《热学》(李椿 ) 电子教案(2015)
- 格式:ppt
- 大小:5.41 MB
- 文档页数:427
高中物理北师大版必修二《热学》教案引言:《热学》是高中物理必修课程的一部分,旨在通过学习热力学、热量传递和热机等内容,培养学生对热学基本概念和原理的理解与运用能力。
本教案将重点介绍《热学》的教学目标、教学重点和难点,以及具体教学内容和教学方法,帮助教师全面了解课程要求,合理安排课堂教学。
一、教学目标:通过本次教学,学生应该能够1. 理解热学的基本概念,包括热力学第一定律和第二定律;2. 掌握热量的传递方式,如传导、对流和辐射;3. 理解热机的工作原理与效率计算方法;4. 运用热学知识解决相关问题。
二、教学重点和难点:1. 教学重点:(1)热力学第一定律和第二定律的理解与应用;(2)热量传递方式的掌握和计算;(3)热机的工作原理与效率计算。
2. 教学难点:(1)对热力学第二定律的理解和应用;(2)热机设备的效率计算。
三、教学内容和教学方法:1. 教学内容:本单元主要包括以下几个部分:(1)热力学基本概念和定律;(2)热量传递方式;(3)热机的工作原理和效率计算。
2. 教学方法:(1)讲授法:通过教师的讲解,介绍热学的基本概念和定律,并简要阐述各个知识点的应用和实例。
(2)实验法:结合实际实验,让学生通过观察和测量来理解热量传递方式的特点和原理。
(3)讨论法:组织学生讨论热机工作原理和效率计算的方法,培养学生的问题解决能力和思维能力。
四、教学进度安排:本课程计划分为5个教学单元,预计每个单元的授课时间为2-3节课,具体安排如下:1. 第一单元:热力学基本概念和定律(1)教学内容:热学的发展历史、热力学基本概念、热力学第一定律和第二定律的内容;(2)教学方法:讲授法、讨论法;(3)教学时间:2节课。
2. 第二单元:热量传递方式(1)教学内容:传导、对流和辐射三种热量传递方式的原理和计算方法;(2)教学方法:实验法、讲授法;(3)教学时间:3节课。
3. 第三单元:热机的工作原理和效率计算(1)教学内容:热机的分类、热机的工作原理、效率计算等内容;(2)教学方法:实验法、讲授法、讨论法;(3)教学时间:3节课。
电子行业《热学》电子教案一、导言热学是电子行业中的一个重要概念,它涉及了电子元件的热稳定性、散热设计以及热管理等方面。
本教案旨在介绍电子行业中的热学知识,并提供一些实际案例和应用示例,帮助学员更好地理解这一概念。
二、基本概念1. 热量热量是热学的基本概念之一。
它指的是物体在温度差的作用下,由高温物体向低温物体传递的能量。
电子设备在工作过程中会产生热量,如果不能及时处理,就会导致设备过热、性能下降甚至损坏。
2. 热传导热传导是热量在物体内部传递的过程。
在电子行业中,热传导是指电子元器件内部的热量传递过程,主要通过导热材料进行。
合理选择导热材料并设计良好的散热结构,可以提高元器件的热传导效率。
3. 热阻热阻是指物体抵抗热传导的能力。
在电子行业中,热阻是指电子器件与外界环境之间的热传导阻力。
降低热阻可以有效地改善电子器件的散热性能。
三、热学在电子行业中的应用1. 散热设计在电子设备中,一些元器件在工作过程中会产生大量的热量,如果不能及时散热,就会导致设备过热。
因此,合理的散热设计是电子行业中十分重要的一环。
通过选择合适的散热材料、设计散热结构以及增加散热风扇等方式,可以有效地提高电子设备的散热能力。
2. 热稳定性设计电子器件的性能会随着温度的变化而变化。
在设计电子器件时,需要考虑到温度对性能的影响,并进行合理的热稳定性设计。
通过选择适当的材料、合理的设计电路,可以提高电子器件在高温环境下的稳定性。
3. 环境温度控制电子设备的工作环境温度对其性能和寿命都有很大的影响。
在电子行业中,需要对设备的工作环境进行温度控制,以确保其正常工作。
通过合理的散热设计、空调设备等手段,可以控制设备的环境温度。
四、实际案例1. 智能手机散热设计智能手机在使用过程中,由于各种功能的开启和高性能处理器的运行,会产生大量的热量。
如果不能及时散热,就会导致手机过热,影响使用体验。
