华师大版数学九年级下册《圆》知识点总结(推荐文档)
- 格式:docx
- 大小:55.46 KB
- 文档页数:4
《圆》章节知识点复习一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;图1五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
圆的认识教学目标1.理解圆的定义;理解半径、直径、等圆的概念;2.理解圆的对称性;3.并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;学习内容知识梳理一、圆的定义1.圆的定义如图,平面内到定点的距离等于定长的所有点组成的图形叫做圆,其中,定点叫做圆心,定长叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.总结:⊙圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;⊙圆是平面内到定点的距离等于定长的点的轨迹.2. 等圆的概念圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:⊙定点为圆心,定长为半径;⊙圆指的是圆周,而不是圆面;⊙强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.3.弦(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径.(3)弦心距:圆心到弦的距离叫做弦心距.注意:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD⊙AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)⊙直径AB是⊙O中最长的弦.4.弧(1)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.(2)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;(3)优弧:大于半圆的弧叫做优弧;(4)劣弧:小于半圆的弧叫做劣弧.总结:⊙半圆是弧,而弧不一定是半圆;⊙无特殊说明时,弧指的是劣弧.5. 等弧在同圆或等圆中,能够完全重合的弧叫做等弧.总结:⊙等弧成立的前提条件是在同圆或等圆中,不能忽视;⊙圆中两平行弦所夹的弧相等.二、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.注:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.(一)圆心角与弧的定义1.圆心角定义:顶点在圆心的角叫做圆心角.如图所示,⊙AOB 就是一个圆心角. 要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征; (2)圆心角∠AOB 所对的弦为线段AB ,所对的弧为弧AB. 2.1°的弧的定义1°的圆心角所对的弧叫做1°的弧。
九年级下册华师大版数学圆知识点数学是一门抽象而理性的学科,而圆则是数学中非常重要且常见的一个概念。
在九年级下册的华师大版数学教材中,圆的知识点是一个不可忽视的重点内容。
接下来,我们将对九年级下册华师大版数学中关于圆的知识点进行系统地介绍与讨论。
首先,让我们回顾一下圆的基本概念。
在数学中,圆是由平面中所有到定点距离相等的点组成的集合。
圆通常由圆心和半径来描述。
圆心是圆的中心点,而半径则是从圆心到圆上任意一点的距离。
了解这些基本概念可以帮助我们更好地理解和应用圆的知识。
一、圆的周长和面积是圆的基本属性,也是圆的重要应用。
圆的周长可以通过公式C=2πr计算得出,其中C表示圆的周长,r表示圆的半径。
同样,圆的面积可以通过公式A=πr²计算得出,其中A表示圆的面积。
