原子结构模型发展史及其影响
- 格式:doc
- 大小:72.00 KB
- 文档页数:4
原子结构模型的演变
原子结构模型的演变经历了多个阶段,其中最重要的包括:
1. 原子不可分模型:古希腊的哲学家认为,物质是由不可分的粒子构成的。
2. 道尔顿原子模型:约翰•道尔顿是第一个提出原子理论的科学家。
他认为,所有的物质都是由小球状的原子构成的,这些原子在化学反应中不会被分解或破坏。
3. 汤姆逊原子模型:汤姆逊用阴极射线管实验证明了原子是可分的,并发现了电子。
他把原子看作是带有正电的球体,电子散布在球体内部。
4. 卢瑟福原子模型:卢瑟福利用金箔反射性实验证明了原子的核心是带有正电的,并提出了原子的行星模型,即核心像太阳一样,电子绕核心旋转。
5. 波尔原子模型:尼尔斯•波尔用量子理论解释了原子的行为,并提出了原子壳层模型,即电子只能在固定的能级上旋转。
6. 原子云模型:薛定谔用波动理论解释了原子的行为,提出了原子云模型,即电子在很多不同的能级上旋转,并且存在于原子的三维空间中。
原子结构的理论模型及其应用原子是构成物质的基本单位,其结构的研究对于了解物质的性质和变化至关重要。
在20世纪初期,人们发现了原子中存在电子,质子和中子的概念,并提出了原子结构的理论模型。
这些理论模型包括了经典物理学,量子力学和统计力学等,并在科学研究和实际应用中得到了广泛的应用。
一、经典物理学模型最早提出的原子结构模型是基于经典物理学的。
这个模型称为“普朗克-玻尔原子模型”,是由德国物理学家玻尔在1913年提出的。
他的模型将电子视为在原子核周围的轨道上运动的粒子,其轨道的半径具有离散的量子能级。
这个模型可以解释氢原子光谱的线性分布和其他原子的光谱现象。
不过这个模型无法解释实际原子中存在的众多问题,例如特定能量电子的存在,几率密度和双重光谱。
二、量子力学模型二十世纪初,在研究黑体辐射和单位分子反应时,人们发现了经典物理学无法解释的现象,这促使他们提出了量子力学的概念。
量子力学是描述原子、分子和物质微观性质的一种理论。
史无前例的大量的实验数据表明,在描述原子和分子的性质时,必须借助于量子力学。
利用量子力学理论可以解释经典物理学无法解释的实验结果,例如光谱线的分裂等现象。
在量子力学理论中,电子被视为自旋和电荷的粒子,其运动遵循薛定谔方程。
薛定谔方程描述电子的概率波函数,它是一个数学函数,用于解释电子在不同能级上的概率分布。
在这个模型中,原子的电子云分布可以很方便地计算出来。
这个模型的优点是比经典物理学模型更精确和可靠。
缺点是仅适用于单电子原子,对于多电子原子产生较强的相互作用的情况,其计算十分复杂。
三、统计力学模型物质由大量粒子组成,而每个粒子皆遵循统计力学规律。
统计力学的基本原则是:不仅要知道体系的宏观状态,还要知道它的微观状态。
在此基础上,科学家可以推导出物质的物理、化学和热力学性质等等。
在原子结构的研究中,统计力学模型指导了我们了解原子各种状态下的能量和随机运动行为。
在统计力学理论中,电子被视为与原子核相互作用的波。
一、原子结构模型发展史及其影响原子最初被认为没有质的区别,只有大小、形态和位置的区别,经过后期哲学家的发展,认识到各种原子也有质的区别。
古代的这种原子观是在缺乏实验佐证的情况下产生的。
18世纪末,英国化学家道尔顿(Dalion,1766—1844年)通过大量实验与分析,认识到原子是真实存在的,并确信物质是由原子结合而成的。
他于1808年出版了《化学哲学新体系》一书,提出了原子学说,认为每种单质均由很小的原子组成。
不同的单质由不同质量的原子组成。