因此,智能手机的散热设计非常重要。
智能手机的散热设计一般包括以下几个方面:选择合适的散热材料,增加散热结构,如散热片、散热孔等,以增加散热面积和导热能力;设计合理的散热通道,使热量能够有效地从内部传递到外部;增加散热风扇等。
《热学》课程教学大纲课程名称:热学课程类别:专业必修课适用专业:物理学考核方式:考试总学时、学分:48学时3学分其中实验学时:0 学时一、课程性质、教学目标《热学》是物理专业开设的一门主干专业基础课,也是专业核心课程。
通过本课程的学习,使学生系统掌握热学的基本概念和基本知识,建立起鲜明的物理图像,熟悉热学理论的一些实际应用,培养学生分析和解决一般热学问题的能力。
该课程主要包括热现象的宏观理论、热的微观理论以及在物性、相变过程中的综合应用等三块基本内容。
由于热学研究对象的普遍性和研究方法的特殊性,使它在物理学体系中和科技领域中都具有重要的地位和作用。
本课程既为《热力学与统计物理》、《量子力学》等专业核心课程打下基础,又为学生毕业后从事科学研究、教学和技术工作提供基本的热学知识。
其具体的课程教学目标为:课程教学目标1:熟练掌握有关物质热运动的基本概念和基本规律,能运用所学的知识解释有关的热现象,并能够胜任中学有关热学知识的教学工作。
课程教学目标2:深刻理解物质各种热现象的微观本质。
有意识地培养学生的正确思维方法和辩证唯物主义世界观,使学生能够应用热学知识独立地解决今后中学物理教学中所遇到的一般问题。
课程教学目标3:了解统计规律的涵义及方法,理解统计规律在物理中的应用,让学生感受数学工具在物理学中的重要地位。
课程教学目标与毕业要求对应的矩阵关系注:以关联度标识,课程与某个毕业要求的关联度可根据该课程对相应毕业要求的支撑强度来定性估计,H:表示关联度高;M表示关联度中;L表示关联度低。
二、课程教学要求本课程以热力学的三个定律为核心,在此基础上讨论统计规律的特点及应用。
其内容有热力学、统计物理学、物性学三部分。
1.教学过程中要注意本课程与中学物理“热学”部分及后继课程“热力学与统计物理学”课程的分工与衔接,以免遗漏或不必要的重复。
2.要注意讲清本课程中的基本概念和基本规律。
在保持课程的科学性及系统性的基础上,应突出重点、难点。
热学第2版教学设计一、课程背景《热学》是一门涉及热力学基本概念、热学定律和热力学热力学过程的基础课程。
本教学设计是针对本科生开设的热学课程,要求学生具备一定的物理基础和数学基础,能够理解和运用热力学基本概念和热学定律。
二、教学目的1.了解和掌握热学基本概念和热学定律。
2.能够运用热学知识分析和解决实际问题。
3.培养学生的实验动手能力和数据处理能力。
4.培养学生的科学研究和创新意识。
三、教学内容及进度安排1. 热学基础概念授课时间:2周内容包括:温度、热量、热力学系统、热力学平衡、状态方程、状态函数、热力学过程等。
2. 第一定律授课时间:3周内容包括:内能、功、热量、热力学第一定律、等容过程、等压过程、等温过程、绝热过程等。
3. 热力学第二定律与熵授课时间:3周内容包括:热力学第二定律和热力学第二定律的等效表述、卡诺循环、热机效率、反馈过程和热平衡、熵的定义、熵的计算、熵的增加定律等。
4. 理想气体热力学授课时间:2周内容包括:理想气体的基本特性、状态方程、理想气体的热力学过程、熵和内能的计算等。
5. 实验教学授课时间:2周内容包括:测量热容、测量气体压强和温度、卡诺循环实验等。
四、教学方法和手段在教学过程中,本教学设计采用如下教学方法和手段:1.授课方式:讲授、互动式教学。
2.网络教学平台:Blackboard、Moodle等。
3.实验室教学平台:实验教学室、数学计算机房等。
4.案例分析和讨论。
五、教学评估和考核本课程采用多种形式的考核方式,包括:1.课堂提问和讨论(10%)2.作业和实验报告(30%)3.期中考试(30%)4.期末考试(30%)六、教学团队和学生需求本课程由多位教师组成教学团队,包括主讲教师和助教。
学生需具备一定的物理基础和数学基础,学习之前需要预习相关知识,积极参加课堂讨论和实验教学活动。
