七年级数学下册 11.6 零指数幂与负整数指数幂(第2课时
- 格式:doc
- 大小:94.56 KB
- 文档页数:3
第14讲:同底数幂的除法、零指数幂与负整数指数幂一、本讲知识标签同底数幂的除法:(≠0, 为正整数,并且). 同底数幂相除,底数不变,指数相减.零指数幂:即任何不等于零的数的零次方等于1.负整数指数幂:a-n=n a 1( a ≠0,n 为正整数)即:任何不为零的-n (n 为正整数)次幂等于这个数n 次幂的倒数要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.二、范例分析例1.已知,求的值.【分析】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到的值即可代入求值.解:由已知,得,即,,,解得,,.所以. 也可以直接做除法,然后比较系数和相同字母的指数得到的值.【变式】(1)已知,求的值. (2)已知,,求的值. (3)已知,,求的值.【答案】解:(1)由题意,知.∴ . ∴ ,解得.a m n ,m n >()010.a a =≠312326834m n ax y x y x y ÷=(2)n m n a +-m n a 、、312326834m n ax y x y x y ÷=31268329284312m n n ax y x y x y x y +=⋅=12a =39m =2812n +=12a =3m =2n =22(2)(23212)(4)16n m n a +-=⨯+-=-=m n a 、、1227327m m -÷=m 1020a =1105b =293a b ÷23m =24n =322m n -312(3)327m m -÷=3(1)2333m m --=3323m m --=6m =(2)由已知,得,即.由已知,得.∴ ,即.∴ ∴. (3)由已知,得.由已知,得.∴ .例2.已知2a=3,4b=6,8c=12,a 、b 、c 的关系.【分析】本题逆用幂的运算规律,同底数幂乘除的规律,巧妙地将3用2a 代替将6用22b 代换,化成2的幂,从而找出a 、b 、c 之间的关系.解:因为8c=12,所以(23)c=2×6,又因为4b=6,所以23c=2×4b=2×22b=22b+1,所以3c=2b+1因为4b=6,所以22b=2×3,又因为2a=3,所以22b=2×2a=2a+1,所以2b=a+1,所以3c-1=a+1,所以a-4b+3c=0.三、训练提高(一)选择题:1.(2015•下城区二模)下列运算正确的是( )A .(a3﹣a )÷a=a2B .(a3)2=a5C .a3+a2=a5D .a3÷a3=12.化简11)(--+y x 为( ) A 、y x +1 B 、y x 1+ C.、1+xy y D 、1+xy x 3.已知P=,那么P 、Q 的大小关系是( ) A.P>Q B.P=Q C.P<Q D.无法确定(二)填空题:4. 计算.5.(2015春•成都校级月考)(﹣a6b7)÷= . 1020a =22(10)20a =210400a =1105b =211025b =221101040025a b ÷=÷2241010a b -=224a b -=22222493333381a b a b a b -÷=÷===23m =3227m =24n =2216n =32322722216m n m n -=÷=9999909911,99Q =()()34432322396332x y x y x y x y x y xy -+÷=-+-6.若整数x 、y 、z 满足,则x=_______,y=_______,z=________.(三) 解答题:7.先化简,再求值:,其中=-5.8.已知a 、b 互为相反数,c 、d 互为倒数,12=-x ,2=y ,求22007)(y cd x b a --++ 的值.(4分)9.若2010=a , 1510-=b ,求b a 239÷的值.10.已知,求整数x.11.阅读下列材料:关于x 的方程:121212111,;222,;333,;x c x c x x c cx c x c x x c cx c x c x x c c +=+==+=+==+=+==的解是的解是的解是 …请观察上述方程与解的特征,比较关于x 的方程(0)m m x c m x c +=+≠与它们的关系,猜想它的解是什么?并加以验证.12.请你来计算:若1+x +x2+x3=0,求x +x2+x3+…+x2012的值.91016()()()28915x y x ⨯⨯=()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦a 2(1)1x x +-=。
