第三章 防止天然气水合物形成的方法
- 格式:ppt
- 大小:640.00 KB
- 文档页数:24
防止天然气水合物形成的方法——热力学抑制剂法防止天然气水合物形成的方法有三种:一是在天然气压力和水含量一定的情况下,将含水的天然气加热,使其加热后的水含量处于不饱和状态。
目前在气井井场采用加热器即为此法一例。
当设备或管道必须在低于水合物形成温度以下运行时,就应采用其他两种方法:一种是利用吸收法或吸附法脱水,使天然气露点降低到设备或管道运行温度以下;另一种则是向气流中加入化学剂。
目前常用的化学剂是热力学抑制剂,但自20世纪90年代以来研制开发的动力学抑制剂和防聚剂也日益受到人们的重视与应用。
天然气脱水是防止水合物形成的最好方法,但出自实际情况和经济上考虑,一般应在处理厂(站)内集中进行。
否则,则应考虑加热和加入化学剂的方法。
关于脱水法将在下面各节中介绍,本节主要讨论加入化学剂法。
水合物热力学抑制剂是目前广泛采用的一种防止水合物形成的化学剂。
向天然气中加入这种化学剂后,可以改变水在水合物相内的化学位,从而使水合物的形成条件移向较低温度或较高压力范围,即起到抑制水合物形成的作用。
常见的热力学抑制剂有电解质水溶液(如CaCl2等无机盐水溶液)、甲醇和甘醇类有机化合物。
以下仅讨论常用的甲醇、乙二醇、二甘醇等有机化合物抑制剂。
(一) 使用条件及注意事项对热力学抑制剂的基本要求是:①尽可能大地降低水合物的形成温度;②不和天然气中的组分发生化学反应;③不增加天然气及其燃烧产物的毒性;④完全溶于水,并易于再生;⑤来源充足,价格便宜;⑥凝点低。
实际上,完全满足这些条件的抑制剂是不存在的,目前常用的抑制剂只是在某些主要方面满足上述要求。
气流在降温过程中将会析出冷凝水。
在气流中注入可与冷凝水混合互溶的甲醇或甘醇后,即可降低水合物的形成温度。
甲醇和甘醇都可从水溶液相(通常称为含醇污水)中回收、再生和循环使用,在使用和再生中损耗掉的那部分甲醇和甘醇则应定期或连续予以补充。
在温度高于-25℃并连续注入的情况下,采用甘醇(一般为其水溶液)比采用甲醇更为经济。
天然气水合物生成的防止措施一、天然气水合物的介绍天然气水合物(gashydratets)也称水化物,它是由碳氢化合物和水组成的一种复杂的白色结晶体。
一般用M·nH2O,M为水合物中的气体分子,n为水的分子数,如CH4·6H2O、CH4·7H2O、C2H6· 7H2O 等。
天然气水合物是一种络合物,水分子借氢键结合成笼形晶格,气体分子则在范德华力作用下,被包围在晶格中。
气体水合物有14-面体和16-面体两种结构。
二、天然气水合物生成的条件预测天然气水合物的生成与输气管道中气体的压力、温度及水汽含量密切相关。
形成水合物的条件主要有两个:一是天然气足够低的温度和足够高的压力;二是必须输送温度低于天然气露点温度,有游离水析出。
除此之外,高的气体流速任何形式的搅动及晶种的存在等。
预测天然气水合物生成一般是根据实验数据绘制成不同相对密度天然气形成水合物的平衡曲线,见附图。
曲线上方为水合物形成区,下方为不存在区。
由图可知,压力越高、温度越低越易形成水合物。
根据附图可大致确定天然气形成水合物的温度和压力。
但对含H2S较高的天然气,不宜使用。
若相对密度在两条曲线之间,可用内插法进行近似求得。
三、天然气水合物的防止措施为防止水合物的形成,一般有四种途径:1)提高天然气的输送温度;2)降低压力至给定温度水合物生成压力以下;3)脱除天然气中的水分;4)向气流中加入抑制剂(阻化剂)。
防止水化物最积极的方法保持管线和设备不含液态水,而最常用的方法则向气流中加入各种抑制剂。
1、提高天然气流动温度加热提高天然气流动温度是防止生成水合物和排除已生成水合物的方法之一。
这就是在维持原来的压力状态下使输气管道中的天然气的温度高于生成水合物的温度。
但这种方法不适用干线输气管道中,因为消耗能量大,而且冷却气体是增加输气管道流量的一个有效方法,特别是对于压缩机站数较多的干线输气管道。
