建筑结构设计中周期比确定的相关问题探讨
- 格式:docx
- 大小:33.89 KB
- 文档页数:5
关于结构设计的若干问题一,结构设计判断是否规则的几大参数:位移比,层间位移角,周期比,层间刚度比, 层间受剪承载力比等参数不同规范的解析:1,几大指标一个共同的特点就是刚性楼板假定.但配筋计算要按照实际假定.(广厦存在缺陷,不能跟PK,YJK一样设置) 2,位移比:详抗规3.4.3,国标3.4.5,广东高规3.4.4注:1)单向地震,考虑地震剪力换算的水平力并考虑偶然偏心下的最大位移比,广厦软件看位移指标只要看"位移比"最下面的位置就可以了.2),位移比的控制:普通建筑是1.2~1.5,混合结构和复杂高层应该控制在1.4以内.单项指标达到特别不规则的位移比:具有较多层超过1.4,较多层一般是超过1/3的楼层(参照老朱表3.1.4-2.)位移比放宽的条件是位移角小于规范要求的一半以上时.国标 1.6,广东高规 1.8.只是可以放宽,但是它还是不规则.不是什么特别情况我们还是尽量控制在1.4以内.3)目前主流设计院一般都认为当位移比超过1.2时为质量和刚度分布明显不对称,要考虑双向地震.但是如果是有钢筋含量控制的,我们可以参考广东高规条文说明4.1.3条.3.层间位移角:抗规5.5.1,高规3.7.3, 广东高规3.7.3,计算层间位移角不考虑偶然偏心,主要考察风荷载作用下和水平地震下的位移角.影响层间位移角的参数有:中梁刚度放大系数,高规5.2.2及条文说明和广东高规5.2.2,我们组统一中梁大于800取1.3,小于800的取1.5.周期折减系数,周期折减影响是最大的.连梁刚度算大指标可以不折减,算内力和配筋的折减系数,我们组6.7度区统一取0.7.4.周期比:国标3.4.5,结构扭转为主的第一自振周期与平动为主的第一自振周期的比.,周期比的控制与位移比相似.抗规是没有提及周期比的概念的,所以我们可以理解为其实多层建筑是不考虑周期比的.广东高规也是取消了对周期比的要求,详条文说明3.4.4.关于高层建筑周期比是否要控制,本人的见解是:如果是简单的建筑,比如说方方正正的厂房,如果结构位移比不超过 1.2,其实也就是扭转周期已经很小了, 但是因为厂房刚度相对都比较大,平动周期也很小,也会出现周期比超过90%的现象,这种情况下我们就不调整了,因为调整反而不合理了.不规则的高层建筑我们还是按照国标控制.5.层间刚度比: 1,按照国标计算,在广厦总信息里面自动生成有三种计算方法:1)是等效剪切刚度比(高规 E.0.1),主要考察的是带转换结构的转换层上,下层的刚度比.还有就是考察高层建筑结构嵌固部位的刚度比,当地下室顶板作为嵌固层时,地下一层与首层侧向刚度比不宜小 2.地下一层的刚度可以取塔楼加塔楼以外的三跨不超过20米范围,详国标 5.3.7及条文说明,广东高规5.3.7.这条适用所有的结构. 2),(抗规3.4.3条文说明)(国标3.5.2-1) 楼层侧向刚度=层剪力/层间位移,主要考察多层建筑侧向刚度比和高层建筑的框架结构的侧向刚度比.本层与相邻上层的比值不宜小于0.7,与相邻上部三层刚度的平均值的比值不宜小于0.8.3),修正侧向刚度比(国标3.5.2-2)主要考察框架剪力墙结构,板柱剪力墙结构,剪力墙结构,框架核心筒结构,筒中筒结构.本层与相邻上层的比值不宜小于0.9,当本层层高大于相邻上层层高的1.5倍时,该比值不宜小于1.1;对结构底部嵌固层,该比值不宜小于1.5倍. 2.按广东高规计算, 在广厦总信息里同样生成三种计算方法,其中前两项是一样的,后面一项是按照(广东高规 3.5.2)我对比了一个框架剪力墙结构,第三项国标和广东高规是一样的,但根据广东高规3.5.2条文说明,高层建筑不管是框架结构还是框剪还是剪力墙都只要看这一项就可以了.