并认为原子是一个坚硬的小球,在一切化学变化中保持基本性质不变。
此后近一百年,关于原子的结构的认识没有大的变化。
在19世纪末,放射性元素逐一被发现,它们裂变的事实冲破原子不能再分的传统观念。
1897年英国科学家汤姆孙(1856—1940)发现原子里有带负电荷的电子。
这一切激励着科学家们去探索原子的内在结构。
1904年,英国科学家汤姆孙首先提出葡萄干面包原子模型。
他认为既然电子那么小,又那么轻,因此原子带正电部分充斥整个原子,而很小很轻的电子浸泡在正电的气氛中,这正像葡萄干嵌在面包中那样。
电子带的负电荷被原子内带正电荷部分抵消,因此原子是电中性的。
汤姆森的原子模型能解释原子是电中性的,还能估计原子半径约为100pm(10-10m),因此它风行10多年,以后意外地被汤姆孙的学生卢瑟福推翻。
1911年,卢瑟福(1897—1937)和盖革(1882—1945)用α粒子轰击金属箔,并用荧光屏记录粒子散射现象的情况。
他发现大部分α粒子按直线透过金属箔,只有极少一部分α粒子被反弹回来或偏转很大角度。
这个实验充分说明原子内有很大空间,而正电荷部分集中在原子中心极小的球体内,这里占原子质量的99%以上。
因此,他断定汤姆孙的葡萄干面包的原子模型不符实际,同时他果断地提出新的原子模型。
1912年,卢瑟福联系太阳系中行星绕太阳旋转情况提出新的原子模型是带正电的原子核在原子正中,占原子质量的绝大部分,正像太阳系中太阳那样;带负电的电子环绕原子核作高速运动。
原子内部结构模型发展史一、经典原子模型从古希腊时期起,人们对物质的组成和性质就有了一定的认识。
然而,直到19世纪末,原子的内部结构才开始引起科学家们的关注。
经典原子模型最早由英国物理学家道尔顿提出,他认为原子是不可分割的、质量均匀的实体,并且原子间的化学反应只涉及原子的重新组合。
这一模型的出现为后续的研究奠定了基础。
二、汤姆孙模型在20世纪初,英国物理学家汤姆孙通过实验证据发现了电子,并提出了汤姆孙模型。
他认为原子是一个由正电荷均匀分布的球体,而电子则嵌入在球体内。
这一模型首次揭示了原子内部存在着带电粒子,并为后续的原子结构研究提供了重要线索。
三、卢瑟福模型1911年,新西兰物理学家卢瑟福进行了著名的金箔散射实验,他射入了高能α粒子到金箔中,观察到了一些粒子被反射、偏转甚至穿透的现象。
基于实验结果,卢瑟福提出了卢瑟福模型,他认为原子是由一个非常小而带正电的核心和围绕核心运动的电子构成。
这一模型首次提出了原子中存在着带电的核,并且核与电子之间存在着静电力。
四、玻尔模型1913年,丹麦物理学家玻尔提出了玻尔模型,他在卢瑟福模型的基础上进一步发展了原子结构理论。
玻尔模型认为电子绕核运动的轨道是量子化的,即只能取特定的能量值。
这一模型成功解释了氢原子光谱线的能级分布规律,并开创了量子力学的先河。
五、量子力学模型随着量子力学的发展,原子结构的研究进入了全新的阶段。
量子力学模型认为原子内部的粒子,如电子和质子,具有波粒二象性,即既表现出粒子性又表现出波动性。
这一模型通过数学方法描述了原子内部粒子的行为,并成功解释了原子的稳定性和化学性质。
六、现代原子模型现代原子模型是基于量子力学模型的进一步发展,它进一步细化了原子内部结构的认识。
现代原子模型认为原子由质子和中子组成的核心,以及围绕核心运动的电子构成。
质子和中子集中在核心,而电子则分布在核外的不同能级轨道上。
这一模型通过量子力学的计算方法,准确描述了原子内部粒子的运动和相互作用。
原子结构模型演变历程及其物理意义在我们生活中无处不在的原子是构成物质的基本单位,通过对原子结构的研究,我们可以更好地理解物质的性质和现象。
