代数中的悖论
- 格式:doc
- 大小:187.50 KB
- 文档页数:10
数学悖论
上个世纪,第三次数学危机,就是有名的罗素悖论的出现,罗素悖论:把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为其元素,假设令第一类集合所组成的集合为P,第二类所组成的集合为Q,则有:P={A∣A∈A},Q={A∣A∉A}。
问题:Q∈P还是Q∉P?若Q∈P,则根据第一类集合的定义,必有Q∈Q,而Q中的任何集合都有A∉A的性质,因为Q∈Q,所以Q∉Q,引出矛盾。
若Q∉P,根据第二类集合的定义,A∉A,而P中的任何集合都有A∈A的性质,所以Q∈P,还是矛盾。
其实罗素悖论在我们生活中也很常见,像著名的理发师理论,理发师说了这样一句话:我给所有不给自己理发的人理发。
这就违反了逻辑,如果他给自己理发,就违反了第一个要素,如果他不给自己理发,那违反了第二个要素。
像古代也有这些,国王处置犯人,让他选择上吊还是砍头,让他说一句真话。
引言数学常被视为严格、和谐、精确的学科.但纵观数学发展史的,数学的发展从来不是完全直线式的,它的体系不是永远和谐的,常常出现悖论. “悖论”一词来自希腊语“para+dokein”,意思是“多想一想”. 这个词的意义比较丰富,是指在某一一定的理论体系的基础上,根据合理的推理原则推出了两个互相矛盾的结论.数学悖论在数学发展史中占据了重要的地位,可以这样说:数学也正是在不断消除悖论,解决矛盾中向前发展的,这体现了矛盾是事物发展的基本动力这一原理.这里,首先对数学悖论进行一个概述,然后介绍数学史中三个著名的悖论产生、消除及其对数学发展的历史意义.1 数学悖论的概述值得注意的是,我们所说的悖论与通常的诡辩或谬论的含义是不同的,诡辩或谬论不仅从公认的理论明显看出它的错误,而且一般地还可以运用已有的理论、逻辑论述其错误的原因;而悖论就与此不同了,悖论虽然感到它是不妥的,但是从它所在的理论体系中,却不能自圆其说.1.1 悖论的产生背景及定义悖论问题是一个古老而又常新的话题.“悖论”由来已久,它的起源可以追溯到古希腊和中国的先秦时代.但严格意义下的悖论是在19世纪末、20世纪初的数学家在研究数学基础过程中发现的.当集合论成为数学的基础之后,随着人类对无穷集合认识的不断深入,就产生了许多悖论.1897年意大利数学家不拉里——弗蒂在超穷序数理论中发现了第一悖论,接着,集合论的创始人康托尔于1899年在基数理论中又发现了另一个悖论,1902年罗素在集合论概括原则的基础上又引出著名的“罗素悖论”.1918年,罗素在此基础上又提出一种通俗形式的悖论,即“理发师悖论”.由于一连串悖论的出现,使得许多科学家、数学家忧心忡忡.那么,究竟什么是悖论呢?对此,当前流行的说法是:“悖论是一种导致逻辑矛盾的命题.这种命题,如果承认它是真的,那么它又是假的,如果承认它是假的,那么它又是真的.”又如“一个命题构成一个悖论,如果由它的真可以推出它的假,而由它的假又可以推出它的真.”诸如此类的定义法,有它合理的一面,又有不够全面的一面.这里认为,在研究悖论的准确定义时,以下几点必须加以明确:(1)任何悖论总是相对于一定的理论系统而言的.例如,罗素悖论和说谎者悖论,就是分别相对朴素集合论和真理性理论而言的;(2)悖论的最终表现总是体现为一定逻辑矛盾的揭示.这里所说的“逻辑矛盾”包括两种情况:一种是借助于语义学上的概念(真、假)而构成的,称为“语义学悖论”;另一种是借助于数学和逻辑符号得到的,称之为“逻辑-数学悖论”.例如:古代的说谎者悖论,现代集合论中的理查德悖论、格里林悖论等就属于第一类悖论;而康托尔悖论、罗素悖论就属于第二类悖论;(3)对于悖论,不能仅从字面上把它理解为“悖理”或“诡辩”.因为悖论与诡辩有含义上的不同.后者不仅从公认的理论明显看出是错误的,而且通过已有的理论逻辑可以论述其错误的原因,而前者虽感到其是不妥的,却不能阐明其错误的原因.我们认为,布拉里——弗蒂与希尔伯特关于悖论的陈述是精确的,如果某一理论的公理和推理规则看上去是合理的,但是这个理论中推出了两个互相矛盾的命题,或者证明了这样一个复合命题,它表现为两个矛盾命题的等价式,那么,我们就说这个理论包含一个悖论.数学悖论也叫“逆论”或“反论”,它包括一切与人的直觉和日常经验相矛盾的数学悖论.这些结论会让你无比的惊讶:他们有的看起来肯定是错了,但实际却是对的;有的看起来是对的,但实际是错的;还有的会让你陷入对也不是、错也不是的困境.数学悖论的出现,开始引起一些人们的好奇与思考,以后的逐步发展又动摇了某些数学基础,由于萌发了其内部的矛盾,进而引起人们的争辩.