2017年3D深度视觉技术简析
- 格式:docx
- 大小:1.08 MB
- 文档页数:9
3d视觉技术原理1 什么是3D视觉技术3D视觉技术是通过视觉系统来捕捉、处理和理解由照相机采集来的三维场景,实现自动的三维检测、定位、跟踪和分析的技术。
它是一种扩展的视觉感知技术,能够提供动态场景的实时、三维的表现,可以支持真实环境内各个方面的应用。
2 3D视觉技术的原理3D视觉技术主要是通过基于激光或光学的传感器和相机捕捉、处理和理解现实场景中的三维信息,实现自动的三维检测、定位、跟踪和分析。
传感器是3D视觉技术的核心组成部分,它能够捕捉场景中被检测物体的三维坐标和外观特征,全息摄影和可视激光雷达都是常用的3D 传感器种类,用于获取周围环境和物体的准确数据。
相机也是3D视觉技术的一个重要组成部分,它能够捕捉立体场景中的精彩瞬间,利用视觉系统处理图像,实现物体的定位、分析、追踪等功能。
3 3D视觉技术的应用3D视觉技术的应用范围非常广泛,它可以用于从制造业到消费者产品,从生物医学到智能移动设备,从机器人抓取到导航等领域。
研究者们正在将3D视觉技术应用于自动驾驶、智能家居、机器人等范畴,成为智能世界的重要支撑。
另外,3D视觉技术还可以用于监控和安全系统、建筑和工厂自动化、虚拟现实游戏、地图制作、机器人抓取等行业,为各种应用提供更加准确、高效、舒适的视觉反馈显示。
4 3D视觉技术的发展趋势随着传感器技术的发展,全息图像传感器、混合影像传感器等多种传感器的推出,不仅提升了三维视觉系统的性能,而且将给3D视觉技术带来更多的可能性。
同时,机器学习和计算机视觉技术也正在推动3D视觉应用的发展,加强计算机处理深度信息的能力。
未来,3D视觉技术将得到更加广泛的应用,与机器学习、去中心化存储、人工智能等技术的深度结合,将大力发展自动驾驶、机器人和智慧家庭等方面的应用,可以期待未来3D视觉技术将让我们的生活变得更美好。
大视场3D视觉检测技术大视场3D视觉检测技术近年来,随着科技的不断进步和应用的广泛推广,各行各业对于高精度、高效率的视觉检测需求也越来越迫切。
在众多的视觉检测技术中,大视场3D视觉检测技术成为了一种备受关注的新兴技术。
本文将对大视场3D视觉检测技术进行介绍和分析,以期推动其在实际应用中的推广和发展。
一、大视场3D视觉检测技术的概念及原理大视场3D视觉检测技术是指能够实现在大视野范围内对物体进行三维形态检测的技术。
其原理是通过摄像系统捕获物体的图像信息,并利用三维成像算法对物体的空间形态进行建模和检测。
相比于传统的2D视觉检测技术,大视场3D视觉检测技术能够提供更加准确、全面的物体形态信息,为后续的分析和处理提供了更为可靠的基础。
二、大视场3D视觉检测技术的特点和优势1. 高精度:大视场3D视觉检测技术具备较高的测量精度,可以实现对物体形态的精确测量,为后续的分析和处理提供了可靠的数据支持。
2. 高效率:大视场3D视觉检测技术能够在较短的时间内完成大面积物体的检测和测量,大大提高了测量效率和生产效益。
3. 非接触式:大视场3D视觉检测技术采用无需接触物体的方式进行检测,避免了传统接触式测量中可能引起的表面损伤和污染问题。
4. 多领域应用:大视场3D视觉检测技术具有广泛的应用前景,可以在制造业、医疗、航空航天等领域中得到应用。
三、大视场3D视觉检测技术的应用场景1. 制造业:大视场3D视觉检测技术可以应用于零件的尺寸检测、形状检测和表面缺陷检测等方面,提高产品的质量和生产效率。
2. 医疗领域:大视场3D视觉检测技术可以应用于病人的体形测量和手术导航等方面,为医疗诊断和手术治疗提供更加精准和可靠的数据支持。
3. 航空航天:大视场3D视觉检测技术可以用于飞机和航天器的结构形态检测和损伤分析,为飞行安全提供可靠的保障。
四、大视场3D视觉检测技术的发展趋势1. 硬件技术的进步:随着摄像技术和计算机图像处理能力的不断提升,大视场3D视觉检测技术的设备将变得更加精密、高效。