原子结构模型的演变历程是科学发展的一个重要方面,也是物理学的重要研究领域之一。
本文将通过回顾原子结构模型从古希腊时代开始的演变历程,探讨各个时期提出的模型的物理意义。
古希腊时代:原子的概念古希腊哲学家德谟克利特首次提出了“原子”这一概念,他认为物质由不可分割的微小粒子构成,这些粒子就是原子。
德谟克利特的原子观为后来的原子理论奠定了基础,虽然他未能提供实验证据,但这一概念的提出开启了原子结构研究的大门。
19世纪:化学元素周期律的发现随着化学元素周期律的发现,科学家们开始意识到原子不可能是最基本的粒子,反而是由更小的粒子构成。
著名的化学家门捷列夫提出了元素周期律,揭示了元素性质的周期变化规律,这启发了人们对原子内部结构的探索。
20世纪初:卢瑟福散射实验卢瑟福的著名散射实验揭示了原子的大部分质量和正电荷集中在原子核中心的事实。
这一发现推动了卢瑟福原子模型的提出,认为原子由一个小而密集的带正电的核和围绕核运动的电子组成,象征着原子模型的重大突破。
量子力学的发展:现代原子结构模型随着量子力学的发展,原子结构模型经历了量子力学的革新。
量子力学描述了微观粒子的运动和行为,诞生了现代原子结构模型,如薛定谔的波动力学模型和海森堡的矩阵力学模型,这些模型更准确地描述了原子内部结构和性质。
物理意义原子结构模型的演变历程在物理意义上具有重要意义。
通过对不同模型的逐步完善和修正,我们更深入地理解了原子的内部结构和性质,揭示了微观世界的奥秘。
原子结构模型的研究对于物质的性质、化学反应、材料科学等方面都具有重要的影响,为人类认识和利用自然界提供了重要的理论基础。
综上所述,原子结构模型演变历程是科学发展的重要组成部分,也是物理学研究的重要方向。
通过对原子结构模型历史的回顾和探讨,我们能更深入地理解物质世界的微观结构,为科学研究和应用提供了重要的理论支持和指导。
原子模型演变史从古希腊时代到现代,原子模型已经以几何图形来描述原子的大小和结构。
每一次演变都揭示了一个新的层次上我们关于原子的了解,引发了一系列的科学发现。
今天,让我们踏上一次演变的旅程,回顾原子模型的发展史,从一个简单的理论演变成对宇宙有着重大影响的系统。
一、原子模型的演变史1.古希腊时期的“阿基米德原子论”古希腊时期的“阿基米德原子论”被认为是第一个物理学与化学的融合,它认为物质是由构成它的“原子”组成的。
古希腊哲学家阿基米德给出了他的假说:万物都是由“原子”构成的,这些“原子”不可分割,在性质和数量上它们是一样的,只是位置上存在差异。
虽然这些原子理论有些粗糙,但它却引发了许多新发现与研究。
想象一下,阿基米德原子论曾认为水是由火原子和气原子组成的。
换句话说,他认为水可以通过加热和加压而消失,但实际上,这只是表面上的“蒸发”,水并没有真的消失,只是以气体的形式释放出来了。
这恐怕不会惊讶任何人,但在那个时代,这项发现是令人兴奋的,它让哲学家和科学家们开始思考更多有关原子的可能性。
A.承认构成物质的最小单位是原子;从古希腊时期,人们把物质分解到它最小的由植物和动物组成的构件,但直到19世纪中叶,人们才开始承认物质的最小单位是原子。
历史上最具影响力的原子学家之一是英国化学家约翰·斯托克斯(John Dalton),他提出了原子理论,认为原子是物质组成块,且不可分割。
斯托克斯甚至发现,每种原子都有其单独的性质和重量,不同的元素由其特定数量的原子组成。
他的发现通过开发者了一系列元素的公式,为研究其他元素形成的化合物提供了科学原理,也为后续科学发现创造了坚实的基础。
