工程材料课后题答案
- 格式:doc
- 大小:126.50 KB
- 文档页数:12
第一章钢的合金化基础1、合金钢是如何分类的?1) 按合金元素分类:低合金钢,含有合金元素总量低于5%;中合金钢,含有合金元素总量为5%-10%;中高合金钢,含有合金元素总量高于10%。
2) 按冶金质量S、P含量分:普通钢,P≤0.04%,S≤0.05%;优质钢,P、S均≤0.03%;高级优质钢,P、S均≤0.025%。
3) 按用途分类:结构钢、工具钢、特种钢2、奥氏体稳定化,铁素体稳定化的元素有哪些?奥氏体稳定化元素, 主要是Ni、Mn、Co、C、N、Cu等铁素体稳定化元素, 主要有Cr、Mo、W、V、Ti、Al、Si、B、Nb、Zr等3、钢中碳化物形成元素有哪些(强-弱),其形成碳化物的规律如何?1) 碳化物形成元素:Ti、Zr、Nb、V、Mo、W、Cr、Mn、Fe等(按形成的碳化物的稳定性程度由强到弱的次序排列) ,在钢中一部分固溶于基体相中,一部分形成合金渗碳体, 含量高时可形成新的合金碳化物。
2) 形成碳化物的规律a) 合金渗碳体—— Mn与碳的亲和力小,大部分溶入α-Fe或γ-Fe中,少部分溶入Fe3C中,置换Fe3C中的Fe而形成合金渗碳体(Mn,Fe)3C; Mo、W、Cr少量时,也形成合金渗碳体b) 合金碳化物——Mo、W 、Cr含量高时,形成M6C(Fe2Mo4C Fe4Mo2C),M23C6(Fe21W2C6 Fe2W21C6)合金碳化物c) 特殊碳化物——Ti 、V 等与碳亲和力较强时i. 当rc/rMe<0.59时,碳的直径小于间隙,不改变原金属点阵结构,形成简单点阵碳化物(间隙相)MC、M2C。
ii. 当rc/rMe>0.59时,碳的直径大于间隙,原金属点阵变形,形成复杂点阵碳化物。
★4、钢的四种强化机制如何?实际提高钢强度的最有效方法是什么?1) 固溶强化:溶质溶入基体中形成固溶体能够强化金属;2) 晶界强化:晶格畸变产生应力场对位错运动起到阻碍达到强化,晶格越细,晶界越细,阻碍位错运动作用越大,从而提高强度;3) 第二相强化:有沉淀强化和弥散强化,沉淀强化着眼于位错运动切过第二相粒子;弥散强化着眼于位错运动绕过第二相粒子;4) 位错强化:位错密度越高则位错运动越容易发生相互交割形成割阶,引起位错缠结,因此造成位错运动困难,从而提高了钢强度。
第一章材料的结构与性能一、材料的性能(一)名词解释弹性变形:去掉外力后,变形立即恢复的变形为弹性变形。
塑性变形:当外力去除后不能够恢复的变形称为塑性变形。
冲击韧性:材料抵抗冲击载荷而不变形的能力称为冲击韧性。
疲劳强度:当应力低于一定值时,式样可经受无限次周期循环而不破坏,此应力值称为材料的疲劳强度。
σ为抗拉强度,材料发生应变后,应力应变曲线中应力达到的最大值。
bσ为屈服强度,材料发生塑性变形时的应力值。
sδ为塑性变形的伸长率,是材料塑性变形的指标之一。
HB:布氏硬度HRC:洛氏硬度,压头为120°金刚石圆锥体。
(二)填空题1 屈服强度、抗拉强度、疲劳强度2 伸长率和断面收缩率,断面收缩率3 摆锤式一次冲击试验和小能量多次冲击试验, U型缺口试样和V型缺口试样4 洛氏硬度,布氏硬度,维氏硬度。
5 铸造、锻造、切削加工、焊接、热处理性能。
(三)选择题1 b2 c3 b4 d f a (四)是非题 1 对 2 对 3错 4错(五)综合题 1 最大载荷为2805.021038.5πσ⨯=F b断面收缩率%10010810010⨯-=-=A A A ϕ 2 此题缺条件,应给出弹性模量为20500MP,并且在弹性变形范围内。
利用虎克定律 320℃时的电阻率为13.0130℃时的电阻率为18.01二、材料的结合方式 (一)名词解释结合键:组成物质的质点(原子、分子或离子)间的相互作用力称为结合键,主要有共价键、离子键、金属键、分子键。
晶体:是指原子在其内部沿三维空间呈周期性重复排列的一类物质。