3D视觉技术的原理和应用有哪些1. 前言3D视觉技术是一种能够使图像或视频以立体感显示的技术,它通过模拟人眼的视觉机制,使观察者感受到真实的三维空间。
本文将介绍3D视觉技术的原理以及其在不同领域的应用。
2. 原理2.1 距离感知原理3D视觉技术最核心的原理是通过模拟人眼的视觉机制来感知物体的距离和深度。
人眼通过两只眼睛的视差效应来感知物体的远近,这种效应是指当物体离眼睛越近时,两只眼睛看到的图像差异就越大。
基于这个原理,3D视觉技术通过给观察者提供两个视角的图像,再结合适当的技术手段,使观察者感受到物体的远近和深度。
2.2 感知效果原理除了距离感知,3D视觉技术还依赖于其他视觉效果,如立体感和运动感。
立体感是指物体在三维空间中的真实感,通过透视原理和真实纹理来实现。
运动感是指物体在三维空间中的动态表现,通过快速切换图像来实现。
综合利用距离感知、立体感和运动感等原理,3D视觉技术能够创造出逼真的立体效果,使观察者获得沉浸式的视觉体验。
3. 应用领域3.1 电影和娱乐3D视觉技术在电影和娱乐领域有着广泛的应用。
当观众配戴3D眼镜观看电影时,画面中的场景和角色会以立体感呈现,给人一种身临其境的感觉。
此外,游戏和虚拟现实技术也采用了3D视觉技术,使玩家可以沉浸在虚拟世界中。
3.2 工业设计和制造在工业设计和制造中,3D视觉技术可以帮助设计师和制造商更好地展示产品原型和模型。
通过使用3D建模和渲染技术,设计师可以创建逼真的产品模型,并通过3D视觉技术向客户展示产品的外观和功能。
3.3 医学和生物科技在医学和生物科技领域,3D视觉技术被广泛应用于医学影像学、手术模拟和生物分析。
医生和研究人员可以通过3D视觉技术获得更清晰、更准确的医学影像,进一步诊断疾病和进行手术规划。
此外,生物科技领域也可以使用3D视觉技术对生物分子、细胞和组织进行可视化分析。
3.4 建筑和房地产在建筑和房地产领域,3D视觉技术常用于建筑设计的可视化和室内外环境的模拟。
3D技术参数1203D技术是一种利用计算机或其他专用设备生成和显示立体影像的技术。
它通过模拟人眼的视觉原理来创建具有深度感的图像或视频。
以下是一些关于3D技术的主要参数和特点:1.立体感:3D技术的最主要特点就是能够呈现出立体效果,给人一种物体具有真实感的错觉。
通过给左右眼分别显示不同的图像或视频,人眼就会产生深度感。
2.图像样式:3D技术可以呈现出不同样式的图像,包括红蓝、红绿、极化、自动立体等。
不同样式的3D图像需要不同的显示设备或镜片来观看。
3.分辨率:3D技术的分辨率是指在3D显示设备上显示的图像或视频的清晰度。
分辨率越高,图像细节越清晰,立体效果也更好。
4.刷新率:3D技术的刷新率是指在3D显示设备上显示的图像或视频的刷新频率。
刷新率越高,图像的稳定性和清晰度越好,观看时也不容易产生闪烁或眩晕感。
5.观看距离与角度:3D技术的观看距离和角度会影响观看效果。
一般来说,观看3D图像或视频时,应该保持一定的距离,同时也要保持正对显示屏的角度,以获得最佳的立体体验。
6.兼容性:3D技术的兼容性是指3D显示设备对不同3D格式的支持程度。
一些3D技术只能与特定类型的3D格式兼容,而另一些则能够兼容多种格式。
7.动作模糊:动作模糊是指在观看3D图像或视频时,由于快速移动的物体在不同视角下显示的时间差,而导致的图像模糊现象。
一些高端3D技术可以通过提高刷新率或其他技术手段来减少动作模糊。
8.可视深度范围:可视深度范围是指在3D图像或视频中能够呈现出立体效果的深度范围。
一些3D技术能够呈现出更大的深度范围,使观看者产生更真实的立体感。
9.佩戴设备:一些3D技术需要观看者佩戴专用的眼镜或头盔才能观看立体影像。
这些佩戴设备通常通过不同的技术来实现左右眼图像或视频的分别显示。
10.应用领域:3D技术广泛应用于电影、游戏、虚拟现实、教育、医疗等领域。