同样是要求本层与相邻上层的比值不宜小于0.9,当地下室顶板作为计算嵌固层时,首层侧向刚度不宜小于相邻上层的1.5倍.3.当地下室顶板不能满足嵌固要求时,嵌固层往下移,此时,首层可以不满足与上层的刚度比大于 1.5的要求.6.受剪承载力:抗规3.4.3,国标及广东高规3.5.3,层间受剪承载力不宜小于其相邻上层的80%,不应小于其相邻上层受剪承载力的65%.二,参数设置需要注意的问题:1,侧向刚度比不满足的楼层我们一般称为软弱层,受剪承载力不足的楼层我们一般称它为薄弱层,这两种情况根据抗规3.4.4.2,这两种竖向不规则情况多层建筑根据抗规3.4.4.2,刚度不够的均应乘以不小于1.15的地震剪力增大系数.广厦软件会自动考虑.同样的问题高层根据国标或者广东高规3.5.8,需要乘以1.25的增大系数.如果是框架结构软件还是按照默认乘以1.15是不对了,这时候在软件计算时可以将该楼层设置为薄弱层.这样就会自动考虑了.国标及广东高规 3.5.7规定,不宜采用同一层刚度和承载力同时不满足规范要求的高层建筑,如果出现这种问题,处理办法就是调模型.三,对规范的理解:1,国标3.4.8,广东高规3.4.7,楼板大开洞需在洞口周边设置边梁加大板厚及双层双向配筋,这里所说的大开洞是指洞口超过800*800.2.关于抗震等级的问题:国标及广东高规3.9,甲.乙类建筑的中小学及医院按照地方标准一般直接提高一度的抗震烈度采取相应的措施,直接按照提高一度计算.提高的不仅是抗震措施,抗震构造措施还有地震加速度.按照规范普通甲.乙类建筑只需要按照提高1度采取相应措施即提高1度采用相应的抗震措施和抗震构造措施即可.丙类建筑对于Ⅰ类场地,7度及以上地区可以采取降低一度的要求采取抗震构造措施,Ⅲ,Ⅳ类场地7度半及8度半地区宜分别按照8度及9度采取抗震构造措施.房屋的抗震设防类别影响房屋的抗震措施及抗震构造措施,房屋的场地类别只影响房屋的抗震构造措施.3,对风荷载敏感的高层建筑,承载力设计时应按基本风压的1.1倍考虑,这里要注意的是承载力设计指的是钢筋混凝土构件的配筋设计等,算大指标其实是不考虑的,但软件会自动考虑.4.关于多塔结构:国标 2.1.15,未通过结构缝分开的裙房上部具有两个或者两个以上塔楼的结构.广东高规:地面以上未通过结构缝分开的裙楼上部具有两个或者两个以上塔楼的结构.两者的区别是:国标认为如果地下室顶板不能作为嵌固层,也就是嵌固层需要下移,那么在地下室顶板上面分塔的结构为多塔结构.广东高规认为只要地下室是埋地的,不管能否作为嵌固层,其上面分塔均不算多塔结构.国标5.1.14,广东高规5.1.17均认为多塔结构应该整体模型和分塔模型分别计算,但是老朱的解读是整体计算和分塔计算均要考虑几大计算指标,但其实整体计算要满足计算指标是比较困难的.如果是广东以外的地区要注意.而广东高贵5.1.17条文说明指出分塔计算主要考察结构的扭转位移比等控制指标,整体模型计算主要考察多塔楼对裙房的影响.塔楼的结构设计可依据分塔模型或整体模型的计算结果,这样的解析让多塔结构的计算更具可行性.5.关于剪力调整的问题:抗规6.2.13.1,国标及广东高规8.1.4,侧向刚度沿竖向分布基本均匀的框架-抗震墙结构和框架-核心筒结构,任一层框架部分承担的剪力值,不应小于结构底部总地震剪力的20%和按照框架-抗震墙,框架核心筒结构计算的框架部分各楼层地震剪力中最大1.5倍二者的较小值.这里的剪力调整主要针对框架剪力墙或者框架核心筒的框架部分,因为框架是第二道防线,当剪力墙屈服了,我们要保证框架部分不至于太弱.