当今,许多著名的科学家认为,斯托克斯的原子理论是承认物质由原子组成的重要前提,并且其分子理论在许多实际应用中仍然存在着重大的意义。
一、原子结构模型发展史及其影响原子最初被认为没有质的区别,只有大小、形态和位置的区别,经过后期哲学家的发展,认识到各种原子也有质的区别。
古代的这种原子观是在缺乏实验佐证的情况下产生的。
18世纪末,英国化学家道尔顿(Dalion,1766—1844年)通过大量实验与分析,认识到原子是真实存在的,并确信物质是由原子结合而成的。
他于1808年出版了《化学哲学新体系》一书,提出了原子学说,认为每种单质均由很小的原子组成。
不同的单质由不同质量的原子组成。
并认为原子是一个坚硬的小球,在一切化学变化中保持基本性质不变。
此后近一百年,关于原子的结构的认识没有大的变化。
在19世纪末,放射性元素逐一被发现,它们裂变的事实冲破原子不能再分的传统观念。
1897年英国科学家汤姆孙(1856—1940)发现原子里有带负电荷的电子。
这一切激励着科学家们去探索原子的内在结构。
1904年,英国科学家汤姆孙首先提出葡萄干面包原子模型。
他认为既然电子那么小,又那么轻,因此原子带正电部分充斥整个原子,而很小很轻的电子浸泡在正电的气氛中,这正像葡萄干嵌在面包中那样。
电子带的负电荷被原子内带正电荷部分抵消,因此原子是电中性的。
汤姆森的原子模型能解释原子是电中性的,还能估计原子半径约为100pm(10-10m),因此它风行10多年,以后意外地被汤姆孙的学生卢瑟福推翻。
1911年,卢瑟福(1897—1937)和盖革(1882—1945)用α粒子轰击金属箔,并用荧光屏记录粒子散射现象的情况。
他发现大部分α粒子按直线透过金属箔,只有极少一部分α粒子被反弹回来或偏转很大角度。
这个实验充分说明原子内有很大空间,而正电荷部分集中在原子中心极小的球体内,这里占原子质量的99%以上。
因此,他断定汤姆孙的葡萄干面包的原子模型不符实际,同时他果断地提出新的原子模型。
1912年,卢瑟福联系太阳系中行星绕太阳旋转情况提出新的原子模型是带正电的原子核在原子正中,占原子质量的绝大部分,正像太阳系中太阳那样;带负电的电子环绕原子核作高速运动。
按这个模型可估计原子直径是100pm,电子直径是1fm,原子核直径是10~0.1fm,原子内部有很大空间。
虽然这个模型能成功地解释一些现象,但是它立即遭到全世界大多数科学家反对。
因为据经典物理理论,任何作加速运动的电荷都要辐射电磁波,这必然引起两种后果:第一,不断辐射能量,电子将沿螺旋线渐渐趋近原子核,最后落到核上而毁灭。
第二,电子不停地、连续地辐射电磁波,电磁波的波长会发生连续的变化,因此,所有的原子都应发射连续光谱。
然而事实决非如此,首先,从未发生过原子毁灭的现象。
说明电子不会落到原子核上去。
其次,原子在正常情况下不辐射电磁波。
即使气体或蒸汽被火焰,或其他方法灼热时有电磁波辐射,但这种辐射通过三棱镜后得到的是线光谱,而不是连续光谱。
这些事实使卢瑟福也不知怎样来解释。
正当卢瑟福无计可施时,刚巧来了一位年轻丹麦化学家玻尔(1885—1962),他坚决支持卢瑟福的新模型,并且引进崭新的量子学说,为原子结构理论谱写出光辉的一页。
玻尔理论的要点是:第一,卢瑟福的新模型是正确的,问题是应指出原子中电子环绕原子核作高速运动时,只能在特定轨道上运动,电子在这样的轨道上运动时不辐射能量。
这时电子所处的状态叫基态。
第二,当电子从离核较远的轨道跳到离核较近轨道时,原子放出能量,并以电磁波的形式辐射出来,辐射能量的大小决定于电子跳跃前后两个轨道的半径。