它可以创造出身临其境的视觉体验,提高用户参与感和沉浸感。
总结起来,3D技术是一种能够呈现出立体效果的技术。
3D机器视觉技术测量原理有哪些3D机器视觉技术是一种通过摄像机、传感器和计算机算法来获取并分析三维物体形状和结构信息的技术。
它在工业自动化、计算机辅助设计、医疗领域等各个领域都具有广泛的应用。
以下是几种常见的3D机器视觉技术测量原理。
1. 立体视觉(Stereo Vision)立体视觉是最常见也是最直观的一种3D测量技术。
它通过两个或多个摄像机同时拍摄同一场景的不同角度图像,然后通过计算机算法对图像进行处理,推算出物体的深度信息。
这种方法适用于静态场景,可以测量物体的尺寸、形状和位置等。
2. 相位测量(Phase Measurement)相位测量是一种基于物体表面的纹理或结构的光学变化来获取物体三维形状的方法。
它通过光源照射物体,使用相机记录物体表面的相位变化,然后根据相位变化来推算物体的高度信息。
这种方法精度较高,通常用于测量物体表面的细节特征,比如凹凸不平的物体表面。
3. 结构光投影(Structured Light Projection)结构光投影是一种利用投影仪投射特定的光纹或光斑到物体表面上,通过相机记录被投射光纹或光斑的畸变情况,进而推算物体的三维形状的方法。
这种方法常见的有线条结构光和格雷代码结构光。
它适用于不同尺寸和形状的物体,测量速度较快且精度较高。
4. 飞行时间法(Time-of-Flight)飞行时间法是一种通过计算光线从光源到物体表面再反射回相机所需的时间来推算物体的距离的方法。
它通过发送一个短脉冲光束,记录光束与物体表面的相互作用时间,然后根据光的速度推算出物体的距离。
这种方法在测量远距离和大尺寸物体上具有优势,但由于光传播速度受环境和表面材料的影响,精度相对较低。
以上是几种常见的3D机器视觉技术测量原理。
根据不同的应用需求和实际场景,可以选择合适的测量原理来获取物体的三维形状和结构信息。
3D技术的原理3D技术是指通过模拟真实世界的三维空间,并以此为基础创建虚拟对象或场景的技术。
它主要通过感知和模拟人眼视觉机制来实现。
3D技术在许多领域得到应用,如电影、游戏、建筑设计等。
下面将详细介绍3D技术的原理。
一、人眼视觉机制要理解3D技术的原理,我们首先需要了解人眼的视觉机制。
人眼通过两只眼睛同时观察物体,每只眼睛看到的画面略有不同。
这种略微的差异通过大脑进行处理,从而让我们感知到深度和立体效果。
二、立体成像原理3D技术就是利用立体成像原理来模拟这种人眼立体视觉效果。
立体成像可以分为主动式和被动式两种方式。
1. 主动式立体成像主动式立体成像是指通过特殊的眼镜或其他装置来实现立体效果。
这种方法要求观众佩戴特殊的眼镜,其中一只眼镜会屏蔽或过滤掉画面中的特定部分。
当观众通过这种眼镜观看画面时,两只眼睛会看到不同的画面,从而产生立体效果。
常见的主动式立体成像技术包括偏振成像、快门式成像和红蓝绿成像。
其中,偏振成像是利用偏光片来过滤不同方向的光线,使得观众通过左眼和右眼看到的画面有所差异;快门式成像是通过快速切换显示左右两个画面的方式,要求观众佩戴配对眼镜,左眼只能看到左画面,右眼只能看到右画面;红蓝绿成像则是通过过滤红色、蓝色和绿色光线的方式,使得观众通过左右眼分别看到不同颜色的画面。
2. 被动式立体成像被动式立体成像是指无需佩戴特殊眼镜,通过分别投射不同图像给左右眼来实现立体效果。
常见的被动式立体成像技术有自动立体成像和云台立体成像。
自动立体成像是利用特殊的光栅片或面板将左右眼的图像进行分离并分别投射给左右眼。
观众无需佩戴任何眼镜,就可以通过裸眼观看画面,获得立体效果。
云台立体成像是通过将左右眼的图像投射到偏振滤光器上,观众佩戴带有偏振滤光器的眼镜,通过不同的滤光器过滤掉其中的一种偏振光,从而实现不同眼睛看到不同的画面。
这种技术多用于电影院等特定场合。