需要调整的框架-剪力墙结构和框架-核心筒结构的框架所占的地震倾覆力矩的比例一般在10%~80%之间,小于10%的框架够不成第二道防线,其实就是剪力墙结构,没必要调整,而大于80%的基本上不用调整也肯定是够了.地下室部分的框架结构也是不需要调整的,因为地震剪力在地下部分主要通过顶板传给侧墙传给周边的土了,框架无需再去调整.四,各种类型的结构需要注意的地方:1,框架结构:1),国标6.1.8及条文说明,广东高规6.1.8,不与竖向抗侧力构件(框架柱,框架剪力墙的柱)相连的次梁,可按非抗震要求进行设计.箍筋可以不用按照框架梁一样弯135度.一端与框架柱连接另外一端与梁连接的,与框架柱连接的一端按照框架梁考虑,另外一端按照次梁考虑.2)国标及广东高规6.3.2.4关于箍筋最大间距其中一个要求是h/4,当梁高小于400时,箍筋间距会出现小于100的,这个我们要尽量避免太密箍筋,当然如果软件出现了小于100间距的箍筋我们也要知道是为什么。
Building Structure百家论坛We learn we go建筑结构设计中一些问题的讨论(一)李国胜/北京市建筑设计研究院现行国家标准规范、规程是成熟经验的总结,但是部分规定已滞后。
现行的标准图集是根据现行规范、规程和编制单位及编制者以往经验编制而成的,也存在如前所述的情况,其中有的内容不一定适合当前的情况,需要设计者根据工程的具体情况进行分析后再选用。
在工程设计中遇到的某些问题,在规范或规程中并没有明确给出或尚未列出,需要由设计者根据自己的设计概念和经验来决策。
现针对设计中的一些问题提出个人见解供讨论,不妥或错误之处请读者指正。
1 有关规定1.1 高层建筑的高宽比1)《高层建筑混凝土结构技术规程》(JGJ3—2002)[1](简称《高规》)4.2.3条规定的高层建筑结构的高宽比“不宜超过”表4.2.3-1,4.2.3-2,既不是强制性条文或必须遵守,也不是高宽比超过了上述两表就属超限高度。
高层建筑的高宽比,是对结构刚度、整体稳定、整体倾覆、承载能力和经济合理性的宏观控制,当高宽比满足《高规》的表4.2.3-1和表4.2.3-2时,一般整体稳定及倾覆不经计算就能满足,否则整体稳定和整体倾覆必须进行验算。
目前我国超过B 级高度的超高层建筑高宽比的已有相当数量,例如上海金茂大厦(88层,主体结构高度为372.1m )高宽比为7.0;深圳地王大厦(77层,混凝土屋顶结构高度为384m )横向高宽比为8.75;上海明天广场(58层,屋面高度为230.9m )高宽比为7.8;深圳赛格广场(主楼72层,屋面高度为292m ,裙房高10层高49.6m 与主楼相连)裙房以上高宽比为5.76等等。
2)在复杂体型的高层建筑中,如何计算高宽是比较难确定的问题。
对突出建筑物平面较小的局部结构(楼梯间、电梯间等),一般不宜包含在计算宽度内;对带有裙房的高层建筑,当裙房的面积和刚度相对于上部塔楼的面积和刚度较大时,计算高宽比的高度和宽度可以按裙房以上部分考虑。
浅析高层结构周期比的调整摘要:通过周期比的相关概念分析,指出控制周期比的目的,实际是控制结构的扭转效应;控制周期比的实质,实际是避免结构的扭转破坏。
同时,对周期比计算时应注意的问题做了一些总结。
重点阐述了几种周期比有效调整的方式方法。