同时,学生可以通过网络教学平台获取更多的学习资源和教学指导。
教学目标:1. 了解热学的基本概念和原理2. 掌握热学中的重要公式和计算方法3. 能够应用热学知识解决实际问题教学重点和难点:重点:热学的基本概念、热力学定律、热力学过程和热力学系统等内容。
难点:热力学定律的理解和应用、热力学过程中的能量转化和热力学效率等概念的把握。
教学准备:1. 教师准备:熟悉相关知识,准备教学课件和实验材料。
2. 学生准备:预习相关知识,准备参与课堂讨论和实验操作。
教学过程:1. 引入热学概念通过实际例子引入热学的概念,让学生了解热学在日常生活和工程领域中的重要性和应用。
2. 热力学定律介绍热力学定律的基本原理,包括热力学第一定律和热力学第二定律,引导学生理解能量守恒和熵增加原理。
3. 热力学过程讲解等温过程、绝热过程、等容过程和等压过程等热力学过程的特点和计算方法,引导学生掌握热力学过程中的能量转化和热力学效率等概念。
4. 热力学系统介绍封闭系统、开放系统和孤立系统等热力学系统的特点和应用,引导学生理解系统与环境之间的能量交换和热力学平衡状态。
5. 实验操作进行与热学相关的实验操作,让学生通过实际操作和数据分析加深对热学知识的理解和应用。
6. 案例分析通过实际案例分析,引导学生应用热学知识解决实际问题,培养学生的综合分析和问题解决能力。
7. 总结回顾对本节课的重点内容进行总结回顾,梳理知识框架,强化学生对热学知识的掌握和应用能力。
教学方式:1. 教师讲授:通过讲解和示范引导学生理解热学知识。
2. 学生讨论:组织学生进行讨论和互动,激发学生学习兴趣和思维能力。
3. 实验操作:进行与热学相关的实验操作,加深学生对热学知识的理解和应用。
教学手段:1. 多媒体课件:利用多媒体课件辅助教学,呈现图文并茂的热学知识,使学生视觉和听觉得到双重刺激。
2. 实验设备:准备与热学相关的实验设备,让学生通过实际操作感受热学知识。
3. 教学实例:准备多个与生活和工程实际应用相关的教学实例,让学生在案例分析中加深对热学知识的理解和运用。
《热学》课程教学大纲一、课程基本信息英文名称 Thermal Physics 课程代码 PHYS1002课程性质 专业必修课程 授课对象 物理学学 分 3学分 学 时 54学时主讲教师 修订日期 2021年9月指定教材 李椿等,热学(第3版)[M], 北京:高等教育出版社,2015.二、课程目标(一)总体目标:让学生了解热力学和统计物理学的基本知识和基本概念,掌握由宏观的热力学定律和从物质的微观结构出发来研究宏观物体的热的性质的研究方法,了解宏观可测量量与微观量的关系以及如何把宏观规律与微观解释相联系的方法。
在教学中通过对热学相关问题的深入讨论、物理前沿课题、新技术应用的教学和讨论,强化学生对热学基本概念和基本原理的理解,使学生体会物理学思想及科学方法,更好地理解科学本质,形成辩证唯物主义世界观和科学的时空观,培养学生科学思维能力,分析问题和解决问题能力。
(二)课程目标:课程目标1:通过系统的学习热学的基本规律,让学生掌握物体内部热学的普遍规律,以及热运动对物体性质的影响。
课程目标2:体会该课程理论体系建立过程中的物理思想方法,培养学生模型建构、分析与综合、推理类比等科学思维方法,掌握研究宏观物体热性质的宏观描述方法(热力学)和微观描述方法(统计物理学),为学习后续课程和独力解决实际问题打下必要的基础。
课程目标3:应用热学理论分析讨论固、液、气相变中的问题,适当介绍一些与本课程相关的前沿课题,培养学生科学探究能力。
课程目标4:通过学习和了解热学发展史、重大科学事件和物理学家故事等,体会物理学家的物理思想和科学精神,培养学生的爱国热情,探索未知、追求真理、永攀高峰的责任感和使命感。
(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表课程目标对应课程内容对应毕业要求(及对应关系说明)课程目标1 第一章 温度第二章 气体分子动理论的基本概念第三章 气体分子热运动速率和能量的统计分布律第四章 气体内的输运过程第五章 热力学第一定律第六章 热力学第二定律第八章 液体第九章 相变7-2具有终身学习的意识,了解物理学前沿和物理教学领域及国际发展动态。