历史上人民对于数学危机的一次又一次解决或克服,往往给数学带来了新的内容,甚至引起革命性的变革.1.2研究数学悖论的意义数学科学历来视为严格、和谐、精确的典型学科,但是数学的发展从来不是直线式的,它的体系并不是永远和谐的,而常常出现悖论,特别是一些重要悖论的产生,自然引起人们对数学基础的怀疑以及对数学可靠信仰的动摇.数学史上的三次数学危机皆由数学产生悖论而引起.悖论虽然看似荒诞,但却在数学史上产生过重要影响,一些著名的悖论曾使那些著名数学家和逻辑学家为之震惊,并引发人们长期艰难而深入的思考.可以说是悖论的研究对促进数学科学的发展是立过汗马功劳的.悖论是一种思辨的方法,是研究问题的一种方式,也是历史上一种旧理论被新理论替代的前奏,数学少不了悖论,数学公理系统没有悖论就是不完备的,我们不是去容忍悖论,而是去消除悖论,在消除悖论的过程中提高认知水平.消除悖论的过程常常是完善、发展原有理论的过程.悖论是一个涉及数理科学、哲学、逻辑学、语义学等非常广泛的论题,对科学发展的意义不言而喻.从数学方面来看,悖论对数学发展的影响是深刻的、巨大的.因而研究悖论的定义、悖论产生背景、解决方案以及对数学发展是非常必要的.数学悖论是一种特殊的逻辑矛盾,它的形成与客观对象的复杂性、多样性,每一代人认识的有限性和局限性,以及人类的主观认识与客观现实的不一致性相关.在数学发展的过程中,人的认识是不断深化的.在不同的历史阶段,人的认识具有一定的片面性和相对性,就会出现“悖论”.因此,它的发生是必然的、不可避免的.数学悖论的发现改变了人们以往的思维方式,迫使人们重新构建理论,从而,在数学认识史中具有积极的意义.2 数学史上三个著名的悖论出现、消除及历史意义数学拥有“美”的内容,也存在着“丑”的东西,数学悖论就是一种“丑”的表现,追求数学美能促进数学发展,同样的,为了消除它的“丑”必然也能推动数学自身的发展,数学三次危机的克服对数学发展的推动作用,就是历史事实.数学发展是矛盾运动的结果.爱因斯坦指出:“提出问题比解决问题更重要.”问题就是矛盾,解决问题就是促使矛盾转化.数学探索与研究起源于数学问题,数学问题的源泉存在于自然科学、社会科学及数学自身的矛盾运动.数学问题一经提出,数学家一般要先经过各种尝试(如类比、归纳、演绎、分析、综合、试验等),经过长时期(甚至几代人)的不懈努力,最终目的促使数学问题得以解决,或说促使数学矛盾得以转化,从而创造出新的数学理论、新的数学成果及新的数学思想方法.数学的历史,就是不断解决数学矛盾又产生新的数学矛盾的过程.从哲学上看,数学是现实世界量的侧面在人们头脑中的反映,因为现实世界是充满着矛盾的,所以数学也必然充满了矛盾.正像恩格斯所指出的:不仅高等数学充满着矛盾,连初等数学也充满着矛盾.比如:正与负、直与曲、平行与相交、已知与未知、常量与变量、有限与无限、连续与不连续、精确与近似、必然与或然、加法与减法、乘法与除法、乘方与开方、微分与积分、几何变换与其逆变换、数学算子与逆算子、实在的与虚构理性的,等等.当然在整个数学发展过程中还有许多深刻的矛盾.例如:有穷与无穷、连续与离散,乃至存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算,等等.他们可以说贯穿了整个数学发展史,而这些大大小小矛盾的产生,发展到激化,到解决,总是不断为数学产生新的概念、新的方法、新的理论,也可能产生新的概念、新的方法、新的理论,也可能产生新的危机.危机实际上是一种激化的、非解决不可的矛盾,而这些矛盾的消除、危机的解决,往往给数学带来新的内容、新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力的基本原理.纵观数学与数学文化的发展史,数学问题是数学中的一种疑难和矛盾,它的提出和解决是推动数学发展的重要力量.2.1“毕达哥拉斯悖论”与第一次数学危机的化解2.1.1“毕达哥拉斯悖论”与第一次数学危机的出现在古希腊毕达哥拉斯时期,数学思维尚处于刚刚形成有理数观念的早期阶段.由于数量概念源于测量,而测量得到的任何量在任何精确度的范围内都可以表示成有理数,所以,人们普遍相信一切量均可用有理数表示.这种认识反映到历史上第一个数学共同体——毕达哥拉斯学派的理论体系中,便凝练为可公度原理,即“一切量均可表示为整数与整数之比”.毕氏学派深信数的和谐与数是万物的本源,而宇宙间的一切现象都归纳为整数和整数比的信条.然而,毕达哥拉斯定理(勾股定理)却成了毕达哥拉斯学派数学信仰的“掘墓人”.毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新的数来表示.