七年级数学下册11.6零指数幂与负整数指数幂说课稿一. 教材分析《新人教版七年级数学下册》第11.6节“零指数幂与负整数指数幂”是初中学段初中一年级下学期的数学课程内容。
这一节主要介绍零指数幂和负整数指数幂的概念、性质及其运算规律。
学生在学习了有理数、实数等基础知识后,进一步拓展指数幂的知识,为以后学习代数式、函数等高级知识打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,如实数、有理数等概念。
然而,对于零指数幂和负整数指数幂这些较抽象的概念,学生可能存在一定的理解难度。
因此,在教学过程中,需要从学生已有的知识出发,循序渐进地引导学生理解和掌握新知识。
三. 说教学目标1.知识与技能:使学生理解零指数幂和负整数指数幂的概念,掌握它们的性质和运算规律。
2.过程与方法:通过观察、分析、归纳等方法,培养学生发现和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的抽象思维能力和创新意识。
四. 说教学重难点1.教学重点:零指数幂和负整数指数幂的概念、性质和运算规律。
2.教学难点:零指数幂和负整数指数幂的运算规律以及应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合数学软件和网络资源,提高教学效果。
六. 说教学过程1.导入新课:通过复习指数幂的基本概念,引导学生思考零指数幂和负整数指数幂的意义。
2.自主学习:让学生独立观察和分析 examples,引导学生发现零指数幂和负整数指数幂的性质。
3.小组讨论:学生进行小组讨论,分享各自的学习心得,引导学生共同探讨零指数幂和负整数指数幂的运算规律。
4.讲解与演示:教师对零指数幂和负整数指数幂的概念、性质和运算规律进行讲解,并通过示例进行演示。
5.练习与巩固:布置练习题,让学生运用所学知识解决问题,巩固零指数幂和负整数指数幂的知识。
11.6零指数幂与负整数指数幂(第2课时)
【学习目标】 掌握并会用行计算。
【课前预习】 学习任务一:知识回顾
1.用符号语言表示同底数幂的除法的运算性质:______________________________;
用文字语言表示同底数幂的除法的运算性质:______________________________。
2.计算(1)610a a ÷ (2)214y
y ÷ (3)()()b a b a 262÷ (4)a a a ÷÷28
学习任务三:自学教科书P97—P99练习以上的内容,完成下列问题:
1.仿照同底数幂的除法的运算性质进行计算:322÷ 431010÷
你还有其它的算法吗?
2.你可以得到:=-22 , =-110 。
3.总结:公式
文字语言 注意:底
数a 的取值范围是________
4.计算:(1)25- (2)3)2(-- (3)3)41(-
【课中探究】
解疑答惑:(1)通过预习,你掌握了哪些知识?
(2)你有哪些不明白的问题?
典型例题:
例1.计算 (1)12- (2)4)1(-- (3)2)1.0(-
(4)3)31(-- (5))
()(3y x y x ≠--
例2.下列各式中正确的个数是( )
①1)1(0-=- ②1)1(1=-- ③22313m
m =- ),0(1是正整数p a a
a p p ≠=-
④1)236(0=⨯- ⑤001.0103=-
A.1个
B.2个
C.3个
D.4个
例3.计算022)91
()51()31(+-+---
巩固提高
完成课后练习99P 练习第1、2题。
系统总结
注:本章中出现零指数幂或负整数指数幂时,均约定底数不等于零。
【当堂检测】
一、选择题(3分)
1.下列运算正确的是( )
A.236a a a =÷
B.0)1()1(01=-+--
C.077=÷a a
D.41
22-=-
二、填空(每小题3分,共9分)
2.计算 ______2132
0=⎪⎭⎫
⎝⎛+-
3.若()23-+a 有意义,则a_____________
4.若271
3=x ,则x=_____________
三、计算(每小题3分,共18分)
⑴12- ⑵ 1(3)-- (3)5(1)--
(4)3(0.1)- (5)3(10)-- (6)43-
【课后巩固】
一、选择题(3分)
1.计算12-的结果是( )
A.2-
B.2
C.21-
D.2
1 二、填空(每小题3分,共9分)
2.若()2
3--x 有意义,则x 的取值范围是_________________ 3.计算________102=-
4.计算=--22
三、计算(每小题3分,共18分)
5. 6.
7.()1
0213-⎪⎭⎫
⎝⎛--π 8.
()02331-+⎪⎭⎫ ⎝⎛--π
9. 0203)01.0(10)10()10(⨯--⨯- 10.
202)32()41()21(---+-
1
)4
3(--2)43(--。