由于轨道是不连续的,因此发射的能量也是不连续的。
从上述两点出发,首先揭开氢光谱之谜,成功地使巴耳末(1825—1898)公式得到完满解释,还轻而易举地算出原子半径。
玻尔理论作为物理和化学一场革命而载入史册。
然而,波尔没有认识到宏观物体与微观粒子的本质区别。
他的理论还是建立在牛顿力学的基础上的,因此在解释多原子光谱时遇到不可克服的困难。
这意味着必须建立新的理论体系。
正当波尔致力于研究电子在原子中的运动状态时,英国卢瑟福及其学生查德威克(1891—1974)进一步揭开原子核的秘密。
1919年,卢瑟福用α粒子轰击氮核,首次发现质子。
由此知道原子核中存在质子。
他根据原子该质量,提出还存在中子的假说,并预言中子呈电中性,周围不形成电场,不会使周围粒子带电,它的穿透力比α粒子强。
1930年卢瑟福的学生查德威克在卡文迪许实验室用α粒子轰击石蜡时,捕捉到不显电性的中子。
至此,原子的构成基本清楚。
原子核由带正电的质子和不显电性的中子组成,带负电的电子环绕核作高速运动。
1924年法国科学家德布罗意(de Broglie,1892—1960)发现微观世界的微粒在不同条件下分别表现为波动和粒子的性质,即有波粒二象性。
这一发现表明过去人们在研究微观粒子的运动规律时忽略波动性一面,因而得出的结果不能真实地反映微观粒子的运动规律。
纠正了这一偏向后,人们的研究取得很大的成功。
其中尤其突出的是薛定谔,他建立波动方程(后来人称薛定谔方程)。
在此基础上,迅速发展一门新的学科——量子力学。
这是现代研究原子、分子结构的理论基础。
总之,从19世纪末到今天,人们已建立起一整套描述原子内在结构的理论和方法,使化学迅速进入微观领域的研究。
二、“制造波浪”卢瑟福在20世纪的科学家中,卢瑟福是个举足轻重的人。
他在放射学、原子物理学、原子核物理学研究领域都有突出的贡献,对今天的核能开发技术和放射性测量技术都产生了推动作用。
机缘巧遇卢瑟福家族原来在英国,1842年,他的祖父移居到了新西兰。
卢瑟福的父亲是一位农场主,兼做轮箍匠,他共有12个子女,卢瑟福排行第二。
小时候,卢瑟福有时也帮助父亲料理农事。
上学期间,卢瑟福表现出了非凡的才能,十几岁获得了奖学金,并进入大学读书。
大学毕业时,排名第四。
排名倒不能说明什么,不过这时的卢瑟福对物理格外有兴趣。
当时无线电技术刚刚兴起,卢瑟福对此颇有钻研,并发明了一个无线电检波器。
它能干什么用呢?卢瑟福并不关心。
当地法院曾接到一个有关无线电的案子,法院还要卢瑟福作为一名无线电研究专家出庭作证,卢瑟福却拒绝了。
不过后来,卢瑟福还是走入了物理学的“殿堂”。
卢瑟福的人生转折点发生在1895年。
这一年,他大学毕业,并参加了一场考试,以争取去剑桥大学读书的奖学金。
结果他考了第二名,遗憾的是,剑桥大学只取一名。
这样,卢瑟福就只得回家,因为要让家里为卢瑟福付高昂的学费,这几乎是不可能的。
可是事有凑巧,考取第一名的人因为要结婚而放弃了这个名额,因此,第二名就递补上去了。
这样,“遗憾”就变成了万幸。
据说,他收到这份令人高兴的录取通知书时,卢瑟福正在地里收土豆。
这时,他甩掉手中的土豆,说道:“这是我要挖的最后一个土豆了。
”其实,卢瑟福也是准备结婚的,但为了求学上进,他推迟了婚期,只身去了英国。
到了剑桥大学,卢瑟福成了汤姆孙的研究生。
这个英国导师正值壮年,也正带着一个科研集体活跃在物理研究的前沿。
不久,汤姆孙发现了电子。
汤姆孙的操作技术很一般,然而汤姆孙具有发现人材的眼光,他很快就发现这个新西兰人不一样。
卢瑟福是个大嗓门,看上去大大咧咧的,性格粗犷,但他满脑子聪明,而且手很灵巧,他也自然地受到汤姆孙的器重。