这些公式的应用可以帮助我们计算圆的周长和面积,解决实际问题,如园艺设计、建筑设计等。
二、在九年级下册华师大版数学中,圆与直线的关系也是一个重要的知识点。
首先,我们来讨论直径与弦之间的关系。
直径是通过圆心的一条直线,而弦是圆上任意两点之间的线段。
在任何一个圆中,直径始终等于两个相对的弦之和。
这个关系在解决实际问题中非常有用,特别是在解决圆形活动场地的划分、圆形轮胎等问题时。
三、九年级下册华师大版数学中,圆和角的关系也是重要的一个内容。
在圆的内部或外部,同一个圆心对应的两条弧所对应的角相等。
这个性质被称为圆心角的性质。
在解决圆环编织、风力发电机桨叶运动范围等问题时,这个性质可以帮助我们得出准确的结论。
四、欧拉公式是九年级下册华师大版数学中关于圆的一个高阶概念。
这个公式被认为是数学中最美丽的公式之一。
欧拉公式是通过圆的半径、弧度以及复数等概念而得出的。
以上是九年级下册华师大版数学中关于圆的知识点的重要内容。
通过对这些知识的学习与实践,我们可以更好地理解和应用圆的性质。
圆是数学中一个富有魅力的概念,它在我们日常生活中随处可见。
掌握圆的知识,不仅可以帮助我们解决实际问题,还可以培养我们的抽象思维和数学推理能力。
华师大版九年级圆知识点华师大版九年级圆知识点按照如下格式进行讲解:一、圆的概念与性质圆是平面上所有离圆心的距离都相等的点的集合。
圆上的每一条线段都是圆的弦,而通过圆心的弦称为直径。
圆的性质包括:1. 圆心角:圆心角是指以圆心为顶点的角,它的度数等于所对圆弧的度数。
圆心角的度数范围是0°到360°。
2. 弧长:圆上任意弧所对应的圆心角所在的圆弧长度称为弧长。
弧长公式可以表示为:L = 2πr(θ/360°),其中L是弧长,r是半径,θ是圆心角的度数。
3. 弦长:圆上的弦的长度称为弦长。
弦长公式可以表示为:l = 2r*sin(θ/2),其中l是弦长,r是半径,θ是圆心角的度数。
4. 切线:切线是与圆仅有一个交点的直线。
切线与半径垂直,形成直角。
二、圆的相关定理1. 圆的面积:圆的面积公式为S = πr^2,其中S是圆的面积,r 是半径。
2. 弧长与半径关系:给定圆心角θ,则圆弧所对应的弧长L与半径r的关系是L = 2πr*(θ/360°)。
3. 圆的切线定理:切线与半径的垂直关系可以推导出切线与切点之间的夹角等于所对的弧和半径的夹角。
4. 切线长度定理:切线段的平方等于切点到圆心的距离与切点到圆心所对应的弧之积。
5. 弦的性质:等长的弦对应的弧长相等;相等的弧对应的弦长相等;垂直于弦的直径平分弦。
三、圆的解题技巧1. 圆心角的计算:根据已知的圆心角度数,可以计算出相应的弧长,应用圆的性质;或者根据圆心角所成的弦长,可以计算出圆的半径。
2. 弧长的计算:根据已知的圆弧对应的圆心角及圆的半径,可以计算出弧长。
3. 切线的计算:利用圆的性质和切线的定理,可以计算出切线与切点之间的夹角、切线长度等。
4. 配准问题:对于两个圆的配准问题,可以利用两圆的半径和圆心之间的关系,求解出未知量。
通过对九年级圆知识点的学习,我们能够了解到圆的概念与性质,掌握圆的相关定理,学会运用解题技巧,提高数学问题的解决能力。
圆的复习第一部分知识及方法一、圆的基本概念1、圆的基本元素圆心:圆的中心。
半径:连接圆心和圆上任一点的线叫半径。
弦:连接圆上任意两点的线段叫弦。
直径:经过圆心的弦叫直径。
弧:圆上任意两点间的部分叫弧。
弧分为半圆、优弧和劣弧。
圆心角:顶点在圆心的角叫圆心角。
注意:直径是圆最长的弦;同圆或等圆的直径是半径的两倍。
2、(1)圆是旋转对称图形,圆心是对称中心。
在一个圆中,相等的圆心角所对的弧相等,所对的弦相等。
在一个圆中,相等的弧所对的圆心角相等,所对的弦相等。
在一个圆中,相等的弦所对的劣弧相等,所对的圆心角相等。
(2)圆是轴对称图形,任一条过圆心的直线都是它的对称轴。
(3)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
提示:1)圆周可以看作360°的弧,圆心角的度数与它所对的弧的度数相等。
