同,就会使这两个模式的传输速度不同,由此引发的色散叫偏振色散。
光纤色散在光信息处理中的应用探讨
光纤色散是指光在光纤中传输时由于折射率随波长的不同而导致的不同波长光速度的差异。
为了克服光纤传输中由于色散引起的失真和衰减,研究人员在光信息处理中开发了许多方法,如光纤补偿、FIR滤波器、DSP等。
光纤色散导致的信号失真是因为不同波长的光线到达终端所需的时间不同,这会导致信号的扩散和频移,并且会产生眼图失真。
光纤补偿技术是通过添加一个对抗色散的装置来解决这个问题。
常用的光纤补偿方法包括预先调节和电器补偿。
预先调节方法是根据光纤特性和信号的波长来选择合适的光纤长度,以消除色散效应。
电器补偿方法是通过在接收端添加补偿器件来补偿光纤传输中的色散效应。
FIR滤波器是一种数字滤波器,可以用来抵消光纤中的色散,以使信号失真得到最小化。
FIR滤波器的特点是,它只取决于滤波器的长度和系数,不受输入信号大小的限制,可以适应不同波长的光信号,还可以对滤波器系数进行实时调整来适应不同的传输距离和光纤类型。
数字信号处理(DSP)技术是另一种解决光纤色散的方法。
利用此技术,在数字计算机上对传输信号进行数字处理,可以减小频带带宽,抑制噪声和失真,并有效地延长光网络的传输距离和传输速度。
DSP技术常用于ATM(Asynchronous Transfer Mode)、WDM (Wavelength Division Multiplexing)和SDH(Synchronous Digital Hierarchy)等高速数据网络。
2019年第2期色散补偿光纤的分波长色散补偿Wavelength division dispersion compensation based ondispersion compensation fiberSHEN Jing,PAN Jian(School of Information Science and Engineering,Shenyang University of Technology,Shenyang 110870,China)Abstract:In order to improve the dispersion compensation effect of dispersion compensation fiber (DCF)in long-distance and high-speed wavelength division multiplexing (WDM)optical fiber transmission system,a wavelength-division dispersion com-pensation method for different carrier frequencies is ing Optisystem software,the WDM system is constructed by wavelength-division dispersion compensation method and comparisons with traditional post-dispersion compensation methods.In view of the transmission performance requirement of Gauss pulse amplitude modulation WDM optical communication system with a rate of 80Gb/s,simulation of wavelength division dispersion compensation and post dispersion compensation is imple-mented.The results show that the proposed dispersion compensation scheme gets better system performance in -factor.Key words:WDM;DCF;-factor申静,潘建(沈阳工业大学信息科学与工程学院,沈阳110870)摘要:为了改善长距离、高速率波分复用(WDM )光纤传输系统中色散补偿光纤(DCF)的色散补偿效果,提出针对不同载波频率的分波长色散补偿方法。
色散补偿技术介绍光通信使用的G.652标准光纤在1550 nm波长窗口的色散值为17ps/nm.km。
1550nm外调制传输系统光纤链路色散的容差比SDH等数字通信1550nm光链路要小得多,仅为1100 ps 左右,因此,对于1550nm外调制光纤干线/超干线而言,必须尽力解决好色散补偿问题。
目前,光通信系统使用的光纤色散补偿技术大多是针对非载波调制数字光纤系统的,因此,对于HFC有线电视宽带网络1550nm光纤干线/超干线而言,实际可供选用的色散补偿手段较少,限制条件较多,在实际1550nm外调制光纤传输链路中如何用好有关色散补偿技术还存在不少问题。