非晶体:是指原子在其内部沿三维空间呈紊乱、无序排列的一类物质。
近程有序:在很小的范围内(一般为几个原子间距)存在着有序性。
(二)填空题1 四,共价键、离子键、金属键、分子键。
2 共价键和分子键,共价键,分子键。
3 强。
4 强。
(三)选择题1 a2 b3 a(四)是非题1 错2 错3 对4 错(五)综合题1晶体的主要特点:○1结构有序;○2物理性质表现为各向异性;○3有固定的熔点;○4在一定条件下有规则的几何外形。
工程材料与机械制造基础第二版课后练习题含答案第一章金属材料选择题1.金属的基本结构单位是()。
A. 原子 B. 分子 C. 离子 D. 高分子2.金属的导电性好,是因为()。
A. 金属原子共用周围电子形成了一个电子云 B. 金属原子之间的原子序数很大 C. 金属原子之间的距离很远D. 金属原子的原子半径很大3.现代材料科学的研究表明,金属的显微结构主要包括()两种结构。
A. 晶体和非晶体B. 多晶和单晶C. 非晶体和薄层结构D. 单晶和二晶轴4.在常温下铁、钨属于()。
A. 非晶态材料 B. 晶态材料 C. 二相材料 D. 单晶体材料5.劈铅试验所测试的是材料()。
A. 塑性 B. 韧性 C. 硬度 D. 强度简答题1.什么是金属材料?金属材料具有哪些特点?2.金属的结晶状态有哪些?请简述它们的特点。
3.介绍一下金属断裂的过程。
4.解释一下热处理和强化的含义。
答案选择题:1. A 2. A 3. B 4. B 5. D简答题:1.金属材料是一类以金属元素为主要组成成分的工程材料,具有一系列特点,如:密度大,强度高,塑性良好,导电导热性好等。
同时,也具有一些不足之处,如:易受腐蚀,疲劳寿命相对较短等。
2.金属的结晶状态主要有三种,分别为单晶、多晶以及非晶态。
单晶指的是具有完整晶格结构的材料,其具有优异的物理性能,但制造成本较高。
而多晶则指晶粒较小、有多个晶粒构成的材料。
这类材料具有低成本、高韧性等特点。
非晶态指材料的内部没有固定的原子排列方式,呈无序状态。
这类材料具有高强度、低应力腐蚀等特点。
3.金属断裂的过程主要包括两个阶段,分别为起始裂纹形成阶段和扩展裂纹阶段。
在起始裂纹形成阶段,由于外力作用,材料内部会出现微小的损伤,如缺陷、气孔等,这些损伤会在外力作用下产生应力集中。
当应力集中超过材料强度极限时,就会出现一条裂纹。
在扩展裂纹阶段,裂纹会不断扩大,细微损伤逐渐聚集,最终导致材料破裂。
土木工程材料第二版课后题答案土木工程材料是土木工程专业的一门重要课程,它主要介绍土木工程中常用的材料及其性能、特点和应用。
《土木工程材料》第二版课后题是帮助学生巩固课堂学习内容,检验自己对知识点的掌握程度的重要辅助教材。
下面是《土木工程材料》第二版课后题的答案。
1. 什么是混凝土的主要组成材料?它们各自的作用是什么?答,混凝土的主要组成材料是水泥、砂、骨料和水。
水泥起着粘结作用,砂和骨料起着填充作用,而水则是混凝土的成型介质和养护介质。
2. 什么是水泥?它的种类有哪些?答,水泥是一种粉状物质,主要由石灰石、粘土等矿物经研磨、混合煅烧而成。
常见的水泥种类有硅酸盐水泥、硫铝酸盐水泥、普通硅酸盐水泥等。
3. 什么是砂?在混凝土中起到什么作用?答,砂是一种颗粒较细的颗粒状材料,主要用作混凝土中的填料,起到增加混凝土强度和改善工作性能的作用。
4. 混凝土的配合比是什么?它的作用是什么?答,混凝土的配合比是指混凝土中水泥、砂、骨料和水的比例关系。
它的作用是保证混凝土的强度、耐久性和工作性能。
5. 骨料在混凝土中的作用是什么?常用的骨料有哪些?答,骨料在混凝土中起到填充和增加混凝土强度的作用。
常用的骨料有碎石、砾石等。
6. 水泥的凝结硬化过程是怎样的?它的影响因素有哪些?答,水泥的凝结硬化过程是指水泥在水的作用下逐渐发生水化反应,形成胶凝体,最终硬化成坚固的体积稳定的物质。
影响水泥凝结硬化的因素有水灰比、水泥品种、水泥用量、养护条件等。
