平面概念定理
- 格式:ppt
- 大小:890.50 KB
- 文档页数:49
平面几何的著名定理一、毕达格拉斯定理(即勾股定理)在任何一个直角三角形中,两条直角边的长的平方和等于斜边长的平方,这就叫做勾股定理。
即勾的平方加股的平方等于弦的平方二、帕普斯定理帕普斯(Pappus)定理:如图,直线l1上依次有点A,B,C,直线l2上依次有点D,E,F,设AE,BD 交于P,AF,DC交于Q,BF,EC交于R,则P,Q,R共线。
三、影射定理(与相似三角形和比例有关)直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)^2;=BD·DC,(2)(AB)^2;=BD·BC ,(3)(AC)^2;=CD·BC 。
等积式 (4)ABXAC=BCXAD(可用面积来证明)四、梅涅劳斯定理梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。
证明一过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , CE/EA=DC/AG。
三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1证明二过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1它的逆定理也成立:若有三点F、D、E分别在△ABC的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。
关于平面几何的61条著名定理一些平面几何的著名定理1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形。
平面几何的基本概念和定理1. 基本概念1.1 点平面几何的研究对象是由点、线、面组成的。
点是几何图形的基本元素,用来表示位置。
在平面几何中,点没有大小和形状,只有位置。
我们通常用大写字母来表示点,如A、B、C等。
1.2 直线直线是由无数个点连成的,它在平面内延伸无穷远。
我们通常用一个小写字母加上箭头表示直线,如直线AB、CD等。
直线上的点可以用小写字母表示,如点P、Q、R等。
1.3 射线射线是由一个起点开始,延伸到一个方向上的直线。
我们通常用一个小写字母加上箭头表示射线,如射线AB、CD等。
射线上的点可以用小写字母表示,如点P、Q、R等。
1.4 线段线段是由两个端点确定的直线部分,具有有限的长度。
我们通常用两个端点的大写字母表示线段,如线段AB、CD等。
1.5 平面平面是由无数个点组成的二维空间。
在平面几何中,我们通常用大写字母I表示平面,如平面ABCD等。
1.6 角角是由两条射线的公共端点和这两条射线的延伸部分组成的图形。
我们通常用一个小写字母表示角的顶点,如角A、B、C等。
角的度量单位是度(°),用符号°表示。
1.7 三角形三角形是由三条线段组成的平面图形,具有三个顶点和三个内角。
我们通常用三个顶点的大写字母表示三角形,如三角形ABC等。
1.8 四边形四边形是由四条线段组成的平面图形,具有四个顶点和四个内角。
我们通常用四个顶点的大写字母表示四边形,如四边形ABCD等。
1.9 圆圆是由平面上所有与给定点(圆心)距离相等的点组成的图形。
我们通常用圆心和半径的大写字母表示圆,如圆O(半径为r)。
2. 基本定理2.1 欧几里得几何公理欧几里得几何公理是平面几何的基础,包括以下五个公理:1.任意两点之间存在唯一的直线。
2.直线上的点可以按任意顺序排列。
3.任意两点确定一条直线。
4.直线上的点与直线外的点确定一条直线。
5.平面上任意一点到平面上任意一点的直线是唯一的。
2.2 平行线公理平行线公理是指:如果两条直线在平面内不相交,那么这两条直线是平行的。
平面与平面平行的判定定理的证明大家好,今天我们要聊的是平面与平面平行的判定定理。
别看它名字长,实际内容并不复杂。
让我们用简单的方式来搞懂它。
首先,我们得明白,两个平面平行是啥意思。
平行平面就像两块纸,始终在同一个方向上移动,但永远不会相交。
记住这一点,我们就能深入探讨它们是如何“默契”地保持平行的。
1. 定理概述1.1. 先来个大概念,平面与平面平行的判定定理说的就是如何判断两个平面是否平行。
这里有一个简单的规则:如果两个平面之间的距离始终相等,那么这两个平面就是平行的。
这就好比你拿着两张照片,用同样的距离在墙上挂起来,不管怎么摆,都不会有交点,它们就是平行的。
1.2. 再深入一点,我们可以用线来帮忙判断平面平行。
如果在一个平面上的一条直线和另一个平面上的一条直线分别与第三个平面平行,那么这两个平面也一定是平行的。
这就像你有两根同样长度的棍子,在地上竖起来,只要它们都跟地面平行,它们在任何角度下也会互相平行。