希帕索斯的发现的诞生.这却在当时的数学界掀起了一场巨大风暴.它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌.实际上,这一伟大发现不但对毕达哥拉斯学派是致命打击,对于当时所有古希腊人的观念也是一个极大的冲击.这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数.这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它竟然把以前所知道的事情从根本上推翻了.更糟糕的是,面对这一“荒谬”人们竟然毫无办法.这在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”.也就是著名的“毕达哥拉斯悖论”.2.1.2 第一次数学危机的解决第一次数学危机出现后,古希腊人陷入了“失乐园”的彷徨之中.为了摆脱危机,当时的学者作了种种努力.在这方面贡献最大的是柏拉图、欧多克索斯、欧几里得.在大约公元前370年,这个矛盾被希腊数学家欧多克索斯给出的两个比相等的新定义所解决,当然从理论上彻底克服这一危机还有待于实数理论的建立.欧几里得则在柏拉图、欧多克索斯、亚里士多德等人工作的基础上,总结了以前全部几何学知识,建立起第一个几何公理系统,并编写出《几何原本》一书.这无疑是数学思想上的一次巨大革命,古典逻辑与欧氏几何就是第一次数学危机的产物.第一次数学危机后承认除了整数和分数外还存在另外的数.由于对这种“怪数”的接受很不情愿,于是就给它起了一个难听的名字—无理数.不可通约量(即无理数)的发现引起人们思想上的困惑.甚至直到十九世纪,无理数也没有一个名正言顺的地位,但随着分析学的飞速发展,它(或整个实数理论)已不得不被人们摆在前台,到十九世纪下半叶,数学分析的进一步发展需要有逻辑严谨的实数理论作为其基础,于是两种实数理论几乎在同一时期产生了,这两种实数理论分别是由戴德金与康托尔建立的,它有一个共同点,即都是将实数定义为有理数的某些类型的“集合”.戴德金方法可以称为序完备化方法,康托尔方法可以称为度量完备化方法.这些方法在近现代数学中都已成为典型的构造方法,被后人不断推广发展成为数学理论中的有力工具.第一次数学危机也随之化解.这一危机的化解,使“数”真正具有了表达一切量的可能,不仅是无理数,还使数的概念不断扩大和发展.复数、四元数、超限数、理想数、非标准数等各种各样的数都被创造出来了.第一次数学危机持续了两千多年. 1872年,数学家戴德金通过他的“戴德金分割”从有理数扩展到实数,建立起无理数理论.十分有趣的是,在同一年,维尔斯特拉斯通过有界单调序列理论、康托尔通过有理数序列理论完成了同一目标:他们都从有理数出发定义出无理数,从而建立起了实数理论.实数的这三大派理论,从不同方面深刻揭示了无理数的本质.实数域的构造成功,使得2000多年来存在于算术与几何之间的鸿沟得以完全填平,无理数不再是“无理的数”了.直到此时,我们才可以说由毕达哥拉斯悖论引发的第一次数学危机圆满而彻底地解决了!2.1.3 “毕达哥拉斯悖论”的历史意义这次危机导致了数学史上第一个无理数的诞生,之后,许多数学家正式研究了无理数,直到19世纪下半叶,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类——实数,并建立了完整的实数理论.无理数本质才被彻底搞清,无理数在数学中的合法地位才被真正确立,同时也为数学分析的发展奠定了基础.第一次数学危机还表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示.反之,数却可以由几何量表示出来.整数的尊崇地位受到挑战,古希腊的数学观点受到极大的冲击.于是,几何学开始在希腊数学中占有特殊地位.同时也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的,证明的思想在希腊人的心中扎下了根.进一步,古希腊人发展了逻辑思想并加深了对数学抽象性、理想化等本质特征的认识,古典逻辑学应运而生.从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系.这是数学思想上的一次革命,是第一次数学危机的自然产物.第一次数学危机的影响是巨大的.首先,它推动了数学及相关学科的发展.例如,欧几里得几何就是在第一次数学危机中产生的.其次,虽然第一次数学危机在一定程度上引发了数学思想上的混乱,但数学并没有在危机面前停滞,反而在克服危机的过程中产生了逻辑学和公理几何学,极大地促进了几何学的发展,使几何学在此后两千年间几乎成为是全部严密数学的基础,这不得不说是数学思想史上的一次巨大革命.