关键词:周期比;扭转周期;平动周期;振型;扭转刚度;侧移刚度abstract: through the analysis of related concepts of cycle ratio, and points out that the control cycle than the objective, practical is to control the torsion effect; the control cycle than real, practical is to avoid the damage of structure torsion. the methods for several cycles than effective adjustment method.keywords: periodic ratio;torsional period;translation period;vibration; torsional stiffness;lateral stiffness 中图分类号:tu973文献标识码:a 文章编号:2095-2104(2012)引言国内、外历次大地震震害表明,平面不规则、质量与刚度偏心和抗扭刚度太弱的结构,在地震中极易遭受到严重的破坏。
国内一些振动台模型试验结果也表明,过大的扭转效应会导致结构的严重破坏。
限制结构的抗扭刚度成为限制结构扭转效应的一个主要方面,而限制结构的抗扭刚度不能太弱,关键是限制结构的周期比。
1周期比的相关概念新《高层建筑混凝土结构技术规程》第3.4.5条规定:结构扭转为主的第一自振周期tt与平动为主的第一自振周期t1之比,a级高度高层建筑不应大于0.9,b级高度高层建筑、超过a级高度的混合结构及复杂高层建筑不应大于0.85。
高层建筑的周期比控制摘要:在高层建筑结构设计过程中,为了防止建筑发生扭转破坏,针对《高层建筑混凝土结构技术规程》(jgj3—2010)对高层建筑的周期比控制,提出了高层框架结构周期比控制的有效方法。
关键词:高层建筑;周期比;扭转;中图分类号:[tu208.3] 文献标识码:a 文章编号:周期比即结构扭转为主的第一自振周期tt与平动为主的第一自振周期t1之比。
周期比是结构扭转刚度、扭转惯量分布大小的综合反应。
控制周期比的目的是使抗侧力构件的平面布置更有效、更合理,使结构不会出现过大的扭转效应。
控制结构周期比的实质是,控制结构的扭转变形要小于结构的平动变形,周期比不是要求结构足够结实,而是要求结构刚度布局合理,以此控制地震作用下结构扭转激励振动效应不成为主振动效应,避免结构扭转破坏。
当tt与t1两者接近时,由于振动耦连的影响,结构的扭转效应将明显增大。
因此,在抗震设计中采取措施减小周期比tt/t1值,使结构具有必要的抗扭刚度。
1耦联周期比和非耦联周期比对于平面布置均匀、对称的结构,质心和刚心重合,结构具有纯粹的平动和扭转振型,这种情况下结构的周期及周期比tt/tl为非耦联周期和非耦联周期比;对于平面布置不对称、不均匀的结构,质心和刚心不重合,平动振型和扭转振型相互耦连,平动振型中含有扭转成分,扭转振型中含有平动成分,不再是纯粹的平动和扭转振型,这种情况下的结构周期和周期比tt/tl则为耦联周期比和耦联周期比。
结构的非耦联周期比tt/tl与结构刚度和质量之间存在简单关系(k1,kt为抗侧刚度和抗扭刚度,m1,mt为质量和转动惯量),可见周期比能直接反映结构抗扭刚度与抗侧刚度的比例关系,周期比小意味着结构抗扭刚度强;反之,周期比大意味着结构抗扭刚度弱。
耦联周期比同样可以反映结构抗扭刚度与抗侧刚度之间的比例关系,它与非耦联周期比和偏心率有关,当结构位移比满足《高层建筑混凝土结构技术规程》jgj 3-2010(以下简称《高规》)[1]的要求、偏心率不过大时,耦联周期比与非耦联周期比的差别很小。
高层结构电算结果判断的五个主要指标电算有比较详细的结果,规范也有明确的判断依据。