加热方法通常在配气站采用,因为那里经常需要较大幅度的降低天然气的压力,由于节流效应会使温度降得很低,从而使节流阀、孔板等发生冻结。
抑制天然气水合物生成方法【摘要】在天然气勘探、开采、集输过程中,由于天然气水合物的生成,易造成井筒、求产、输气管线的堵塞,而通常解堵都比较困难,而且影响正常运行,有时还会引起事故。
影响了勘探、开发的正常进行。
针对这一问题,我们在总结前人经验的基础上,对试气过程中天然气水合物生成的抑制、堵塞求产管线的预防措施进行探讨,以供参考。
【关键词】天然气水合物试气抑制预防天然气水合物又称可燃冰,纯净的天然气水合物外观呈白色,形似冰雪,可以像固体酒精一样直接点燃。
在气井降压生产的过程中,由于温度场和压力场大幅度变化,在集气管线中通常要形成水合物,尤其是在阀门、分离器入口、管线弯头和三通等处,更易形成堵塞。
常常堵死生产管柱及集气管线,直接影响气井的正常生产和天然气外输,这不仅会给气井的生产带来困难,而且给气井的科学管理也造成严重危害。
1 天然气水合物生成条件1.1 与天然气组分有关天然气各种组分形成水合物的先后顺序是:h2s—异丁烷—丙烷—乙烷—二氧化碳—甲烷氮气。
形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物。
1.2 需要一定的温度和压力条件天然气在流出地层,在油管中运动的过程中,一般压力在9.00-10.00mpa以上,很容易达到生成水合物的压力要求,而在此过程中压力的降低会导致天然气温度的不断下降,很容易在井下某一深度达到水合物生成的温度。
1.3 与气流高速流动,压力波动以及微小水合物晶核的诱导有关新井射孔后,原来钻井施工残留在井底的泥浆或地层中的岩屑微粒会随天然气一起进入油管,一部分粘贴在井筒内壁上,增加油管壁的粗糙度,产生阻流,导致压力波动、气流不稳定;此外,细微的聚合物泥浆颗粒极易形成水合物晶核,加速油管中水合物的生成。
1.4 系统中有自由水存在地层水以及钻井和酸化压裂施工中的残留水,生产时,大部分以游离水的形式被天然气从油管带到地面。
这些水的存在,不仅为油管中水合物的生成提供了重要条件,而且井中出来的水到地面以后导致输气管线积水,在一定温度和压力条件下生成水合物。
( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改天然气水合物的危害与防止(2021年)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes天然气水合物的危害与防止(2021年)一、天然气水合物在一定的温度和压力条件下,含水天然气可生成白色致密的结晶固体,称为天然气水合物(NGHnaturalgashydrate),其密度约为0.88~0.99g/cm3。
天然气水合物是水与烃类气体的结晶体,外表类似冰和致密的雪,是一种笼形晶状包络物,即水分子借氢键结合成笼形晶格,而烃类气体则在分子间作用力下被包围在晶格笼形孔室中。
NGH共有两种结构,低分子的气体(如CH4,C2H6,H2S)的水合物为体心立方晶格;较大的气体分子(如C3H8,iC4H10)则是类似于金钢石的晶体结构。
当气体分子充满全部晶格的孔室时,天然气各组分的水合物分子式可写为CH4·6H20,C2H6·6H20,C3H8·17H20,iC4H10·17H20,H2S·6H20,CO2·6H20。
水合物是一种不稳定的化合物,一旦存在的条件遭到破坏,就会分解为烃和水。
天然气水合物是采输气中经常遇到的一个难题之一。
二、天然气水合物的危害及成因1.天然气水合物的危害在天然气管道输送过程中,天然气水合物是威胁输气管道安全运行的一个重要因素。
能否生成水合物与天然气组成(包括含水量)、压力、温度等条件有关。
天然气通过阻力件(如节流阀、调压器、排污阀等)时,天然气压力升高,气体温度下降。