2)解决与弦有关的问题时,常常过圆心作弦的垂直线段作为辅助线。
半径、弦的一半、弦心距构成一个直角三角形。
利用勾股定理和三角函数可以解决与半径长、弦长、弦心距的长以及相关角度等有关计算的问题。
3)经过圆内一点,最长的弦是经过这点的直径,最短的弦是与过这点的直径垂直的弦。
4)圆内两条平行弦所夹的弧相等。
3、(1)圆周角的定义:顶点在圆上,两边与圆相交的角叫圆周角。
(2)圆周角定理:半圆或直径所对的圆周角是直角,90°圆周角所对得弦是直径。
在一个圆内,同弧或等弧所对的圆周角相等,都等于该弧所对圆心角的一半;相等的圆周角所对得弧也相等。
圆的内接四边形的对角互补,并且任何一个外角等于它的内对角。
(3)相关:利用“半圆或直径所对圆周角是直角”可以在圆中得到直角三角形,我们可以解决很多与直角三角形有关的问题。
圆周角定理、三角形内角和定理及推论、同角的余(补)角相等、平行线的性质定理等,都是与角度有关的定理,把它们进行综合运用,可以实现角度的灵活转换,从而解决很多与角相关的问题。
(4)注意:a.当给出90°圆周角时,弦AB是直径需要说明。
华师大九年级圆知识点圆是几何中的基本概念之一,是平面上所有到一个固定点的距离都相等的点的集合。
在华师大九年级数学课程中,学生需要掌握关于圆的一些基本知识和性质。
本文将围绕着华师大九年级圆的知识点展开讲述。
一、圆的定义和基本术语圆的定义:圆是平面上距离一个固定点相等于一个固定长度的点的集合。
圆的基本术语:圆心、半径、直径、弧、弦、切线、正切、圆心角、弦长等。
二、圆的性质与定理1. 圆的半径相等性质:圆上任意两点到圆心的距离相等。
2. 圆的直径性质:直径是连接圆上两点的最长线段,并且直径的长度是半径长度的两倍。
3. 圆的弧性质:圆上的弧可以通过其中一点作为圆心来构造一个圆。
4. 圆的弦性质:连接圆上两点的线段称为弦。
弦的长度不超过直径的长度。
5. 圆的切线性质:切线是与圆只有一个交点的直线。
6. 圆的正切性质:正切是切线和半径之间的关系,正切的值等于圆心角的正切值。
7. 圆心角性质:圆心角是以圆心为顶点的角,圆心角的度数等于所对弧的度数。
三、圆的常见公式1. 圆的周长:圆的周长等于直径或半径乘以2π,即C = πd 或C = 2πr。
2. 圆的面积:圆的面积等于半径的平方乘以π,即A = πr²。
四、圆与三角形、矩形等几何图形的关系1. 圆与三角形:圆内接于三角形的圆称为三角形的内切圆,圆外接于三角形的圆称为三角形的外接圆。
2. 圆与矩形:圆外接于矩形的圆称为矩形的外接圆,矩形内切于圆的圆称为矩形的内切圆。
五、圆的应用1. GPS导航系统中通过圆的定位来确定车辆所在的位置。
2. 圆的应用于建筑设计中,如圆形的屋顶、圆形窗户等。
3. 圆的应用于机械制造中,如轮子的制造等。
4. 圆的应用于日常生活中,如饼干、披萨等的形状。
华师大九年级的圆知识点就是以上所介绍的内容。
通过学习和理解这些知识,学生可以更好地掌握圆的基本概念、性质和应用。
同时,学生还需在实际解题中灵活运用这些知识来解决各种与圆有关的问题。
九年级下册数学华师版圆的知识点数学是一门理性与逻辑相结合的学科,其中圆的知识点是九年级下册数学华师版中的重点之一。
圆是我们日常生活中常见的图形之一,而对于任何一个几何学来说,研究圆的性质是非常重要的。
我们来一起探索一下九年级下册数学华师版给出的圆的知识点。
一、圆的定义与常见性质圆是由平面上所有距离某一点(圆心)相等的点构成的,我们常用O表示圆心,r表示半径。
圆一般具有以下性质:1. 圆上的任意两点与圆心的距离相等。
2. 半径相等的圆互相重合。
3. 圆可以分两部分,圆内部和圆外部。
二、圆与直线的位置关系1. 切线:过圆上一点的直线与圆相切,该直线称为切线。
切线与半径相垂直。
2. 弦:圆上两点之间的线段称为弦。
一条弦截圆剩余的线段称为弦切线定理。
3. 弧:圆上两点之间的部分称为弧。
三、圆的角度与弧度制1. 圆心角:以圆心为顶点的角称为圆心角。