具体是第一周期的大小,第一扭转周期和平动周期的比值小于0.9(0.85),判断什么是扭转周期平动周期在周期后的比例中可以看到。
以上有问题就说明结构的刚度有值得查看的地方。
这个要达到90%以上,至于为什么,几乎所有将震型的文字都有说明层间位移(小于1.2,考虑偶然偏心时小于1.4),楼层最大位移,位移角。
规范设计该文字的地方就有说明规范没有说剪重比,用的是剪力系数。
作用是判断结构刚度及地震力判断薄弱层,指标应该很好查吧如何判断电算结果是否合理?——高层建筑结构设计需要控制的七个比值及调整方法高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规 6.3.7和6.4.6,高规6.4.2和7.2.14。
轴压比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规3.3.13。
这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)人工调整:如果还需人工干预,可按下列三种情况进行调整:a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
建筑结构设计中有关问题的探讨摘要:随着高层建筑进一步的发展,满足高层建筑的形式,材料,力学分析模型都将日趋复杂多元,为了革新高层建筑,体现其魅力,追求新的结构形式和更加合理的力学模型将是土木工程师们的目标和方向。
关键词:高层建筑;结构;设计中图分类号:tu318 文献标识码:a文章编号:0引言如何设计出舒适、安全同时又符合人们精神生活要求且经济实用民用建筑以适应建筑市场的变化,满足消费者们的需求,成为设计师们要面对解决的首要问题。
结合多年的设计实践经验对高层民用建筑结构设计中常出现的问题进行总结。
1要进行合理的概念设计1.1结构平面布置刚度宜均匀,减少扭转高层建筑的平面布置宜简单,规则,尽量减少突出、凹进等复杂平面。
更重要的是结构平面布置时要尽可能刚度均匀,即结构的刚心与质心尽量接近,减少地震作用下的扭转,扭转对结构的危害很大。
减少结构的扭转,一是减少地震作用引起的扭转,二是增加结构抵抗扭转的能力。
平面刚度布置均匀,可减少地震作用下的扭转。
而影响平面刚度均匀的主要因素是剪力墙的布置。
剪力墙集中布置在结构平面的一端或一侧是不好的。
大刚度抗侧力单元偏置的结构在地震作用下扭转大,而对称布置剪力墙、井筒有利于减少扭转。
周边布置剪力墙,或周边布置刚度很大的框筒等,都是增加结构抗扭刚度的重要措施,有利于抵抗扭转。
为了减少地震作用下的扭转,还要注意平面上质量分布,质量偏心会引起扭转,质量集中在周边会加大扭转。
1.2结构竖向刚度宜均匀,避免薄弱层,减少鞭梢效应结构宜做成上下等宽或由下向上向心逐渐减小的体型,更重要的是结构的抗侧刚度应当沿高度均匀分布,或沿高度向心逐渐减小。
各层剪力墙的布置是影响结构竖向刚度是否均匀的主要因素。
框支剪力墙结构是典型的结构竖向刚度有突变的结构,框支层的变形大,为薄弱层,容易发生地震震害。
故在结构设计时,不允许将全部或大部分剪力墙设计成框支,必须有一走数量的落地剪力墙,将框支剪力墙转换层以上的剪力较均匀的转移到落地剪力墙,从而避免软弱层引起的震害。
摘要:高层建筑结构设计不仅要满足构件承载力的计算,而且要保证建筑结构整体刚度,满足位移和周期比的要求。
高层建筑结构的自振周期是高层建筑结构在设计过程中的一个重要参数。
是判断高层建筑结构设计是否合理的一个重要依据。
本文结合自己多年结构设计经验,对结构主自振周期的判定、周期比值等进行了分析,以便合理控制结构的扭转刚度,保证结构的整体稳定性。