目前业内几种色散补偿技术介绍:1、色散补偿光纤(DCF)色散补偿光纤(DCF)开发于20世纪90年代中期,它在实现色散补偿任务中扮演了十分重要的角色。
目前,国内99% 以上1550nm外调制光纤干线/超干线仍然使用G.652标准光纤,因此在每个(或几个)光纤段的输入或输出端可以通过放置DCF色散补偿模块(DCM),周期性地使光纤链路上累积的色散接近零,使单信道1550nm外调制光纤干线/超干线传输光纤的色散得到较好的补偿。
但是,一般的1550nm外调制光纤干线/超干线长距离传输系统中所使用光发射机的光波长范围较大,可达20nm。
此外,随着在1550nm外调制光纤干线/超干线长距离传输系统中CWDM或DWDM技术的引入,必须考虑光纤对不同波长信道的色散斜度问题。
以G.652光纤1550 nm窗口为例,光纤的色散明显地随波长而变化,在1530nm处色散系数约为15.5ps/nm.km,在1565nm处约为17.6ps/nm.km,色散斜率(定义为色散系数对波长的微分)约为0.06ps/nm.km。
假设宽带色散补偿器件对所有C-band信号的色散补偿量是一样的,则经多个光纤段传输后,红端信号光(1565nm)所积累的色散将明显大于比蓝端(1530nm),因此,无论对于一般的1550nm外调制光纤干线/超干线长距离传输系统或CWDM/DWDM1550nm外调制光纤干线/超干线长距离传输系统,都必需考虑采用斜率补偿型色散补偿光纤组件,用于补偿光纤的色散斜率,将总色散控制在色散容限窗口内,使1550nm外调制光纤干线/超干线长距离传输系统中色散斜率问题得到较好的解决。
光纤的色散分类不同的光分量(不同的模式或不同的频率等)通常以不同的速度在光纤中传输,这种现象称为色散。
色散是光纤的一种重要的光学特性,色散引起光脉冲的展宽、严重限制了光纤的传输容量及带宽。
对于多模光纤,起主要作用的色散机理是模式色散或称模间色散(即不同的模以不同的速度传输引起的色散)。
对于单模光纤,起主要作用的色散机理是色度色散或称模内色散(即不同的光频率在不同的速度下传输引起的色散〕。
由于多模光纤受模间色散的限制,传输速率不能超过100Mb/s,单模光纤则比多模光纤更优越,在长途干线实际应用中用的也都是单模光纤,此处也仅考虑单模光纤的色散。
单模光纤的模内色散主要是材料色散和波导色散。
材料色散是指由于频率的变化导致介质折射率变化而造成的传输常数或群速变化的现象;波导色散是指由于频率的变化导致波导参数变化而造成的传输常徽或群速变化的现象。
模内色散主要是实际光源都是复色光源的结果。
另外在单模光纤中,实际上传输着两个相互正交的线性偏振模式,但由于光纤的非圆对称、边应力、光纤扭曲、弯曲等造成轻微的传输速度差,从而形成偏振模色散。
高速光纤通信系统需要色散补偿目前,全世界范围内,已经教设的1.3 µm零色散光纤总长度超过5000万公里,而我们知道现在光纤通信系统的工作波长为1.5µm,这样光纤就存在D≈16ps/km•nm的色散、该色散限制光通信系统的传输速度在2Gb/s以下。
即使是新教设的光纤、为了限制四波混频现象也仍需使用非零色散位移光纤。
故为了克服色散对通信距离及通信速率的限制,必须对光纤进行色散补偿。
另外,随着光纤通信和色散补偿方案的迅速发展,一些高速传输系统的传输速率已达到几十甚至几百Gb/s以上。
这时,偏振模色散的影响亦不可忽视光纤色散补偿方案目前,已有多种群速度色散补偿方案被提出,如后置色散补偿技术、前置色散补偿技术、色散补偿滤波器、高色散补偿光纤(DCF)技术和凋啾光纤光栅色散补偿技术,以及光孤子通信技术等。
色散补偿技术研究
色散补偿技术是一种光通信中常用的技术,主要用于抵消由于光信号在传输过程中产生的色散效应。
色散是指不同波长的光信号在传输过程中以不同的速度传播,导致信号在时间上发生扩展和形状上发生畸变。
这种畸变会影响光信号的质量和传输距离,因此需要采取相应的色散补偿技术来解决这个问题。
色散补偿技术主要通过在光纤通信系统中引入相应的色散补偿模块来实现。
其中最常用的方法是利用时域上的色散补偿技术,主要包括预色散补偿和后向色散补偿两种。
预色散补偿是指在信号发射前对信号进行处理,使其在传输过程中的色散效应得到抵消。
这种方法主要通过在发射端引入色散补偿器,根据信号的波长、速度和传输距离来选择相应的补偿参数,使得信号在传输过程中能够实现完全的色散补偿。
预色散补偿技术能够有效地抑制系统中的色散效应,提高信号的传输质量和传输距离。
除了时域上的色散补偿技术之外,还有一些频域上的色散补偿技术被广泛应用于光通信系统中。
这些技术主要通过引入特殊的光纤结构来改变光信号在频域上的传播特性,使得不同波长的光信号在光纤中传播的速度一致,从而实现色散的补偿。
频域上的色散补偿技术具有结构简单、补偿效果好等优点,被广泛应用于光纤通信系统和光网络中。
色散补偿技术是一种重要的光通信技术,能够有效地改善光信号的传输质量和传输距离。
目前,随着光纤通信技术的不断发展,对色散补偿技术的研究也越来越深入,各种新的色散补偿方法和技术不断涌现,将进一步提高光通信系统的性能和可靠性。