三、3D建模和渲染除了立体成像之外,3D技术还需要进行3D建模和渲染。
详解主动3D、被动3D、裸眼3D技术特点详解主动3D、被动3D、裸眼3D技术特点实现3D效果分三种,一是主动式3D技术,二是被动式3D技术,三是技术。
(1)主动式3D主动式3D的先决条件首先是需要本身就带有3D功能,且观看者需要配戴主动式3D立体眼镜。
主动式3D主要是通过提高画面的刷新率来实现3D效果的,通过把图像按帧一分为二,形成对应左眼和右眼的两组画面,连续交错显示出来,同时红外信号发射器将同步控制快门式3D眼镜的左右镜片开关,使左、右双眼能够在正确的时刻看到相应画面,让观众看到3D 的立体效果。
主动式3D优点:◆画面残影少、3D效果突出。
◆实现相对较容易,屏幕成本低。
◆设备一次性投入相对低。
主动式3D缺点:◆主动式3D价格比普通高。
◆主动式3D眼镜价格偏高,每幅大概在200、300元左右,并且眼镜是需要充电的,镜片每秒各要开合50/60次,即使是如此快速,用户眼镜仍然是可以感觉得到,如果长时间观看,眼球的负担将会增加。
◆亮度大大折扣,带上这种加入黑膜的3D眼镜以后,每只眼睛实际上只能得到一半的光,因此主动式快门看出去,就好像戴了墨镜看电视一样,并且眼镜很容易疲劳。
◆角度倾斜时得不到3D画面。
(2)被动式3D被动式3D就是用两台仪实现,分别播放左右眼的片源,并且在仪前加上偏振片或者红绿、红蓝的玻璃等,配合合适的眼镜,从而使左右眼只能分别看到各自的片源,而达到3D 效果,这种眼镜就相对便宜了,红绿眼镜也就几十元。
被动式3D优点:◆3D眼镜价格相对便宜,长时间配戴没有疲劳感,不用充电。
◆可视角度大,亮度好。
被动式3D缺点:◆设备一次性投入高,单个画面需要用两台实现双击叠加,如果画面大则实现技术难度增大。
◆对屏幕增益要求很高,目前市面上的屏幕能实现3D效果的只有高金属的硬幕或者软幕。
(3)祼眼3D技术,也就是不通过任何工具就让左右两只眼睛从显示屏幕上看到两幅具有视差、有所区别的画面,将他们发射到大脑,人就会产生立体感。
3D指的是三维空间,D是英文Dimension 的首字,即线度、维的意思,国际上用3D来表示立体影像。
3D影像与普通影像的区别在于它利用人的双眼立体视觉原理,使观众能从视频媒介上获得三维空间影像,从而使观众有身临其境的感觉。
观众看到的影像和真实物体感觉接近,真实感强。
特别是震撼画面让人感觉身临其境,恍如一切就在身边。
3D的真实感使得其比2D画面更具震撼力。
要说3D影像因何而生?归结起来就是“视觉移位”。
下面我们就从观看世界最重要的--眼睛谈起。
人的两眼左右相隔在6厘米左右,这意味着假如你看着一个物体,两只眼睛是从左右两个视点分别观看的。
左眼将看到物体的左侧,而右眼则会看到她的中间或右侧。
当两眼看到的物体在视网膜上成像时,左右两面的印象合起来,就会得到最后的立体感觉。
而这种获得立体感的效应就是“视觉位移”。
而拍摄影像时,只要用两台摄影机模拟左右两眼视差,分别拍摄两条影片,然后将这两条影片同时放映到银幕上,放映时加入必要的技术手段,让观众左眼只能看到左眼图像,右眼只能看到右眼图像。
最后两幅图像经过大脑叠合后,我们就能看到具有立体纵深感的画面。
这就是我们所说的3D影像。
下面就来说说几种不同原理的3D。
这种眼镜我估计大家都见过,小时候这种眼镜已经非常常见了。
我们可以自己试着分别用红笔和绿笔在一张白纸上写字,透过红色镜片后,白纸也变成了红色,眼睛就看不到红色笔写下的字,但是可以看到绿笔写下的字。
而透过绿色镜片看纸当然就看不到绿字,只能看到红笔的字迹。
根据这个原理通过红绿眼镜的过滤处理,两只眼睛各自就看到了,由两部摄影机拍摄的不太一样的画面,最终两幅画面的叠加就形成了立体视觉,这是早期立体电影红绿滤色透镜技术。
这种技术实现起来比较简单,而且造价低廉。
这也是一种常见的立体成像方法,普通的光线是沿波浪状路线前进的,就如人抖动一条长绳一样。