圆心角的度数等于其所对的弧所对的圆心角的度数是它所对的弧所对的两个圆相交。
2. 弧度制:度数制是通过360度来度量一个圆,而弧度制是通过弧长对半径的比值来度量圆。
一整个圆周的弧度为2π弧度。
四、扇形与面积计算1. 扇形:以圆心为顶点,圆上的弧为边所围成的图形称为扇形。
扇形的面积计算公式为:S = 0.5 × r² × θ,其中S表示扇形的面积,r表示半径,θ表示圆心角的度数。
2. 弓形:由圆上的一个弧及其两端所在的半径构成。
弓形的面积计算公式为:S = 0.5 × r² ×(θ - sinθ)。
其中S表示弓形的面积,r表示半径,θ表示圆心角的度数。
3. 圆的面积计算公式为:S = πr²。
其中S表示圆的面积,r表示半径。
五、正多边形与圆的关系1. 在圆内作一条弦,该弦可将圆分成两个相等的正多边形。
若将弦的两个端点连线与圆心连接,则与圆心角相对的两个角是相等的。
2. 在圆内作一条弦,圆心角等于弦所对的两个扇形的圆心角之和。
华师版九年级圆知识点总结九年级是初中最后一个学年,学生在这一年要进行中考的冲刺备战。
数学作为一门重要的学科,对于九年级学生来说显得尤为重要。
其中,圆是九年级数学中的一个重要知识点。
下面将对华师版九年级圆知识点进行总结,以帮助同学们更好地掌握圆的相关概念和性质。
一、圆的定义和相关术语圆是由平面上任意一点到另一点距离相等的点的集合。
其中,距离相等的两点称为圆的直径,直径的一半称为半径。
圆心是距离直径上任意一点的距离均相等的点。
圆内的任意两点到圆心的距离相等,这个相等的距离称为半径。
圆内的一条线段,它的两个端点都在圆上,这个线段称为弦。
弦的中点在圆心上。
介于圆弧两端点的,除两端点之外的圆上的点所在的弧称为圆弧。
以圆心为端点的弧称为半圆。
二、圆的性质:1. 圆的半径相等性质:在同一个圆中,所有半径的长度相等。
2. 圆周角的性质:位于圆上的两条弧所对的圆周角相等。
3. 圆心角的性质:夹在相同弧上的两个圆心角相等。
4. 与圆相关的角:切线和半径垂直,切线和切线垂直。
5. 弧长和扇形面积公式:弧长等于弧所对的圆心角的度数除以360度后乘以圆周长。
扇形面积等于扇形所对的圆心角的度数除以360度后乘以圆的面积。
三、圆的方程1. 圆心在原点的情况:若一个圆的圆心在原点,半径为r,则圆的方程为 x² + y² = r²。
2. 圆心不在原点的情况:若一个圆的圆心坐标为(h, k),半径为r,则圆的方程为 (x-h)² + (y-k)² = r²。
四、圆的切线和切点1. 切线:与圆只有一个交点的直线称为圆的切线。
2. 切点:切线与圆的交点称为切点。
3. 切线定理:外切线与半径垂直;内切线与半径夹角是直角。
五、圆与直线的位置关系1. 直线与圆相交:相交的点个数可以有1个、2个或无穷多个。
2. 直线与圆相切:直线与圆相切时,切点是圆的一个点。
3. 直线在圆内部:直线与圆没有交点。
1 •圆的认识
(1)当一条线段0A绕着它的一个端点0在平面内旋转一周时,它的另一个端点A的轨迹叫做圆。
或到一个
定点的距离等于定长的点的集合。
这个以点0为圆心的圆叫作“圆C”,记为“O O'。
(2)线段OA OB 0C都是圆的半径,线段AC为直径。
(3)连结圆上任意两点之间的线段叫做弦如线段AB BC AC都是圆0中的弦。
(4)圆上任意两点间的部分叫做弧。
如曲线BC BAC都是圆中的弧,分别记作BC、BAC其中像弧BC这样
小于半圆周的圆叫做劣弧。
像弧BAC,这样的大于半圆周的圆弧叫做优弧。
(3)圆心角:顶点在圆心,两边与圆相交的角叫做圆心角。
如/ AOB、/ AOC、/ BOC就是圆心角。
2 .圆的对称性
(1 )在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等。
在同圆或等圆中,如果弦相等,那么所对的圆心角、所对的弧相等。
在同圆或等圆中,如果弧相等,那么所对的圆心角,所对的弦相等。
(2 )圆是轴对称图形,它的任意一条直径所在的直线都是它的对称轴。