7. 混凝土的强度是由哪些因素决定的?答,混凝土的强度主要由水泥的品种、水灰比、骨料的种类和配合比等因素决定。
8. 水泥的种类有哪些?它们的特点和应用有何不同?答,水泥的种类有硅酸盐水泥、硫铝酸盐水泥、普通硅酸盐水泥等。
它们的特点和应用不同,硅酸盐水泥适用于一般混凝土工程,硫铝酸盐水泥适用于耐酸蚀混凝土工程,普通硅酸盐水泥适用于一般混凝土工程。
9. 混凝土的抗压强度是如何测试的?测试结果如何评定?答,混凝土的抗压强度是通过压力试验机进行测试的,测试结果根据国家标准进行评定。
第1章土木工程材料的基本性(1)当某一建筑材料的孔隙率增大时,材料的密度、表观密度、强度、吸水率、搞冻性及导热性是下降、上生还是不变?答:当材料的孔隙率增大时,各性质变化如下表:(2)答:(3)材料的孔隙率和空隙率的含义如何?如何测定?了解它们有何意义?答:P指材料体积内,孔隙体积所占的百分比:P′指材料在散粒堆积体积中,颗粒之间的空隙体积所占的百分比:了解它们的意义为:在土木工程设计、施工中,正确地使用材料,掌握工程质量。
(4)亲水性材料与憎水性材料是怎样区分的?举例说明怎样改变材料的变水性与憎水性?答:材料与水接触时能被水润湿的性质称为亲水性材料;材料与水接触时不能被水润湿的性质称为憎水性材料。
例如:塑料可制成有许多小而连通的孔隙,使其具有亲水性。
例如:钢筋混凝土屋面可涂抹、覆盖、粘贴憎水性材料,使其具有憎水性。
(5)普通粘土砖进行搞压实验,浸水饱和后的破坏荷载为183KN,干燥状态的破坏荷载为207KN(受压面积为115mmX120mm),问此砖是否宜用于建筑物中常与水接触的部位?答:(6)塑性材料和塑性材料在外国作用下,其变形性能有何改变?答:塑性材料在外力作用下,能产生变形,并保持变形后的尺寸且不产生裂缝;脆性材料在外力作用下,当外力达到一定限度后,突然破坏,无明显的塑性变形。
(7)材料的耐久性应包括哪些内容?答:材料在满足力学性能的基础上,还包括具有抵抗物理、化学、生物和老化的作用,以保证建筑物经久耐用和减少维修费用。
(8)建筑物的屋面、外墙、甚而所使用的材料各应具备哪些性质?答:建筑物的屋面材料应具有良好的防水性及隔热性能;外墙材料应具有良好的耐外性、抗风化性及一定的装饰性;而基础所用材料应具有足够的强度及良好的耐水性。
第2章天然石材(1)岩石按成因可分为哪几类?举例说明。
答:可分为三大类:1)岩浆岩,也称火成岩,是由地壳内的岩浆冷凝而成,具有结晶构造而没有层理。
例如花岗岩、辉绿岩、火山首凝灰岩等。
工程材料力学性能课后题答案第三版(束德林)第一章单向静拉伸力学性能1、解释下列名词。
(1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
(2)滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
(3)循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
(4)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(5)解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
(6)塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
(7)解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
(8)河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
(9)解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