关键词:主自振周期;周期比;刚度引言:《高层建筑混凝土结构设计规程》(JGJ3—2010)第3.4.5 条规定:结构平面布置应减少扭转的影响。
结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比,A 级高度高层建筑不应大于0.9,B 级高度高层建筑、超过A 级高度的混合结构及本规程第10章所指的复杂高层建筑不应大于0.85。
《高规》用周期比要求结构的平面布置以增强结构的抗扭能力,周期比不满足要求说明结构的扭转效应明显,即结构平面布置不合理,下面对如何确定结构的T?t、T1 及比值进行分析。
1 高层建筑结构主自振周期的判定方法结构的基本自振周期决定于多方而因素。
如建筑物的高宽比、结构形式、平面布置、建筑物层数等。
在不同的荷载作用下结构的自振周期并不是一个常数,而是随着结构变形的改变而变化。
高层建筑结构体系是一个空间体系,振动形式十分复杂。
结构的自振周期短则刚度强,反之则刚度弱。
主自振周期是对结构影响较大的低阶周期,一般指前三振型对应的周期。
1.1通过计算振型方向因子判定《高规》3.4.5 的条文解释:扭转偶联振动的主振型,可以通过计算振型方向因子来判断,在两个平动和一个转动构成的三个方向因子中,当扭转方向因子大于0.5 时,则该振型可认为是扭转为主的振型。
以上条文说明明确给出了判断扭转振型的方法,平动振型即为平动因子大于0.5 时所对应的振型。
这种方法能准确判定高阶振型,对判定第一自振周期的振型是不够精确的,从结构整体计算软件生成结构整体空间振动简图中可以明显看出,即使主平动方向因子达到0.6、0.7 时结构的扭转效应也非常明显,只有因子达到0.9 以上时结构的扭转效应才会很小。
PKPM刚度比、位移比、周期比详细讲解周期比规范条文:新高规的4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1 之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。
对于通常的规则单塔楼结构,如下验算周期比:1)根据各振型的平动系数大于0.5,还是扭转系数大于0.5,区分出各振型是扭转振型还是平动振型 2)通常周期最长的扭转振型对应的就是第一扭转周期Tt,周期最长的平动振型对应的就是第一平动周期T1 3)对照“结构整体空间振动简图”,考察第一扭转/平动周期是否引起整体振动,如果仅是局部振动,不是第一扭转/平动周期。
再考察下一个次长周期。
4)考察第一平动周期的基底剪力比是否为最大5)计算Tt/T1,看是否超过0.9 (0.85)周期比控制什么?如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。
一句话,周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性周期比不满足要求,如何调整?一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。
周期比不满足要求说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是加强结构外圈刚度,削弱结构内筒刚度。
F验算周期比的目的,主要为控制结构在罕遇大震下的扭转效应。
F多塔结构周期比:对于多塔楼结构,不能直接按上面的方法验算。
如果上部没有连接,应该各个塔楼分别计算并分别验算,如果上部有连接,验算方法尚不清楚。