天然气水合物的形成机理及防治措施X刘 佳,苏花卫(中原油田分公司,河南濮阳 457061) 摘 要:天然气水合物是在天然气开采加工和运输过程中,在一定温度和压力下,天然气与液态水形成的冰雪状结晶体。
在天然气开采加工和运输过程中,会堵塞井筒管线阀门和设备,从而影响天然气的开采、集输和设备的正常运转。
本文通过分析天然气水合物的形成条件,得出了几条具有实际意义的水合物防治措施,对天然气的安全生产具有一定的现实意义。
关键词:天然气水合物;形成条件;防治措施 中图分类号:T E868 文献标识码:A 文章编号:1006—7981(2012)13—0049—02 天然气水合物是在天然气开采加工和运输过程中,在一定温度和压力下,天然气与液态水形成的结晶体,外观形似松散的冰或致密的雪,它的相对密度为(0.8~0.9)[1];天然气水合物是一种笼形晶状包络物,即水分子借氢键结合成晶格,而气体分子则在分子力作用下被包围在晶格笼形孔室中;天然气水合物极不稳定,一旦条件破坏,即迅速分解为气和水。
在天然气开采加工和运输过程中,在管道中形成的水合物能堵塞井筒管线阀门和设备,从而影响天然气的开采、集输和设备的正常运转。
只要条件满足,天然气水合物可以在管道井筒以及地层多孔介质孔隙中形成,这对油气生产和输送危害很大。
1 天然气水合物形成的条件1.1 水分生成水合物的首要条件是具有充足的水分[2],即管道内气体的水蒸气分压要大于气体-水合物中的水蒸气分压。
若气体中的水蒸气分压低于水合物中的水蒸气分压,则不能形成水合物,即使已经形成也会融化消失。
1.2 烃类及杂物研究表明,烃类物质并不是全部都可以形成水合物,直链烷烃中只有CH 4、C 2H 6、C 3H 8能形成水合物[3],支链烷烃中只有异丁烷能形成水合物。
此外,天然气中的杂质组分H 2S 、CO 2、N 2和O 2等也可促使水合物的生成。
通常,天然气组分中C 2以上烃类含量不高,它们主要形成I 形水合物。
天然气水化物的形成及防止概述天然气水化物(hydrate)是轻的碳氢化合物和水所形成的疏松结晶化合物,是一种天然气中的小分子与水分子形成的类冰状固态化合物,是气体分子与水分子非化学计量的包藏络合物,即是水分子与气体分子以物理结合体所形成的一种固体。
水化物通常是当气流温度低于水化物形成的温度而生成。
在高压下,这些固体可以在高于0℃而生成。
水化物形成的主要条件是:1.天然气的含水量处于饱和状态天然气中的含水汽量处于饱和状态时,常有液相水的存在,或易于产生液相水。
液相水的存在是产生水合物的必要条件。
2.压力和温度当天然气处于足够高的压力和足够低的温度时,水合物才可能形成。
天然气中不同组分形成水合物的临界温度是该组分水合物存在的最高温度。
此温度以上,不管压力多大,都不会形成水合物。
不同组分形成水合物的临界温度如下表所示。
天然气生成水合物的临界温度表过去曾认为该值为21.5,后经研究,在33.0~76.0MPa条件下,甲烷水合物在28.8℃时仍存在,而在390.0MPa条件下,甲烷水合物形成温度高达47℃。
3.流动条件突变在具备上述条件时,水合物的形成,还要求有一些辅助条件,如天然气压力的波动,气体因流向的突变而产生的搅动,以及晶种的存在等。
防止水化物形成的方法有:1、加热,保证气流温度总是高于形成水化物温度;2、用化学抑制剂或给气体脱水。
在选择水化物抑制剂或脱水方法之前,整个操作系统应该是最优化的,以使必须的处理过程减至最少。
人们认为有以下的一般方法可供考虑:1、减少管线长度和阻力部件来减小压力降;2、检验在寒冷地区应用绝热管道的经济性。
2.2 天然气中水汽的含量一.几个概念1.绝对湿度或绝对含水量e标准状态下每立方米天然气所含水汽的质量数,称为天然气的绝对湿度或绝对含水量。
2.饱和湿度或饱和含水量一定状态下天然气与液相水达到相平衡时,天然气中的含水量称为饱和含水量。
用es表示在饱和状态时一立方米体积内的水汽含量。
1 天然气水合物的危害天然气水合物是石油、天然气开采、加工和运输过程中在一定温度和压力下天然气与液态水形成的冰雪状复合物。