当然,这种将整个数学捆绑在几何上的狭隘做法,对数学的发展也产生了不利的影响.不可公度量的发现,使希腊人把几何看成了全部数学的基础,在数的研究过程中割裂了它们之间的密切关系.这样做的最大弊端是放弃了对无理数本身的研究,使算术和代数的发展受到很大的限制,从而导致了基本理论变的十分薄弱.这种畸形发展的局面在欧洲持续了2000多年.总而言之,第一次数学危机的结果是产生了无理数概念,并取得重大飞跃,使人们对实数有了完整的认识,同时,这也为后来欧几里得、阿基米德等人在数学上取得杰出成就,甚至牛顿、莱布尼兹创建微积分奠定了数的基础.2.2“贝克莱悖论”与第二次数学危机的化解2.2.1 “贝克莱悖论”与第二次数学危机的出现在希腊的后期,除了研究直线、折线的长度、直线形的面积外,还讨论过曲线的长度和曲线形的面积问题.经过中世纪和文艺复兴,直到十七、八世纪,人们发现下列问题需要处理:(1)知路程函数,求速度以及它的逆问题;(2)求——曲线的切线;(3)求——函数的极值.在研究上述问题过程中逐步产生了微积分.牛顿和莱布尼茨是微积分的创立者,他们把有关运动、切线、极值和求积等各种问题的解决统一成微积分方法,有计算微分的明确步骤,确立它是(不定)积分的逆运算,得到牛顿——莱布尼茨公式,这一新生而有力的数学方法,受到数学家们的欢迎,解决了大量过去无法解决的问题,同时,微积分基础的问题也越来越严重了.这就是如何解释“无穷小”的问题,牛顿给出瞬时速度的定义,又给出有效的计算方法:第一步,他用无穷小作分母进行除法运算;第二步,他又把无穷小看作零,以去掉那些包含着它的项,而得到所要的公式.这时的微积分只有方法,没有严密的理论作为基础,许多地方存在着漏洞,还不能自圆其说.例如,牛顿当时是这样求函数n y x =的导数的:()()()212()12nn n n n x x x n x x n n x x x --+∆=+⋅⋅∆+-⋅⋅∆+⋅⋅⋅+∆ 然后把函数的增量△y 除以自变量的增量△x ,得到:()()()()211212n n n n n n x x x y x x n n x x nx x x x x ----+∆-∆==⋅+-⋅⋅∆+⋅⋅⋅+∆+∆∆∆ 最后,扔掉其中所有含 x ∆的项,就得到函数n y x =的导数为1n nx - .“无穷小”在逻辑推理上是零与非零的矛盾,而牛顿却不能在逻辑上说清楚,他说:“量在其中消失的终极比,严格地说来,不是终极量的比,而且它与无限减小的这些量所趋近的极限之差虽然能比任意给出的差更小,但是在这些量无限缩小以前即不能超越也不能达到这个极限.”无论牛顿用数学语言,还是利用物理意义,他都没有说清楚无穷小量是什么.科学家们相信它,因为它使用起来十分有效,得出的结果总是对的,但是由于逻辑上的漏洞,遭到一些人指责,甚至嘲讽与攻击.如1695年,荷兰数学家纽汶蒂在其著作《无限小分析》中指责牛顿的流数术叙述“模糊不清”,莱布尼茨的高阶微分“缺乏根据”等.法国数学家罗尔(罗尔中值定理以他的名字命名)也对微积分表示怀疑.然而,对新生的微积分攻击得最厉害的是爱尔兰主教贝克莱,他的观点是“存在即被感知”,认为一切事物不过是人的感知的综合,他的哲学目的是论证上帝的存在.贝克莱在1734 年写了题为《分析学家》,副标题“致不信神的数学家”一书,该书对微积分大肆攻击:“既不是有限量,也不是无穷小,但又不是无”、“是消失了的量的鬼魂”.尽管一些数学家对贝克莱的攻击进行反驳,但没有在逻辑上说清楚无穷小量引起的数学逻辑基础的混乱.贝克莱是出于恐惧当时自然科学发展所造成对宗教信仰的威胁,也是由于当时的微积分理论缺乏牢固基础,所以当时的微积分遭到攻击和非难在所难免. 历史上,人们就把微积分自诞生以来数学界出现的混乱情形叫做“第二次数学危机”,也把贝克莱的攻击称为“贝克莱悖论”.2.2.2 第二次数学危机的解决贝克莱悖论的提出与第二次数学危机的出现,使微积分基础问题引起了更大的重视.十七、十八世纪,数学家们不顾贝克莱们的挑剔和攻击,受微积分有大用的鼓舞,继续在不牢固的基础上建筑微积分的大厦.在英国,数学家马克劳林对贝克莱悖论做出最重要的回应.虽然马克劳林巨大的努力回答了贝克莱的质疑,但十八世纪的大多数数学家对他这种用几何方法严格论证微积分的工作并不欣赏.后来欧拉、达朗贝尔、拉格朗日等为微积分的基础严密化做了重大贡献,但是微积分逻辑基础在十八世纪结束的时候仍然是一个悬而未决的问题.十九世纪初,许多迫切的问题基本上得到解决,一种追求严密性的风尚开始在数学界蔓延开来.一些数学家开始沿着正确的途径建立微积分的严格基础.