第二章 气体分子运动论的基本概念2-1 目前可获得的极限真空度为10-13mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。
解: 由P=n K T 可知n =P/KT=)27327(1038.11033.1101023213+⨯⨯⨯⨯⨯-- =3.21×109(m–3)注:1mmHg=1.33×102N/m 22-2 钠黄光的波长为5893埃,即5.893×10-7m ,设想一立方体长5.893×10-7m , 试问在标准状态下,其中有多少个空气分子。
解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105N/m 2 ∴N=623375105.52731038.1)10893.5(10013.1⨯=⨯⨯⨯⨯⨯=--KTPV 个2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5mmHg的真空。
为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。
若烘烤后压强增为1.0×10-2mmHg ,问器壁原来吸附了多少个气体分子。
解:设烘烤前容器内分子数为N 。
,烘烤后的分子数为N 。
根据上题导出的公式PV = NKT 则有: )(011011101T P T P K VKT V P KT V P N N N -=-=-=∆因为P 0与P 1相比差103数量,而烘烤前后温度差与压强差相比可以忽略,因此0T P 与11T P 相比可以忽略1823223111088.1)300273(1038.11033.1100.1102.11⨯≅+⨯⨯⨯⨯⨯⨯⨯=⋅=∆---T P KN N 个2-4 容积为2500cm 3的烧瓶内有1.0×1015个氧分子,有4.0×1015个氮分子和3.3×10-7g 的氩气。
设混合气体的温度为150℃,求混合气体的压强。
课程名称:热学授课对象:大学本科生授课学时:32学时教学目标:1. 理解热学的基本概念和原理,掌握热力学第一定律、第二定律及热力学势能等基本理论。
2. 熟悉热力学过程、热力学平衡态及热力学势等基本概念,并能应用于实际问题。
3. 掌握热力学系统在不同状态下的性质,如温度、压力、体积、内能等。
4. 培养学生的科学思维和创新能力,提高学生运用热学知识解决实际问题的能力。
教学内容:一、绪论1. 热学的起源和发展2. 热学的研究对象和方法3. 热学的学科地位和意义二、热力学基础1. 热力学第一定律:能量守恒定律2. 热力学第二定律:熵增原理3. 热力学势能:自由能、化学势等4. 热力学平衡态:温度、压力、体积、内能等状态参量三、热力学过程1. 等压过程、等体过程、等温过程、绝热过程2. 状态方程:理想气体状态方程、范德瓦尔斯方程等3. 热力学循环:卡诺循环、奥托循环、狄塞尔循环等四、热力学系统1. 热力学系统:封闭系统、开放系统、孤立系统2. 热力学势:自由能、化学势等3. 热力学平衡:热平衡、相平衡、化学平衡等五、热力学应用1. 热机:蒸汽机、内燃机、热泵等2. 热传导:傅里叶定律、热传导系数等3. 热辐射:斯特藩-玻尔兹曼定律、黑体辐射等4. 热力学在工程中的应用:制冷、空调、热力发电等教学过程:一、导入1. 结合生活实例,引入热学的基本概念,激发学生的学习兴趣。
2. 阐述热学的学科地位和意义,让学生明确学习目标。
二、讲解1. 讲解热学的基本概念、原理和公式,引导学生掌握核心知识点。
2. 通过实例分析,加深学生对热学知识的理解。
三、讨论1. 组织学生进行课堂讨论,引导学生运用所学知识解决实际问题。
2. 鼓励学生提出问题,培养学生的创新思维。
四、练习1. 布置课后习题,巩固所学知识。
2. 课堂练习,检验学生的学习效果。
五、总结1. 总结本节课的重点和难点,帮助学生梳理知识体系。
2. 提出课后学习建议,引导学生深入学习。