2. 定理证明2.1. 说到证明,那就得进入“牛刀小试”的阶段了。
我们先拿一张纸当平面A,再拿一张纸当平面B。
要证明这两个平面平行,我们可以用一个小技巧。
假设你有一个第三个平面C,把A、B分别跟C对比。
如果A上的任何一条直线都跟C平行,而B上的任何一条直线也跟C平行,那么根据定义,A和B就是平行的。
2.2. 更简单的方法是考虑两个平面之间的交线。
如果平面A和B分别与平面C相交,且交线平行,那么A和B之间的距离也就一直保持不变,这样它们就平行了。
这种情况下,想象一下两个书架,书架上的书总是保持在相同的高度,那么这两个书架一定是平行的。
用这种方式来理解平面之间的关系,就会觉得容易多了。
3. 实际应用3.1. 在现实中,平面平行的判定定理其实是非常实用的。
比如,在建筑工程中,设计师需要保证建筑物的墙壁是平行的,这样才能让房间看起来整洁而且空间感更好。
想象一下,如果墙壁不平行,那整个房间就像斜着的船舱,让人住进去真是“岂曰无衣”呀。
直线平行平面的判定定理直线和平面是空间解析几何中的基本概念,它们的位置关系有着重要的几何性质。
在空间中,当一条直线与一个平面满足特定条件时,我们可以根据直线和平面的性质来判断它们是否平行。
本文将介绍直线平行平面的判定定理,以及相关的推导和应用。
一、在空间中,判定一条直线与一个平面是否平行,可以根据以下定理进行判断:定理1:如果直线上的任意一点到平面的距离为定值k,那么这条直线与这个平面平行。
证明:设直线L上任意一点为P(x,y,z),平面为α,平面上一点为Q(a,b,c)。
根据直线上任意一点到平面的距离公式,有:d(P, α) = |ax + by + cz + d| / √(a^2 + b^2 + c^2)其中,α的一般方程为ax + by + cz + d = 0。
因为直线L上的任意一点P(x,y,z)到平面α的距离为定值k,所以有:|ax + by + cz + d| / √(a^2 + b^2 + c^2) = k即:|ax + by + cz + d| = k√(a^2 + b^2 + c^2)根据绝对值的性质,得到:ax + by + cz + d = ± k√(a^2 + b^2 + c^2)由于k为定值,√(a^2 + b^2 + c^2)也为定值,因此左侧和右侧都是一个常数等式,表示一个平面β。
所以,直线L和平面β平行,即直线L与平面α平行。
经过推导和证明,我们得出了判定直线平行平面的定理,即直线与平面上的一点到平面的距离为定值,那么这条直线和这个平面是平行的。
二、直线平行平面的应用直线平行平面的判定定理在解决空间几何问题时具有重要的应用价值。
下面通过几个具体的例子来说明其应用。
例1:已知平面α的一般方程为2x - 3y + 4z - 5 = 0,直线L上的一点为P(1, 2, -1),求直线L与平面α的位置关系。
解:由直线平行平面的判定定理可知,如果点P到平面α的距离为定值,那么直线L与平面α平行。
初中几何概念、定理平面几何1.两点之间的所有连线中,线段最短。
2.两点之间线段的长度叫做这两点之间的距离。
3.经过两点有一条直线,并且只有一条直线。
4.将一个角分成相等的两部分的射线叫做这个角的角平分线。
5.如果两个角的和是一个直角,这两个角叫做互为余角。
简称互余,其中的一个角叫做另一个角的余角。
6.如果两个角的和是一个平角,这两个角叫做互为补角。
简称互补,其中的一个角叫做另一个角的补角。
7.同角(或等角)的余角相等。
8.同角(或等角)的补角相等。
9.对顶角相等。
10.在同一平面内,不相交的两条直线叫做平行线。
11.经过直线外一点,有且只有一条直线与已知直线平行。
12.如果两条直线都与第三条直线平行,那么这两条直线相互平行。
13.如果两条直线相交成直角,那么这两条直线互相垂直。
互相垂直的两条直线的交点叫做垂足。
14.当两条直线互相处置时,其中一条直线叫做另一条直线的垂线。
15.经过一点有且只有一条直线与已知直线垂直。
16.直线外一点到直线上各点连接的所有线段中,垂线段最短。
17.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
18.同位角相等,两直线平行。
19.内错角相等,两直线平行。
20.同旁内角互补,两直线平行。
21.两直线平行,同位角相等。
22.两直线平行,内错角相等。
23.两直线平行,同旁内角互补。
24.在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移。
平移不改变图形的形状、大小。
25.如果两条直线互相平行,那么其中一条直线上任意两点到另一直线的距离相等,这个距离称为平行线之间的距离。
26.三角形的任意两边之和大于第三边。