如果让光波通过一种特制的镜片,只允许某一种特定的振动光波通过,就好像给波动的绳子设置栅栏一样,结果使波动的绳子只能通过垂直方向的栅栏,而不能通过平行方向的栅栏。
3D视觉的基本原理和应用1. 介绍3D视觉是一种通过计算机算法处理图像,实现物体在三维空间中的感知和重建的技术。
它模拟了人类的双眼视觉系统,利用从多个视点获取的图像来推断物体的深度和形状。
本文将介绍3D视觉的基本原理和常见的应用。
2. 基本原理2.1. 视差原理视差是指同一物体在两个不同位置被不同的眼睛观察到时产生的视觉差异。
通过对两个视点处的图像进行比较,可以计算出每个像素点的视差,从而推断出物体的深度和形状。
2.2. 面对观察面对观察是一种基于图像表面法向量的技术,通过分析图像中的亮度和纹理信息,来计算表面的法向量并生成3D模型。
该方法可以在没有深度信息的情况下,仅通过图像本身来还原物体的三维形状。
2.3. 光栅视觉光栅视觉是一种通过对光线的反射和折射进行分析,来还原物体的三维形状和材质的技术。
它利用摄像机和光源的位置关系,推导出物体表面的反射和折射规律,并通过分析图像中的光线变化来还原出物体的形状和纹理。
3. 应用3.1. 虚拟现实3D视觉在虚拟现实中扮演着重要角色。
通过将真实世界的物体转化为虚拟的三维模型,用户可以通过佩戴头盔或眼镜进入一个全新的虚拟环境中。
3D视觉技术可以实现真实感的交互体验,提供更加沉浸式的虚拟现实体验。
3.2. 工业制造在工业制造领域,3D视觉可以应用于自动化检测和质量控制。
通过对产品进行三维形状和尺寸的测量,可以实现自动化的检测和排序,提高生产效率和产品质量。
3.3. 医学影像在医学影像领域,3D视觉可以用于对人体内部器官和病变的分析和重建。
通过对医学图像进行三维重建和可视化,医生可以更好地理解患者的病情,并制定更准确的治疗计划。
3.4. 娱乐产业3D视觉在电影、游戏和动画等娱乐产业中得到广泛应用。
通过对真实或虚拟场景的三维建模和渲染,可以实现更逼真的视觉效果,提供更加沉浸式的娱乐体验。
3.5. 智能交通在智能交通领域,3D视觉可以用于车辆和行人的检测与跟踪,以及道路和交通标志的识别。
(此文档为word格式,可任意修改编辑!)正文目录1. 3D成像:维度提升带来交互革命及应用创新 (6)1.1.维度提升令成像进行下一世代 (6)1.1.1.过去摄像头只在平面成像效果方面做提升 (6)1.1.2.维度提升将使成像技术进入下一世代 (7)1.2. 3D成像带来设备外观、交互方式、行业应用大幅创新 (8)1.2.1. 3D成像技术带来设备外观创新 (8)1.2.2.交互维度提升带来全新行业应用 (10)2.行业拐点来临,结构光技术将成主流 (13)2.1. 行业巨头布局多年,2017年苹果引领带来行业拐点 (13)2.2. 前置3D成像将以结构光为主流,ToF有望后期用于后置 (15)2.2.1.结构光、ToF、双目立体视觉为主要3D成像技术 (15)2.2.2.结构光适用于近距离场景,将成前置3D成像主流 (17)3.四大部件组成结构光,难度各异 (19)3.1. IR发射模组:核心部件高壁垒,影响成像效果 (20)3.2. IR接收模组:窄带滤光片为国内厂商主要机会 (23)3.3. 镜头成像端:产业链成熟,非增量业务 (24)3.4. 3D图像处理芯片:难度高,突破难 (25)4.未来3年CAGR 173%,关注新增部件投资机会 (26)4.1. 产业链梳理:外资为主,国内厂商有所卡位 (26)4.2. 2017年为3D成像元年,未来3年 CAGR高达173% (27)5.相关建议 (29)6.