F体育场馆、空旷结构和特殊的工业建筑,没有特殊要求的,一般不需要控制周期比。
F当高层建筑楼层开洞口较复杂,或为错层结构时,结构往往会产生局部振动,此时应选择“强制刚性楼板假定”来计算结构的周期比。
建筑结构设计中周期比确定的相关问题
探讨
摘要:建筑结构设计中,周期比是判断结构扭转效应的重要指标。
本文对如何合理确定周期比计算的第一平动周期、第一扭转周期,及周期比是否需强制楼板刚性假定,多层建筑结构是否控制周期比等进行了探讨。
关键词:建筑结构设计;周期比;第一平动周期;第一扭转周期
1引言
当结构第一扭转周期T
t 与第一平动周期T
l
两者接近时,由于振动耦联影响,
结构扭转效应明显增大。
故规范对周期比T
t / T
1
作出了规定,以限制结构抗扭
刚度不能太弱,减少扭转不利影响。
《高层建筑混凝土结构技术规程》JGJ3-
2010[1](以下简称《高规》)第3.4.5条规定,结构周期比,A级高度高层建筑
不应大于0.9,B级高度高层建筑、超过A级高度的混合结构不应大于0.85。
《超限高层建筑工程抗震设防专项审查技术要点》[2]附录一规定,扭转周期比大
于0.9, 混合结构扭转周期比大于0.85时为抗扭刚度弱,应进行超限审查。
从上述可知周期比是一项非常重要的指标,但目前很多结构设计人员对如何
合理确定第一平动周期、第一扭转周期,周期计算是否考虑附加偶然偏心及楼板
刚性假定,多层建筑结构是否控制周期比等有疑惑,下文将对以上问题进行探讨。
2第一平动周期T
1、第一扭转周期T
t
的确定
2.1规范规定
《高规》第4.3.5条文说明,扭转耦联振动的主振型,可通过计算振型方向
因子来判断,在两个平动和一个扭转方向因子中,当扭转方向因子大于0.5时,该振型可认为是扭转为主的振型。
则可知规范对主振型的判断指标,及第一平动
周期、第一扭转周期对应振型的平动系数与扭转系数多少为合适,并未做出说明。
2.2振型方向因子的说明
根据资料[3],正则化振型向量空间中,结构质量矩阵具有正交性:
ΦT MΦ=I
其中Φ为振型矩阵,M为质量矩阵,I为单位对角矩阵。
对第j振型有 M =1.0 (1)
={x
1j (x)
ij
...y
1j
...y
ij
...θ
1j
...θ
ij
}T(2)
M=diag[m
1...m
n
,m
1
...m
n
,J
1
...J
n
] (3)
式中x
ij 、y
ij
、θ
ij
为第i 质点j振型的三个位移分量,m
i
、J
i
为第i质点的
集中质量和质量惯性矩,n为质点总数(计算层数)。
将(2)、(3)式带入(1)式并定义方向因子为
D
xj = , D
yj
= ,D
θj
=
则有 D
xj + D
yj
+ D
θj
=1.0 (4)
由式(4)可知,当扭转方向因子D
θj
大于0.5时,可认为j振型是扭转为主
的振型;反之,则是平动为主的振型。
当扭转因子D
θj
=1.0时,为纯扭转振型;
当平动因子D
xj + D
yj
=1.0,为纯平动振型。
2.3主振型的判断
对某个特定的地震作用引起的结构反应,一般每一个参与振型都有一定贡献,但是贡献大小不同,通常贡献最大的就是主振型。
PKPM程序采用基底剪力为贡献
指标,其周期结果中有各振型 X、Y 方向的基底剪力,某一振型平动方向基底剪
力为该振型X、Y方向的基底剪力之和,按此方法,可得各振型平动方向基底剪力,则基底剪力最大的两个振型即为该结构两个平动方向的主振型(一般与周期
结果中第一、第二平动周期的振型一致)。
同时应查看该振型的振型图是否为整体振动,若该振型为局部振动,则不能作为主振型。
2.4 合理确定第一平动周期T
1、第一扭转周期T
t
1.