例如波尔查诺、阿贝尔、柯西、魏尔斯特拉斯等,波尔查诺给出了连续性的正确定义;阿贝尔指出要严格限制滥用级数展开及求和;柯西抓住极限的概念,指出无穷小量和无穷大量都不是固定的量,而是变量,无穷小量是以零为极限的变量,并且定义了导数和积分;狄利克雷给出了函数的现代定义.在这些工作的基础上,魏尔斯特拉斯消除了其中不确切的地方,完成了一套被认为是天衣无缝的()N ξξσ--语言,严格刻画了极限的定义.人们放弃了无穷小,而以一个无限过程刻画的极限理论统一了导数和积分概念.由于这个理论用不着“无穷小”,一切都按程序操作,“无穷小”引起的混乱被消除了.十九世纪八十年代初,魏尔斯特拉斯、戴德金、康托尔等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限理论的基本定理,这样,数学分析中微积分的理论基础——严格的极限理论建立起来了,微积分的发展从此进入了一个新的阶段.原有的悖论在新的体系下可以圆满地予以清除,第一次数学危机和第二次数学危机几乎同时在十九世纪消除.第二次数学危机的消除,与第一次数学危机的消除,两者实际上是密不分的.为解决微积分问题,必须建立严密的无理数定义以及完整的实数理论.有了实数理论,加上柯西和维尔斯特拉斯的极限理论,这样,第一、二次数学危机就相继消除.2.2.3 “贝克莱悖论”的历史意义“贝克莱数学上的悖论”源于他的哲学上的悖论认知.比如,他的著名观点“存在就是被感知”,就包含了存在、感知、观念、精神以及上帝.这里就潜藏着悖论因子:如果从上帝开始,那么,那是《创世纪》的方向,一切以经文为准,即“信仰之道”;相反,如从观念开始,就成了逆式的“哲学之路”了.这样他就混淆了这两条路:论证的路一再被信仰打破;而论证的困境一次又一次地因信仰而解决.事实上,贝克莱的思想处处充满逻辑悖论.对于他的“物质”观念化,我们就有理由追问:他的上帝似乎在虚无中创世,而创造的也是虚无.尽管作为抽象概念的物质并不存在,但在感知的另一头,是否会有某些不可名状的东西?但如果没有被动的观念,哪来主动的精神?既然没有物质实体,精神实体又在何处?如果没有精神实体,无限精神又当如何?最后的归宿就是:没有上帝,他的哲学注定漂无定所,假设有上帝,哲学又将变得可疑;如果哲学的虚拟性贯穿始终,则上帝将止于空洞的说词.可见,他的矛盾式的、悖论式的哲学思想就为微积分的缺口的批判——无穷小悖论做了伏笔.虽然从贝克莱本人的目的来看,他试图通过对微积分的批判,曲解数学而为神学辩护.但从客观上看,微积分的理论体系还是具有高度的精确性(虽然不十分严谨)和广泛的应用性.贝克莱悖论的出现只是从一个更高层次上对新生的微积分理论体系所提出的更高的要求,这样迫使数学家认真对待这一悖论:柯西用极。
c值悖理名词解释c值悖理( c tolnf),又称“数学悖论”,是代数几何中一个著名的难题。
对于复平面,假设k的取值范围是从0到1,那么复平面就具有唯一的一条数轴。
我们知道,数轴的正负实际上是“有正有负”,而“相反的”情况比较少见,所以k的选择对于数轴本身就有很大的意义,即一般来说k的取值区间应该是从-1到1。
事实上,在任意实数k的集合里都有两条数轴——从-1到1和从1到-1,其中仅有前者符合我们要求,因为这样的话,就会得到一条对称轴,而后者无论如何都不可能成立。
这个悖论就是因为这个缘故而产生的。
在代数几何中,一个矩形可以通过下列方式交换其中两条数轴:(1)如果两条数轴的取值区间是重合的,则把矩形的对角线相互垂直得到一个新的矩形;(2)将两个矩形叠加起来得到一个新的矩形,这样的两个矩形仍然是同一个矩形。
由此可知,矩形a只能交换其中一条数轴。
但实际上,所有矩形都能交换其中两条数轴,这样的话,矩形a就成了一个可逆矩形,而矩形b则成了一个不可逆矩形。
c值悖理是代数几何学上一种非常有趣的现象,也是代数几何和矩阵几何等重要分支中最基本的问题之一。
它的基本思想是:假定数轴k的定义域为0到1,若设s∈0,则在实数集N上定义s为数轴k 上某个元素的象,则s可以取一切满足a≥s≤1,且有a∈N, s∈s 的集合。
假设某数i是实数集N的元素,它必属于数轴k上i集合,而所有i的函数构成一个“实变函数”,它的定义域为实数集,即k 的定义域。
又设a∈N,即i∈k,则存在一个从-1到1的数m,使得t(a, m)= s, i∈k。
由此,可见s是一切满足a≥s≤1,且有a∈N,s∈s的集合,而t(a, m)= s恰好说明了数m是i的象,即k的象。
与此类似的还有另一个悖论:“只有白马,没有黑马”。
当问及为什么时,一般答曰:“因为这匹白马是最大的。