3.垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦的直径垂直于这条弦,并且平分弦所对的弧;平分弧的直径垂直平分这条弧所对的弦。
4•圆周角
(1)圆周角:顶点在圆上,两边与圆相交的角叫做圆周角。
(2)半圆或直径所对的圆周角都相等,都等于90°(直角)。
90°的圆周角所对的弦是圆的直径。
(3)同圆或等圆中,一条弧所对的任意一个圆周角的大小都等于该弧所对的圆心角的一半。
(4)同弧(或等弧)所对的圆周角相等;相等的圆周角所对的弧相等。
5•点与圆的位置关系
设O 0的半径为r,点圆心0的距离为d,则
(1 )点在圆外 d r
(2 )点在圆上 d =r
(3 )点在圆内 d :: r
6. (1)过一点可以画无数个圆;
过两点可以画无数个圆,圆心在两点连线的垂直平分线上;过不在同一条直线上的三个点可以确定一个圆。
(2)三角形的外接圆:经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心。
这个三角形叫做这个圆的内接三角形。
三角形的外心就是三角形三条边的垂直平分线的交点。
(3)—个三角形的外接圆是唯一的。
7 •直线与圆的位置关系
(1)如果一条直线与一个圆没有公共点,那么就说这条直线与这个圆相离。
(2)如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切。
此时这条直线叫做圆的切线,这个公共点
叫做切点.
(3 )如果一条直线与一个圆有两个公共点,那么就说这条直线与这个圆相交,此时这条直线叫做圆的割线.
如上图, 设o O 的半径为r ,圆心0到直线l 的距离为d ,从图中可以看出 若d r
直线l 1与o O 相离; 若d = r
直线l 1与oo 相切; 若d :r
直线l 1与o O 相交;
8.切线
(1 )判定定理:经过半径外端且垂直于这条半径的直线是圆的切线。
(2) 性质定理:圆的切线垂直于经过切点的半径。
推论:1 )经过圆心且垂直于切线的直线必经过切点。
2)经过切点且垂直于切线的直线必经过圆心。
(3) 切线长:把切线上某一点与切点之间的线段的长,叫做这点到圆的切线长。
性质:从圆外一点可以引圆的两条切线,切线长相等。
这一点与圆心的连线平分两条切线的夹角。
(4) 三角形的内切圆:与三角形各边都相切的圆叫做这个三角形的内切圆。
三角形内切圆的圆心叫做这个三角 形的内心。
这个三角形叫做这个圆的外切三角形,三角形的内心就是三角形三条角平分线的交点。
9 •圆和圆的位置关系
1)
两个圆没有公共点,那么就说两个圆相离,其中( 1)又叫做外
离,(2)、(3)又叫做内含。
(3)中两圆的圆 心相同,这两个圆还可以叫做同心圆。
(5)两圆外离=0 - d ::: R - r
n 兀r 1 扇形面积的计算公式: S 二丄2
丄lr
360 2
(3)圆锥的母线:把圆锥底面圆周上的任意一点与圆锥顶点的连线叫做圆锥的母线。
圆锥的高:连结顶点与底面圆心的线段叫做圆锥的高,如图中
a ,而h 就是圆锥的高。
(4) 圆锥的底面周长就是其侧面展开图扇形的弧长,圆锥的母线就是其侧面展开图扇形的半径。
圆锥的侧面积就是弧长为圆锥底面的周长、半径为圆锥的一条母线的长的扇形面积,而圆锥的全面积就是 它的侧面积
2) 如果两个圆只有一个公共点,那么就说这两个圆相切,如( 叫做内切。
3) 如果两个圆有两个公共点,那么就说这两个圆相交,如(
4) 、( 5)所示•其中(4)又叫做外切,(5)又 6)所示。
(1) 两圆外离
d R r ; (2) 两圆外切
d = R r -
(3) 两圆外离
R - r : d : R r ; (4)
两圆外离
d = R-r -
10. 圆中的计算问题
(1 )弧长的计算公式为:
,n 二 r l =
180
(2 )扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。
与它的底面积的和。