第一扭转周期T
t
的判断
根据前述《高规》条文说明,在两个平动和一个转动构成的三个方向因子中,
当转动方向因子(即扭转系数)大于0.5时,该振型可认为是扭转为主的振型。
则当PKPM周期结果中前三阶振型为两个平动为主的振型、一个扭转为主的振型
时,则该扭转为主的振型为第一扭转振型,其周期为第一扭转周期T
t。
(2)第一平动周期T
1
的判断
首先结构沿两个正交方向各有一个平动为主的主振型周期,规范规定T
l
是指
刚度较弱方向的平动为主的第一振型周期(即当PKPM周期结果中前三阶振型为
两个平动为主的振型、一个扭转为主的振型时,平动振型中的周期较大者)。
其
次第一平动周期T
l
对应振型应越单纯越好(平动系数占比越大越好),但平动系
数多少为合适,规范未说明。
建议周期比计算采用的第一平动周期对应振型平动
系数为0.8及以上[4]。
因为周期比参数是用来限制结构抗扭刚度不能太弱,若第一
平动周期对应振型本身的扭转成分就较大,显然是不合适的,其计算所得的周期
比作为指标的意义也大大降低了。
1.
第一平动周期T
1
的X、Y方向平动系数是否有要求
每个振型的平动系数由X、Y向平动系数之和组成,那么第一平动周期对应
振型的平动系数中X、Y占比是有否要求,例如第一平动周期平动系数(X+Y)为0.9(0.45+0.45)时,其振型的X、Y向的平动系数均小于0.5,是否还能判断为
第一平动周期。
由前述振型方向因子的说明可知,振型的X、Y向平动因子D
xj
、
D
yj
的相对大小,与整体坐标系水平轴方向有关,不同的水平坐标轴方向,会得
到不同的D
xj 、 D
yj
值。
即PKPM程序默认的坐标轴为0度为X方向,90度为Y方
向,则对特定结构,其某振型的X、Y向平动系数表征的是该振型方向与整体坐标轴方向的关系,即该振型相对程序坐标系的转角,在某种意义上,两个第一平动振型的方向角,代表水平地震作用的两个近似最不利方向,明确了结构刚度的薄弱方向。
故第一平动周期的振型总平动系数满足要求即可,不必控制其X、Y 向平动系数的单独占比。
(4)第一平动周期、第一扭转周期判断时,还应查看前三阶振型的振型图是否为整体振动,若为局部振动,则不能作为第一平动周期、第一扭转周期,此时应分析局部振动原因,对结构进行调整。
3.周期计算是否考虑附加偶然偏心及楼板刚性假定
《高规》第3.4.5条文说明规定,周期比计算,可直接计算结构的固有自振特征,不必附加偶然偏心。
周期计算是否需刚性楼板假定,规范未明确,但从周期比计算知,其是针对整体振动的概念,且为了避免局部振动误判,周期计算时需采用刚性楼板假定。
4.多层建筑混凝土结构是否需要控制周期比
多层建筑混凝土结构是否控制周期比,《建筑抗震设计规范》GB50011-2010并未明确,但其第3.4.1条文说明表1规定扭转周期比大于0.9,混合结构扭转周期比大于0.85即为特别不规则,特别不规则时应采取更加有效的措施,但具体措施并未说明。
故为了避免结构被判定为特别不规则,以及使结构具有必要的抗扭刚度,建议多层建筑混凝土结构控制周期比。
5.多塔结构周期比
由于PKPM中多塔结构的周期结果是所有振型一起输出,未区分各单塔的振型,以及可能出现某振型下多个单塔均出现振动反应,此时很难确定各单塔的第一平动周期、第一扭转周期。
故应把多塔结构切分开,按单塔计算确定周期比。
6.结语
本文针对结构设计中周期比的常见问题做了探讨,对设计人员容易忽视、概念不清的问题给出理解、解释,对规范不明确的,也给出了建议,以期对设计人员有所帮助。
因此有关问题的解释、处理属笔者个人意见,供设计人员参考。
参考文献
[1]JGJ3-2010,高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社.
[2] 住房和城乡建设部.超限高层建筑工程抗震设防专项审查技术要点[Z].建质[2010]109号. 北京,2010.
[3]张宇鑫,刘海成,张星源.PKPM结构设计应用[M].上海:同济大学出版
社,2006:395.。