严重时,这些水合物能堵塞井筒、管线、阀门和设备,从而影响天然气的开采、集输和加工的正常运转。
只要条件满足,天然气水合物可以在管道、井筒以及地层多孔介质孔隙中形成,这对油气生产及储运危害很大。
2 天然气水合物的性质和形成2.1 水合物的性质及结构天然气水合物为白色结晶固体,是在一定温度、压力条件下,天然气中的烃分子与其中的游离水结合而形成的,其中水分子靠氢键形成一种带有大、小孔穴的结晶晶格体,这些孔穴被小的气体分子所充填。
形成水合物的首要条件是天然气中含水,且处于过饱和状态,甚至有液态游离水存在;其次是有一定条件的压力和低于水合物形成的温度。
在上述两种条件下的生产运行过程中,如遇压力波动、温度下降、节流或气流流向突变很快就可能形成水合物堵塞。
2.2 水合物的生成条件天然气水合物生成除了与天然气组分、组成和游离水含量有关外,还需要一定的压力和温度。
下式即为水合物自发生成的条件:M+nH2O(固、液)=[M·H2O](水合物)也就是说,只有当系统中气体压力大于它的水合物分解压力时,才有可能由被水蒸气饱和的气体M自发地生成水合物。
由热力学观点看,水合物的自发生成绝不是必须使气体M被水蒸气饱和,只要系统中水的蒸汽压大于水合物晶格表面水的蒸汽压就足够了。
此外,形成水合物的辅助条件是:气流的停滞区。
2.3 长庆气田天然气水合物形成的基本参数及防治工艺根据长庆气田天然气组分,采用节点分析软件分析,计算压力在6~20 MPa时其水合物形成温度为14.5~22.3℃。
一般开井初期井口压力在20MPa 以上,采气管线按25MPa压力设计。
根据下游用户交接点的压力情况,反算得出集气支、干线设计压力为6.4MPa。
井口的天然气流动温度一般只有15~18℃。
这些参数和生产情况表明,井筒长度在300m 以上的大多数气井都具备形成水合物的条件,在井口和采气管线中很容易生成天然气水合物。
海上天然气水合物的形成与防治措施摘要:天然气水合物堵塞的防治是海上油气田安全高效开发的难题之一。
水合物的生成可导致气体输送管线和设备的堵塞而影响海上油气田的正常生产;水合物一旦形成,就很难除去。
因此,准确判断在什么条件下会形成水合物堵塞,并诊断和评价已形成的水合物堵塞,且提出行之有效的解堵措施,对天然气的输送和设备的管理具有重要意义。
本文通过对水合物的结构性质、危害、形成条件和生成机理的探究,介绍如何合理的利用抑制剂(甲醇、乙二醇)来有效防止水合物的形成,从而高效地实现海上油气田的安全开发。
关键词:结构性质危害形成条件解决措施抑制剂一、引言输气海管,作为天然气输送的重要通道,其畅通、连续、安全平稳运行对海上油气田的正常开采有着重要意义。
天然气输送管道在日常的输送中易形成水合物堵塞海管,给海管的安全运行带来极大风险。
因此,准确判断在什么条件下会形成水合物堵塞,并诊断和评价已形成的水合物堵塞,且提出行之有效的解堵措施,对天然气的输送和设备的管理具有重要意义。
二、天然气水合物的结构性质天然气水合物是一种笼形晶格包络物,即水分子靠氢键结合成笼形晶格,而气体分子则在范德华力作用下,被包围在晶格的笼形孔室中,如图1。
其外观类似松散的冰或致密的雪,通常呈白色。
天然气水合物具有多孔性,硬度和剪切模量小于冰,密度为0.88~0.90g/cm3。
可浮于水面,而沉于液烃中。
天然气水合物不同与一般的晶体化合物,是一种配位化合物(络合物)或称包合物,M·nH2O (n≥5.67),其中M表示水分子中的气体分子,n为水合指数即水分子数。
图1天然气水合物晶体结构模型三、天然气水合物的危害在天然气的整个输送过程中,由于气体的压力较高,有可能生成水化物。
天然气水合物一旦形成,就会对设备及管道等造成危害,其表现在:1.如果水合物在设备(分离器、换热器等)中形成,不但可导致设备的损坏,还可能导致较大事故。
2.如果水合物是在管道中形成,会造成堵塞管道、减少天然气的输量、增大管线的压差、损坏管件等危害,导致严重管道事故。