27.在三角形中,从一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
28.在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
29.在三角形中链接一个顶点与它对边中点的线段,叫做三角形的中线。
平面几何的60条著名定理一些平面几何的著名定理1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD ×BC=AC×BD20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
高一数学竞赛班二试讲义第1讲 平面几何中的26个定理班级 姓名一、知识点金1. 梅涅劳斯定理:若直线l 不经过ABC ∆的顶点,并且与ABC ∆的三边,,BC CA AB 或它们的延长线分别交于,,P Q R ,则1BP CQ AR PC QA RB⋅⋅= 注:梅涅劳斯定理的逆定理也成立(用同一法证明)2. 塞瓦定理: 设,,P Q R 分别是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,若,,AP BQ CR 三线共点,则1BP CQ AR PC QA RB⋅⋅= 注:塞瓦定理的逆定理也成立3. 托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,并且当且仅当四边形ABCD 内接于圆时,等式成立。
AB AE AC ADBC ED AC AD==⇒又4. 西姆松定理:若从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F ,则,,D E F 三点共线。
西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。
若,,D E F 三点共线,则点P 在ABC ∆的外接圆上。
5. 蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点。
证明:过圆心O 作AD 与BC 的垂线,垂足为S 、T ,,OY ,OM ,SM ,MT 。
∴AM/CM=AD/BC∵AS=1/2AD,BT=1/2BC ∴AM/CM=AS/CT又∵∠A=∠C ∴△AMS∽△CMT∴∠MSX=∠MTY∴∠OMX+∠OSX=180°∴O,S ,X ,M同理,O ,T ,∴∠MTY=∠MOY,∠MSX=∠MOX∴∠MOX=∠MOY , ∵OM⊥PQ ∴XM=YM注:把圆换成椭圆、抛物线、双曲线蝴蝶定理也成立6. 坎迪定理:设AB 是已知圆的弦,M 是AB 上一点,弦,CD EF 过点M ,连结,CF ED ,分别交AB 于,L N ,则1111LM MN AM MB-=-。
平面平行平面的判定定理平面平行平面的判定定理,听起来有点高大上,但其实它也没那么复杂,咱们可以轻松聊聊。
你想象一下,一个平面就像是一块大桌子,坐在上面的东西都是在这块平面上。
平行呢,就是说有两个这样的桌子,它们永远不会碰到一起,哪怕你再怎么挪动它们。
这就很有意思了,生活中有很多事情都像这样,比如说你和朋友一起排队,大家站得整整齐齐,虽然你们在不同的平面上,但依旧不妨碍彼此。
如何判定这两个平面是不是平行呢?简单来说,就是得看它们的角度。
想象一下,如果你把两块桌子放在同一个房间,它们的高度差不多,但一个偏左一个偏右,嘿,它们就是平行的。
这就像咱们生活中的一些好朋友,虽然性格不同,但始终保持着一种默契,永远不会走到一起。
这种感觉,真的很奇妙,不是吗?就像是两条永不相交的路,永远朝着同一个方向走去。
在几何的世界里,有个重要的概念叫做“法线”。
法线就像是平面上的一根铅笔竖着放着,直直的指向天空。
要是有两个平面,它们的法线也平行,那么这两个平面绝对也是平行的。
这就有点像是你和你的室友,虽然各自的生活方式大相径庭,但你们的价值观却不谋而合,彼此的关系自然就稳稳的。
生活中有时候就是这样,许多看似复杂的事情,其实都能用一种简单的方式去理解。
假如你碰到两个平面,想要判断它们是否平行,你首先可以看看它们的法线。
如果它们的法线方向一致,那就基本可以认定这两个平面是平行的了,没错,这就像是看一个人的眼神。
如果眼神闪烁,肯定有猫腻,但如果目光坚定,那就可以放心了。
这种直观的判断法,在生活中也常常适用,别再被那些复杂的公式给搞晕了,平常心,简单点,就能看得更清楚。
还有一种情况,如果有一条直线与这两个平面都相交,那么这条线就会在两个平面上形成两个角。
这两个角如果相等,那么这两个平面也是平行的。
这就好比说你和好朋友一起打麻将,虽然你们的手牌不一样,但打出来的点数如果相同,那你们就是心有灵犀。
这种时候,大家就能心照不宣,一拍即合,这就是生活的乐趣所在。