(10)穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
(11)韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变。
2、说明下列力学性能指标的意义。
答:(1)E(G)分别为拉伸杨氏模量和切边模量,统称为弹性模量表示产生100%弹性变所需的应力。
σ规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。
(2)rσ名义屈服强度(点),对没有明显屈服阶段的塑性材料通常以产生0.2%的塑性形变对应的应力作为屈2.0服强度或屈服极限。
⼟⽊⼯程材料课后习题及答案⼟⽊⼯程材料课后习题答案⼟⽊⼯程材料概述及基本性质思考题与习题:⼀、填空1、建筑材料按化学成分可分为有机材料、⽆机材料、复合材料三⼤类。
2、建筑材料按使⽤功能可分为结构材料、功能材料两⼤类。
3、我国建筑材料标准分为:国家标准、部委⾏业标准、地⽅标准、企业标准四类,国家标准代号为: GB ,企业标准代号为Q 。
4、材料标准表⽰由标准名称,标准分类,标准编号,颁布年份四部分组成。
5、《蒸压加⽓混凝⼟砌块》(GB/T11969-1997)中,各字母和数字的含意为:GB : 国家标准, T : 推荐标准,11969 : 标准编号,1997 : 颁布年份。
6、某材料的密度为 2.5,表观密度为 1.8,该材料的密实度为 72% ,孔隙率为28% 。
7、⽔可以在材料表⾯展开,即材料表⾯可以被⽔浸润,这种性质称为材料的亲⽔性。
8、材料的吸⽔性⼤⼩⽤吸⽔率表⽰,吸湿性⼤⼩⽤含⽔率表⽰。
9、含⽔率为5%的湿砂1000g中,含⼲砂 952.38 g,⽔ 47.62 g。
10、材料的耐⽔性⽤软化系数表⽰,耐⽔材料的K R≥ 0.85 。
11、⼀般来说,材料含⽔时⽐其⼲燥时的强度低。
12、墙体受潮后,其保温隔热性会明显下降,这是由于材料受潮后导热系数明显增⼤的缘故。
13、当某材料的孔隙率增⼤时,下表中的性质将如何变化。
(增⼤↑,下降↓,不变-,不定?)14、某钢材直径10mm,拉伸破坏荷载为31.5KN,该钢材的抗拉强度为 401.07MPa 。
15、材料的弹性模量反映了材料抵抗变形的能⼒。
16、材料在使⽤环境中,除受荷载作⽤外,还会受到物理作⽤、化学作⽤和⽣物作⽤等周围⾃然因素的作⽤影响其耐久性。
⼆、是⾮判断题(对的打∨,错的打×)1、含⽔率为2%的湿砂重100g,其中⽔的重量为2g。
()2、热容量⼤的材料导热性⼤,受外界⽓温影响时室内温度变化较快。
()3、材料的孔隙率相同时,连通粗孔⽐封闭微孔的导热系数⼤。
工程材料力学性能课后题答案第三版(束德林)第一章单向静拉伸力学性能1、解释下列名词。
(1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
(2)滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
(3)循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
(4)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(5)解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
(6)塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
(7)解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
(8)河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
(9)解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