”对于黑马,则说:“最大者未必是黑马。
”再问为什么,则众说纷纭,莫衷一是,甚至声称“白马是黑马的概率大”。
数学中的奥秘数学,被许多人视为一种充满奥秘和美感的学科。
以下列出了数学中的一些奥秘:1.无穷大和无穷小:无穷大和无穷小是数学中的重要概念。
大到无法想象的无穷大和细微到难以置信的无穷小,它们在许多数学分支中都有所体现,如微积分、实数理论和拓扑学等。
2.黄金分割:黄金分割是一个无理数,被广泛应用于各种艺术设计领域。
它被定义为使得两个正整数的比值等于这两个整数的和与较大数之比。
3.费马大定理:费马大定理是代数几何中的一块著名“硬骨头”,它涉及到整数、方程和几何图形之间的关系。
定理的现代形式如下:不存在大于2的整数n,使得方程an^n+bn^(n-1)+cn^(n-2)+...+z=0有整数解(a,b,c,...,z)。
4.孪生素数:孪生素数是一对素数,它们之间的差值恰好为2。
例如,(3,5)、(5,7)、(11,13)等。
5.圆周率π:圆周率π是数学和物理学中的一个重要常数,其值约为3.14159。
它出现在许多数学公式和物理现象中,如圆的周长公式c=2πr。
6.集合论:集合论是数学的基础。
它研究集合及其性质和关系。
集合论中的一些悖论,如罗素悖论,展示了数学基础中一些深奥和复杂的问题。
7.不可解方程:许多数学分支,如代数、分析和微分方程等,都研究各种类型的方程。
然而,有些方程是无法得到解析解的,只能通过数值方法或其他技术来获得近似解。
除此之外,数学还有许多其他引人入胜的领域和话题,例如概率论、统计学、抽象代数、拓扑学、数论等等。
数学在科学、工程、金融等领域也有着广泛的应用。
对于那些喜欢挑战和探索的人来说,数学无疑是一片充满奥秘和宝藏的海洋。
数学四大悖论
1.费马大定理悖论:费马大定理是一个世界闻名的问题,它被认为是数学史上最伟大的问题之一。
然而,费马大定理也是数学史上最大的悖论之一。
费马大定理的证明一直是数学界的一个未解之谜,即使是最聪明的数学家也无法证明它。
虽然有许多人声称已经证明了费马大定理,但这些证明都被证明是不正确或存在错误。
2. 托勒密定理悖论:托勒密定理是一个基本的几何定理,它断言在一个凸四边形中,两对对立的角的积相等。
然而,在20世纪初期,一些数学家发现了一个托勒密定理的悖论。
他们发现了一个凸四边形,可以被划分成两个凸四边形,使得两个凸四边形的两对对立的角积都相等,但整个凸四边形的两对对立的角积不相等。
这个发现震惊了整个数学界,并引起了数学家对几何学的讨论和重新审视。
3. 无穷小悖论:无穷小是微积分中的一个基本概念。
一个数列如果极限为0,那么它被称作是无穷小。
然而,在数学中,出现了一些无穷小的悖论。
例如,当一个无穷小被乘以无穷大时,结果可以是任何值,这与我们通常的数学直觉相矛盾。
这些悖论引发了数学家的思考和讨论,并促进了微积分的发展。
4. 齐比奥悖论:齐比奥悖论是一个古老的悖论,它与集合论有关。
它的内容是:“如果所有的马都是有毛的,那么所有没有毛的动物都不是马”。
这个悖论的问题在于,它可以被应用于任何一个动物,而不仅仅是马。
因此,它导致了集合论中的悖论,这个悖论在数学中引发了一场集合论的危机。
数学家们不得不重新审视集合论的基础,
并开发了新的集合论,来避免这种悖论的出现。
数学中的悖向思维与悖论
数学中的悖向思维是指一种非常规的思考方式,它挑战了传统的逻辑和常识,常常会导致悖论的出现。
悖论是指在逻辑上出现矛盾或自相矛盾的情况,它是数学中的一个重要问题,也是数学家们长期以来一直在探索和解决的难题。
数学中的悖向思维和悖论可以分为多种类型,例如:
1. 无限悖论:这种悖论涉及到无限的概念,例如无限大、无限小等。
其中最著名的悖论是哥德尔不完备定理,它表明在任何一种形式化的数学系统中,总会存在一些命题无法被证明或证伪。
2. 自指悖论:这种悖论涉及到自我指涉的概念,例如“这句话是假的”这样的命题。
其中最著名的悖论是罗素悖论,它表明如果一个集合包含所有不包含自己的集合,那么这个集合既包含自己,又不包含自己,出现了矛盾。
3. 悖论的递归结构:这种悖论涉及到递归的概念,例如“这句话的前一句是真的,后一句是假的”这样的命题。
其中最著名的悖论是贝利-塔尔斯基悖论,它表明如果一个语言可以描述自己,那么这个语言就会出现矛盾。
总之,数学中的悖向思维和悖论是数学家们长期以来一直在探索和解决的难题,它们挑战了我们的逻辑和常识,也推动了数学的发展和进步。
悖论常识数学中有许多著名的悖论,有康托尔最大基数悖论、布拉里——福蒂最大序数悖论、理查德悖论、基础集合悖论、希帕索斯悖论等。