风险提示 (31)图目录图1:第一台摄像手机夏普J-SH04(2000年) (6)图2:最新iPhone双摄(2016) (7)图3:背景虚化只能模拟深度信息 (8)图4:3D成像能获取真实深度信息 (8)图5:3D成像人脸识别 (9)图6:虹膜识别 (9)图7:前置指纹识别阻碍屏占比的进一步提升 (10)图8:屏占比提升带来的惊艳效果 (10)图9:目前主流交互方式为二维触控交互 (11)图10:3D成像助力下体感交互有望快速发展 (11)图11:AR呈现3维的输出需匹配3维的输入 (12)图12:3D成像带来全新购物体验 (12)图13:3D成像应用于汽车ADAS (13)图14:3D成像行业类应用 (13)图15:玩家利用Kinect进行游戏 (14)图16:Kinect设备创下吉尼斯世界纪录 (14)图17:主流3D成像技术 (15)图18:规则光栅的结构光 (16)图19:PrimeSense结构光 (16)图20:ToF成像原理 (17)图21:双目立体视觉技术 (17)图22:结构光方案由4部分构成 (19)图23:PrimeSense结构光方案示意图 (20)图24:VCSEL主要由激光工作物质、崩浦源和光学谐振腔3大部分构成. 21图25:传统镜头VS WLO(晶圆级镜头) (22)图26: PrimeSense光学衍射元示意图 (23)图27:PrimeSense激光散斑示意图 (23)图28:窄带滤光片让特定波长的光线通过 (24)图29:常见手机摄像头 (25)图30:镜头成像端结构 (25)图31:图像处理芯片工作原理 (26)图32:水晶光电有望拿到窄带滤波片份额 (29)图33:水晶光电有望负责WLO玻璃晶圆镀膜 (30)表目录表1:iPhone摄像头成像能力不断上升,但仅限于平面 (7)表2:苹果收购多家3D成像相关标的 (15)表3:双目立体视觉、结构光和ToF三种成像技术对比 (18)表4:厂商对3D成像方案的选择 (18)表5:VCSEL对比LED,性能领先 (21)表6:WLC VS 传统摄像头模组 (22)表7:结构光产业链梳理:外资为主,国内厂商有所卡位 (27)表8:结构光各部件价格及A股受益标的 (27)表9:手机3D成像市场规模测算 (28)表10:消费电子3D成像市场规模测算 (29)表11:欧菲光逐步成为摄像头模组龙头,并切入3D成像模组市场 (30)表12:本报告覆盖公司估值表 (30)1. 3D成像:维度提升带来交互革命及应用创新所谓3D成像:普通摄像头只能获得平面图像,3D成像即通过3D摄像头在获取平面图像的同时获得拍摄对象的深度信息,也就是三维的位置和尺寸信息。
2017年3D深度视觉技术简析
一、若iPhone8如期搭载3D深度视觉技术,手机终端应用场景将极大丰富 (2)
二、从两代Kinect看3D深度视觉技术 (3)
1、两种技术路线:工作过程类似,工作原理不同 (4)
(1)3D深度视觉技术工作过程 (4)
(2)结构光3D深度视觉技术 (5)
(3)飞行时间(ToF)3D深度视觉技术 (6)
2、从两代Kinect看不同3D深度视觉技术效果 (6)
3、两类3D深度视觉技术特色各有千秋 (8)
三、3D深度视觉产业链相关企业 (9)
一、若iPhone8如期搭载3D深度视觉技术,手机终端应用场景将极大丰富
据媒体报道iPhone 8将加入革命性的前置摄像头系统,启用全新的3D感测功能,预计iPhone 8会在前置相机方面将包含3个模组,分别为既有的iPhone镜头模组、近红外线( IR )发射模组以及IR 接收模组,后两者主要为3D深度视觉技术的配套模组,相关模组将使用由PrimeSense公司开发的基于结构光的3D深度视觉算法,利用手机中的内置传感器检测物体的位置和深度。
新的模块利用3D深度视觉深度信息与2D图像融合技术,可以实现面部识别、虹膜识别以及3D 自拍,加强终端的体验,拓展更多的应用场景。
若iPhone8如期搭载3D深度视觉技术,全球其他手机厂商也会快速跟进,未来该技术还将陆续渗透智能可穿戴设备、智能电视等领域,打开相关光学元器件厂商以及3D深度视觉内容商的未来成长空间,相关事件也带动了近期A股市场光学元器件厂商股价异动。