(10)穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
(11)韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变。
2、说明下列力学性能指标的意义。
答:(1)E(G)分别为拉伸杨氏模量和切边模量,统称为弹性模量表示产生100%弹性变所需的应力。
σ规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。
(2)rσ名义屈服强度(点),对没有明显屈服阶段的塑性材料通常以产生0.2%的塑性形变对应的应力作为屈2.0服强度或屈服极限。
《工程材料》习题集参考答案一.判断题×√1、细化晶粒虽能提高金属的强度,但增大了金属的脆性。
(×)2、结构钢的淬透性,随钢中碳含量的增大而增大。
(×)3、普通低合金结构钢不能通过热化处理进行强化。
(√)4、置换固溶体必是无限固溶体。
(×)5、单晶体必有各向异性。
(√)6、普通钢和优质钢是按其强度等级来区分的。
(×)7、过热钢经去应力退火后能显著细化晶粒。
(×)8、表面淬火主要用于高碳钢。
(×)9、马氏体的晶体结构和铁素体的相同。
(×)10、面心立方金属的塑性比体心立方金属的好。
(√)11、铁素体是置换固溶体。
(×)12、晶界是金属晶体的常见缺陷。
(√)13、渗碳体是钢中常见的固溶体相。
(×)14、金属的塑性变形主要通过位错的滑移进行。
(√)15、金属的晶粒越细小,其强度越高,其塑性越好。
(√)16、比重偏析不能通过热处理来消除。
(√)17、上贝氏体的韧性比下贝氏体好。
(×)18、对过共析钢工件进行完全退火可消除渗碳体网。
(×)19、对低碳低合金钢进行正火处理可提高其硬度。
(√)20、淬火获得马氏体的必要条件之一是其淬火冷却速度必须小于Vk。
(×)21、氮化件的变形远比渗碳件的小。
(√)22、马氏体转变是非扩散性转变。
(√)23、高锰钢在各种条件下均能表现出良好的耐磨性。
(×)24、无限固溶体必是置换固溶体。
(√)25、金属的晶粒越细小,其强度越高,但韧性变差。
(×)26、所谓临界冷却速度就是指钢能获得完全马氏体组织的最小冷却速度。
(√)27、钢进行分级淬火的目的是为了得到下贝氏体组织。
(×)28、对奥氏体不锈钢进行固溶处理的目的是为了提高其强度。
(×)29、弹簧钢的最终热处理应是淬火+低温回火。
(×)30、凡单相固溶体均能进行形变强化。
第一章工程材料基础知识参考答案1.金属材料的力学性能指标有哪些?各用什么符号表示?它们的物理意义是什么?答:常用的力学性能包括:强度、塑性、硬度、冲击韧性、疲劳强度等。
强度是指金属材料在静荷作用下抵抗破坏(过量塑性变形或断裂)的性能。
强度常用材料单位面积所能承受载荷的最大能力(即应力。
,单位为Mpa)表示。
塑性是指金属材料在载荷作用下,产生塑性变形(永久变形)而不被破坏的能力。
金属塑性常用伸长率5和断面收缩率出来表示:硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力,是衡量材料软硬程度的指标,是一个综合的物理量。
常用的硬度指标有布氏硬度(HBS、HBW)、洛氏硬度(HRA、HRB、HRC等)和维氏硬度(HV)。
以很大速度作用于机件上的载荷称为冲击载荷,金属在冲击载荷作用下抵抗破坏的能力叫做冲击韧性。
冲击韧性的常用指标为冲击韧度,用符号a k表示。
疲劳强度是指金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。
疲劳强度用。
-1表示,单位为MPa。
2.对某零件有力学性能要求时,一般可在其设计图上提出硬度技术要求而不是强度或塑性要求,这是为什么?答:这是由它们的定义、性质和测量方法决定的。