数学史上的危机,指数学发展中危及整个理论体系的逻辑基础的根本矛盾。
这种根本性矛盾能够暴露一定发展阶段上数学体系逻辑基础的局限性,促使人们克服这种局限性,从而促使数学的大发展。
数学史上的三次危机都是由数学悖论引起的.There are many famous paradox in mathematics, Cantor maximum cardinality paradox, bharara -- maximum number paradox, Richard's paradox Forti paradox, F Passos's paradox, base set etc.. The history of mathematics of the crisis, the contradiction that logic based endanger the whole theoretical system in the development of mathematics. The fundamental contradiction can expose the limitations given stage of development of mathematical logic based system, encourage people to overcome this limitation, so as to promote the development of mathematics. Three times of crisis in the history of mathematics is caused by mathematical paradox.数学悖论作为悖论的一种,主要发生在数学研究中。
巴拿赫-塔斯基分球定理
巴拿赫塔斯基分球定理(Banach-Tarski paradox)是一个闻名于数学领域的悖论,它提出了一个惊人的结论:一个实心的球可以分解成为有限个部分,再利用旋转和平移的方式重新组合成两个完全相同的球。
这个定理的内容可以简单表述为:任意一个有限的实心球,不论大小,都可以分成有限多个互不重叠的部分,再通过旋转和平移,可以将这些部分重新组合成与原来相等大小的两个球。
这个定理违反了通常的数学直觉,因为它看上去似乎违背了物理学上的“物质不灭性”原理。
但是这个定理在数学上严密地被证明为正确。
这个定理最初是由两位数学家Banach和Tarski于1924年提出的,但是这个悖论的初版实际上是由Felix Hausdorff于1914年的一篇论文中提出的。
这个定理的证明涉及到高等代数学、测度论以及集合论等多个领域的知识,所以并不容易理解。
不过它在纯数学领域有着广泛的应用,例如在测度论中,以及解决一些空间分割问题等。
数学四大悖论数学是一门充满了美感和逻辑性的学科,但在这个领域中也存在着一些看似矛盾、荒诞的悖论。
以下是数学四大悖论:1.罗素悖论罗素悖论是由英国数学家伯特兰·罗素(Bertrand Russell)于1901年提出的。
他构思了一个集合,这个集合包含所有不包含自身的集合。
根据传统的集合论,这个集合应该是存在的。
但当我们试图将这个集合是否包含自身这一要素套入其中时,会陷入一个矛盾的局面:如果这个集合不包含自身,那么它应该包含在这个集合中;但如果它包含自身,那么它又不可能包含在这个集合中,因为它包含了一个包含自身的集合。
这就是罗素悖论。
2.贝尔悖论贝尔悖论是由美国逻辑学家诺尔曼·L·贝尔(Norman L. Geisler)提出的。
这个悖论涉及了一个涉及到无限序列的问题。
假设有一个无限序列A1,A2,A3…,这个序列中所有的数字都是0或1。
接下来,我们可以构建一个新的序列B,它的第n位是A(n+1)的相反数。
比如,如果A序列是0,1,0,1…那么B序列就是1,0,1,0…接下来,我们来讨论一个问题:在这个新序列B中,有没有一个长度为n的子序列与A相同?如果存在,那么根据B的定义,这个子序列中的每一位都与A的相应位不同,所以这个子序列在B中不可能出现。
但是,如果不存在这样的子序列,那么B序列就不可能与A序列相反,因为每个长度为n的子序列都会在B序列中出现。
3.高斯悖论高斯悖论是由德国数学家卡尔·弗里德里希·高斯(Carl Friedrich Gauss)在1796年提出的。
这个问题涉及到一个三元数列:1,-1,1,-1…。
我们可以将这个数列进行逐项相乘得到一个新的数列:1,-1,-1,1,1,-1,-1,1…。
如果我们将每个数取绝对值并相加,就可以得到一个数列:1,1,1,1,1,1,1,1…但这与原来的数列被称为奇异级数,因为它相加得到的和是无限大,但我们的答案确是一个有限的数。