同学们也很喜欢这个新西兰人,一位同学在家信中写道:“我们这里从地球上和我们相对的地方来了一只‘长毛兔子’,他正在挖掘非常深的洞。
”同学说他是一只“长毛兔子”是戏称,因为在英国人的眼里,新西兰那个地方只出兔子,没想到来了一个绝顶聪明的人。
他的同学说的不错,卢瑟福对放射性的发展很有兴趣,并在这一新的领域进行探索,正在打一个很深的“洞”。
梦想成真卢瑟福到英国时,正是物理学作出众多发现的时期。
1895年德国物理学家伦琴发现X射线,1896年法国物理学家贝克勒尔发现放射性现象,1897年汤姆孙发现电子。
这些发现大大激励了物理学家的信心,并使人们看到物理学家未来的希望。
1898年,卢瑟福确定自己的研究在放射性上。
但他的研究与别人不一样,他的着重点不是在寻找放射性元素,而是要打开原子的大门,探索原子的内部结构。
幸运的是,这一年,他将强磁场加到铀放射出的射线上,发现射线可分成三股,其中一股直行,另两股一左一右。
他用铝箔来检验铀射线的穿透本领。
他发现,在这一左一右的射线中,一股射线可以穿透0.02毫米厚的铝箔,另一股射线的穿透能力则要大出几十倍,能穿透0.5毫米厚的铝箔。
卢瑟福将它们分别命名为α射线和β射线(后来人们又从铀射线中发现了第三种射线,即γ射线,它的穿透本领更强)。
在进一步的观察后,他发现,放射性物质衰变时,物质不断减少,但它所遵循的规律很奇特,它每经历一个衰变期,自身物质减少一半;再经历一个衰变期,它又减少一半;按这样的规律不断减少下去。
大致是这样减少的。
即在相同的时间内,放射性物质会逐渐减少为最初物质的1/2、1/4、1/8、1/16……。
另一方面,当放射性物质不断减少、辐射强度不断降低时,它衰变的产物却在增多,辐射强度也在增加。
根据他的观察就得出两条著名的曲线,(如图)这2条线被很多人形容为“波浪”。
科学界“兴风作浪”卢瑟福由于在放射性物质研究上的突出成就而获得了1908年诺贝尔化学奖,他对自己不是获得物理学奖感到有些意外,他风趣地说:“我竟摇身一变,成为一位化学家了。
”“这是我一生中绝妙的一次玩笑!”。
获奖之后,卢瑟福的研究仍不断扩展,在原子物理学和原子核物理学研究上取得了极大成果。
他所提出的核式模型仍是一种重要的模型。
这种模型看上去像个微型“太阳系”,现在还常常作为原子的形象来展示。
由于卢瑟福在科学上的贡献,他还在1914年被封为爵士。
1931年他成了贵族,接受了纳尔逊(他的家乡地)男爵的封号。
这是很难得的荣誉。
在绘制贵族的徽章时,在徽章的中心部位,他放上了那两条著名的曲线。
1925年卢瑟福被选为英国皇家学会会长。
1937年10月19日,卢瑟福去世,被安葬在威斯敏斯特大教堂,紧靠着牛顿的墓。
卢瑟福被公认为20世纪最杰出的科学家之一。
卢瑟福是一个性格外向的人,是一个不很“谦虚”的人。
有一次,他的同事对他讲,你有一种不可思议的能力,总是处在科学研究的“浪尖”上。
对此,卢瑟福马上就说:“说得很对,为什么不这样呢?不管怎么说,是我制造了波浪,难道不是吗?”是的,几乎没有人不同意卢瑟福这个自我评价的。
三、诺贝尔奖得主的幼儿园卢瑟福本人是一位伟大的物理学家,这是无需置疑的。
但他同时更是一位伟大的物理导师,他以敏锐的眼光去发现人们的天才,又以伟大的人格去关怀他们,把他们的潜力挖掘出来。
在卢瑟福身边的那些助手和学生们,后来绝大多数都出落得非常出色,其中更包括了为数众多的科学大师们。
我们熟悉的尼尔斯.玻尔,20世纪最伟大的物理学家之一,1922年诺贝尔物理奖得主,量子论的奠基人和象征。
在曼彻斯特跟随过卢瑟福。