硬度是一个表征材料性能的综合性指标,表示材料表面局部区域内抵抗变形和破坏的能力,同时硬度的测量操作简单,不破坏零件,而强度和塑性的测量操作复杂且破坏零件,所以实际生产中,在零件设计图或工艺卡上一般提出硬度技术要求而不提强度或塑性值。
3.比较布氏、洛氏、维氏硬度的测量原理及应用范围。
答:(1)布氏硬度测量原理:采用直径为D的球形压头,以相应的试验力F压入材料的表面,经规定保持时间后卸除试验力,用读数显微镜测量残余压痕平均直径d,用球冠形压痕单位表面积上所受的压力表示硬度值。
实际测量可通过测出d值后查表获得硬度值。
布氏硬度测量范围:用于原材料与半成品硬度测量,可用于测量铸铁;非铁金属(有色金属)、硬度较低的钢(如退火、正火、调质处理的钢)(2)洛氏硬度测量原理:用金刚石圆锥或淬火钢球压头,在试验压力F的作用下,将压头压入材料表面,保持规定时间后,去除主试验力,保持初始试验力,用残余压痕深度增量计算硬度值,实际测量时,可通过试验机的表盘直接读出洛氏硬度的数值。
第一章6、实际金属晶体中存在哪些缺陷?它们对性能有什么影响?答:点缺陷:空位、间隙原子、异类原子。
点缺陷造成局部晶格畸变,使金属的电阻率、屈服强度增加,密度发生变化。
线缺陷:位错。
位错的存在极大地影响金属的机械性能。
当金属为理想晶体或仅含极少量位错时,金属的屈服强度σs很高,当含有一定量的位错时,强度降低。
当进行形变加工时,为错密度增加,σs将会增高。
面缺陷:晶界、亚晶界。
亚晶界由位错垂直排列成位错墙而构成。
亚晶界就是晶粒内的一种面缺陷。
在晶界、亚晶界或金属内部的其她界面上,原子的排列偏离平衡位置,晶格畸变较大,位错密度较大(可达1016m-2以上)。
原子处于较高的能量状态,原子的活性较大,所以对金属中的许多过程的进行,具有极为重要的作用。
晶界与亚晶界均可提高金属的强度。
晶界越多,晶粒越细,金属的塑性变形能力越大,塑性越好。
8、什么就是固溶强化?造成固溶强化的原因就是什么?答:形成固溶体使金属强度与硬度提高的现象称为固溶强化。
固溶体随着溶质原子的溶入晶格发生畸变。
晶格畸变随溶质原子浓度的提高而增大。
晶格畸变增大位错运动的阻力,使金属的滑移变形变得更加困难,从而提高合金的强度与硬度。
9、间隙固溶体与间隙相有什么不同?答:合金组元通过溶解形成一种成分与性能均匀的,且结构与组元之一相同的固相称为间隙固溶体。
间隙固溶体中溶质原子进入溶剂晶格的间隙之中。
间隙固溶体的晶体结构与溶剂相同。
间隙相就是间隙化合物中的一种,其晶体结构不同于组成它的任意元素的晶体结构,一般就是较大金属元素的原子占据晶格的结点位置,半径较小的非金属元素的原子占据晶格的间隙位置,晶体结构简单,间隙相一般具有高熔点、高硬度,非常稳定,就是合金的重要组成相。
第二章1、金属结晶的条件与动力就是什么?答:液态金属结晶的条件就是金属必须过冷,要有一定的过冷度。
液体金属结晶的动力就是金属在液态与固态之间存在的自由能差(ΔF)。
2、金属结晶的基本规律就是什么?答:液态金属结晶就是由生核与长大两个密切联系的基本过程来实现的。
液态金属结晶时,首先在液体中形成一些极微小的晶体(称为晶核),然后再以它们为核心不断地长大。
在这些晶体长大的同时,又出现新的品核并逐渐长大,直至液体金属消失。
3、在实际应用中,细晶粒金属材料往往具有较好的常温力学性能,细化晶粒、提高金属材料使用性能的措施有哪些?答:(1) 提高液态金属的冷却速度,增大金属的过冷度。
(2) 进行变质处理。
在液态金属中加入孕育剂或变质剂,增加晶核的数量或者阻碍晶核的长大,以细化晶粒与改善组织。
(3) 在金属结晶的过程中采用机械振动、超声波振动等方法。
(4) 电磁搅拌。
将正在结晶的金属置于一个交变的电磁场中,由于电磁感应现象,液态金属会翻滚起来,冲断正在结晶的树枝状晶体的晶枝,增加了结晶的核心,从而可细化晶粒。
4、如果其她条件相同,试比较在下列铸造条件下铸件晶粒的大小。