数学史上三个著名数学悖论与三次数学危机关键词:数学悖论,数学危机希帕索斯悖论与第一次数学危机希帕索斯悖论的提出与勾股定理的发现密切相关。
因此,我们从勾股定理谈起。
勾股定理是欧氏几何中最著名的定理之一。
天文学家开普勒曾称其为欧氏几何两颗璀璨的明珠之一。
它在数学与人类的实践活动中有着极其广泛的应用,同时也是人类最早认识到的平面几何定理之一。
在我国,最早的一部天文数学著作《周髀算经》中就已有了关于这一定理的初步认识。
不过,在我国对于勾股定理的证明却是较迟的事情。
一直到三国时期的赵爽才用面积割补给出它的第一种证明。
只能说中国是最早发现这一问题的,但没有最早给出证明。
也是一个遗憾啊。
在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。
因而国外一般称之为“毕达哥拉斯定理”。
并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。
因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。
毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为 1 的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数√2的诞生。
小小√2的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。
对于当时所有古希腊人的观念这都是一个极大的冲击。
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。
数学上的悖论
数学上有很多著名的悖论,以下是其中一些示例:
1. 赛兹悖论(Russell's paradox):由英国数学家伯特兰·罗素提出的悖论,涉及到集合论中的自指问题。
简而言之,它证明了不存在一个包含所有不包含自己的集合的集合。
2. 卡塔兰数悖论:卡塔兰数是组合数学中的一种数列,用于描述许多组合问题。
然而,当使用相关的递归公式进行计算时,很容易出现负数结果,这与卡塔兰数的定义相矛盾。
3. 第二哥德尔不完备性定理:哥德尔于1931年提出的两个不完备性定理表明,任何基于自然数的形式理论都存在无法被证明或证伪的命题。
这意味着在数学领域中,总会存在无法确定真伪的命题,从而引发了对数学基础和形式系统的思考。
这些悖论都挑战了数学体系的完备性、一致性或者自指性,进一步推动了数学基础研究的发展。
等式悖论板子规则数学家等式悖论指的是存在矛盾的数学等式或方程。
当我们在解一个方程的时候,我们通常会假设该方程是准确和一致的。
然而,有时候我们可能会遇到一些看似合理的等式,却导致了一些矛盾。
首先,让我们来看一个著名的等式悖论:贝尔炼金术方程。
这个方程是由数学家巴洛克在17世纪提出的,它被描述为:1=2。
这个等式看似荒谬,因为我们都知道1和2是不同的数。
然而,巴洛克利用代数运算推导出了等式悖论的自洽性。
他以此为例说明,在数学中,我们必须小心矛盾的陷阱。
接下来,让我们来看另一个等式悖论:罗素悖论。
这个悖论由数学家罗素在20世纪初提出,它被描述为:让X表示所有不包含自己的集合,如果X包含自己,那么根据定义,它不应该包含自己;如果X不包含自己,那么根据定义,它应该包含自己。
这个等式悖论涉及到集合论的基本概念和自指,它揭示了一些关于无穷集合的困惑。
此外,还有一些其他的等式悖论,如贝尔曼方程悖论、悖论方程和高斯曲率悖论等。
这些悖论揭示了数学中某些概念的复杂性和深度,使我们重新思考了数学的基本原理和规则。
对于数学家来说,等式悖论是一种挑战和启发。
它们挑战我们对数学的理解和直觉,迫使我们重新审视数学中的假设和推理。
同时,这些悖论也启发了数学家们发展新的理论和方法,以更好地解决数学中的悖论问题。
为了避免等式悖论在数学中的出现,数学家们通常遵循一系列严格的规则和原则。
首先,数学家们严格按照逻辑推理和证明的规则进行推导,以确保推导过程的无误和一致性。
其次,数学家们通常会对待数学对象和符号非常谨慎,避免出现符号的滥用和混淆。
此外,数学家们还会不断审视和验证他们的等式和方程,以确保其准确性和一致性。
总结来说,等式悖论是数学中的一种挑战和悖论。
虽然它们可能看似荒谬和矛盾,但它们揭示了数学中某些概念和原理的复杂性和深度。
通过遵循严格的规则和原则,数学家们努力避免等式悖论的出现,并继续推动数学的发展和进步。