(1)金属模浇注与砂模浇注; (2)变质处理与不变质处理; (3)铸成薄件与铸成厚件; (4)浇注时采用震动与不采用震动。
答:(1)金属模浇注比砂模浇注,铸件晶粒小; (2)变质处理比不变质处理,铸件晶粒小;(3)铸成薄件比铸成厚件,铸件晶粒小;(4)浇注时采用震动比不采用震动,铸件晶粒小。
5、为什么钢锭希望尽量减少柱状晶区?答:柱状就是由外往里顺序结晶的,品质较致密。
但柱状品的接触面由于常有非金属夹杂或低熔点杂质而为弱面,在热轧、锻造时容易开裂,所以对于熔点高与杂质多的金届,例如铁、镍及其合金,不希望生成柱状晶。
6、将20kg纯铜与30 kg纯镍熔化后慢冷至如图l—6温度T1,求此时: ①两相的化学成分;②两相的质量比; ③各相的质量分数; ④各相的质量。
解:①两相的化学成分L相成分:ω(Ni);50%ω(Cu)=50%②两相质量比:合金成分:ω(Ni)=80% ω(Cu)=20%二相的质量比:Qα/Qβ=(60-50)/(80-60)=0、5③各相的质量分数:二相的质量分数:ω=(60-50)/(80-50)=33、3%αωL=1-33、3%=66、7%④各相的质量:二相质量:Qα=(20十30)×33、3%=16、65(kg)Q L=50一16、65=33、35(kg)7、求碳质量分数为3、5%的质量为10kg的铁碳合金从液态缓慢冷却到共晶温度(但尚未发生共晶反应)时所剩下的液体的碳质量分数及液体的质量。
解:L中的碳质量分数:w(C)=4、3%L中的质量分数: w (L)=(3、5-2、11)/(4、3-2、11)=63、5%L的质量:Q L=10×63、5%=6、35(kg)8、比较退火状态下的45钢、T8钢、T12钢的硬度、强度与塑性的高低,简述原因。
答:硬度:45钢最低,T8钢较高,T12钢最高。
因为退火状态下的45钢组织就是铁素体+珠光体,T8钢组织就是珠光体,T12钢组织就是珠光体+二次渗碳体。
因为铁素体硬度低,因此45钢硬度最低。
因为二次渗碳体硬度高,因此T12钢硬度最高。
强度:因为铁素体强度低,因此45钢强度最低。
T8钢组织就是珠光体,强度最高。
T12钢中含有脆性的网状二次渗碳体,隔断了珠光体之间的结合,所以T12钢的强度比T8钢要低。
但T12钢中网状二次渗碳体不多,强度降低不大,因此T12钢的强度比45钢强度要高。
塑性:因为铁素体塑性好,因此45钢塑性最好。
T12钢中含有脆性的网状二次渗碳体,因此T12钢塑性最差。
T8钢无二次渗碳体,所以T8钢塑性较高。
9、同样形状的两块铁碳合金,其中一块石退火状态的15钢,一块就是白口铸铁,用什么简便方法可迅速区分它们?答:因为退火状态的15钢硬度很低,白口铸铁硬度很高。
因此可以用下列方法迅速区分:(1)两块材料互相敲打一下,有印痕的就是退火状态的15钢,没有印痕的就是白口铸铁。
(2)用锉刀锉两块材料,容易锉掉的就是退火状态的15钢,不容易锉掉的就是白口铸铁。
(3)用硬度计测试,硬度低的就是退火状态的15钢,硬度高的就是白口铸铁。
10、为什么碳钢进行热锻、热轧时都要加热到奥氏体区?答:因为奥氏体就是面心立方晶格,其滑移变形能力大,钢处于奥氏体状态时强度较低,塑性较好,因此锻造或轧制选在单相奥氏体区内进行。
11、下列零件或工具用何种碳钢制造:手锯钢条、普通螺钉、车床主轴。
答:手锯锯条用T10钢制造。
普通螺钉用Q195钢、Q215钢制造。
车床主轴用45钢制造。
12、为什么细晶粒钢强度高,塑性、韧性也好?答:多晶体中,由于晶界上原子排列不很规则,阻碍位错的运动,使变形抗力增大。
金属晶粒越细,晶界越多,变形抗力越大,金属的强度就越大。
多晶体中每个晶粒位向不一致。
一些晶粒的滑移面与滑移方向接近于最大切应力方向(称晶粒处于软位向),另一些晶粒的滑移面与滑移方向与最大切应力方向相差较大(称晶粒处于硬位向)。
在发生滑移时,软位向晶粒先开始。
当位错在晶界受阻逐渐堆积时,其她晶粒发生滑移。
因此多晶体变形时晶粒分批地逐步地变形,变形分散在材料各处。
晶粒越细,金属的变形越分散,减少了应力集中,推迟裂纹的形成与发展,使金属在断裂之前可发生较大的塑性变形,从而使金属的塑性提高。
由于细晶粒金属的强度较高、塑性较好,所以断裂时需要消耗较大的功,因而韧性也较好。
因此细晶强化就是金属的一种很重要的强韧化手段。
13、与单晶体的塑性变形相比较,说明多晶体塑性变形的特点。
答:①多晶体中,由于晶界上原子排列不很规则,阻碍位错的运动,使变形抗力增大。
金属晶粒越细,品界越多,变形抗力越大,金属的强度就越大。
②多晶体中每个晶粒位向不一致。
一些晶粒的滑移面与滑移方向接近于最大切应力方向(称晶粒处于软位向),另一些晶粒的滑移面与滑移方向与最大切应力方向相差较大(称晶粒处于硬位向)。
在发生滑移时,软位向晶粒先开始。
当位错在晶界受阻逐渐堆积时,其她晶粒发生滑移。
因此多晶体变形时晶粒分批地逐步地变形,变形分散在材料各处。
晶粒越细,金属的变形越分散,减少了应力集中,推迟裂纹的形成与发展,使金属在断裂之前可发生较大的塑性变形,因此使金属的塑性提高。
14、金属塑性变形后组织与性能会有什么变化?答:金属发生塑性变形后,晶粒发生变形,沿形变方向被拉长或压扁。
当变形量很大时,晶粒变成细条状(拉伸时),金属中的夹杂物也被拉长,形成纤维组织。
金属经大的塑性变形时,由于位错的密度增大与发生交互作用,大量位错堆积在局部地区,并相互缠结,形成不均匀的分布,使晶粒分化成许多位向略有不同的小晶块,而在晶粒内产生亚晶粒。
金属塑性变形到很大程度(70%以上)时,由于晶粒发生转动,使备品粒的位向趋近于一致,形成特殊的择优取向,这种有序化的结构叫做形变织构。
金属发生塑性变形,随变形度的增大,金属的强度与硬度显著提高。
塑性与韧性明显下降。
这种现象称为加工硬化,也叫形变强化。
另外,由于纤维组织与形变织构的形成,使金属的性能产生各向异性。
15、在图1—7所示的晶面、晶向中,哪些就是滑移面?哪些就是滑移方向?图中情况能否构成滑移系?答:(a)FCC:(101) 晶面不就是滑移面,[110]晶向就是滑移方向,但两者不能构成滑移系。
(b)FCC:(111)晶面就是滑移面,其上的[110]晶向也就是滑移方向,两者能构成滑移系。
(c)BCC:(111)晶面不就是滑移面,其上的[101]晶向不就是滑移方向,两者不能构成滑移系。
(d)BCC:(110)晶面就是滑移面,晶向也就是滑移方向,但不在(110)晶面上,故两者不能构成滑移系。
16、用低碳钢钢板冷冲压成形的零件,冲压后发现各部位的硬度不同,为什么?答:主要就是由于冷冲压成形时,钢板形成零件的不同部位所需发生的塑性变形量不同,因而加工硬化程度不同所造成。
17、已知金属钨、铅的熔点分别为3380℃与327℃,试计算它们的最低再结晶温度,并分析钨在9000C加丁、铅在室温加丁时各为何种加工?答:金属的最低再结晶温度为:T再=(0、35~0、4)T熔点对金属钨:T熔点=273十3380=3653KT再=(0、35~0、4)T熔点=l 279~146l K=1006~l188℃在900℃对金属钨进行加工,略低于其最低再结晶温度,应属冷加工。
对金属铅:T熔点=273十327=600 KT再=(0、35~0、4)T熔点=210~240 K=-63~-33℃在室温(如23℃)对金属铅进行加工,明显高于其最低再结晶温度的上限-33℃,应属热加工。
18、何谓临界变形度?分析造成临界变形度的原因。
答:塑性变形后的金属再进行加热发生再结晶,再结晶后晶粒大小与预先变形度有关。
使品粒发生异常长大的预先变形度称做临界变形度。
金属变形度很小时,因不足以引起再结晶,晶粒不变。
当变形度达到2%~10%时,金属中少数晶粒变形,变形分布很不均匀,所以再结晶时生成的晶核少,晶粒大小相差极大,非常有利于晶粒发生吞并过程而很快长大,结果得到极粗大的晶粒。