数据仓库OLAP技术
- 格式:ppt
- 大小:1.50 MB
- 文档页数:36
OLTP与OLAP数据库的区别与应用场景随着数据处理技术的不断发展,OLTP和OLAP数据库成为了目前应用广泛的两种不同类型的数据库系统,分别用于在线事务处理(OLTP)和联机分析处理(OLAP)。
OLTP和OLAP数据库有着不同的基本架构和应用场景,本文将深入探讨这两种数据库之间的区别和适用场景。
一、OLTP数据库在线事务处理(OLTP)数据库是一种用于处理各种业务数据的数据处理系统。
它主要是用于记录以及管理组织内部的各种业务交易操作,例如订单、存货、工资、销售数据等。
OLTP数据库设计的目标是高吞吐量,将数据更快地存储到到底层的硬件设施中以确保客户端的操作可以获得尽可能快的反馈时间。
OLTP数据库常规采用高效的SQL数据库系统,运行各种在线交易,比如,ATM自动提款机上的每笔交易,银行转账,订单和在线预订系统等“短期”交易。
这些交易通常读和写少量数据,要求高性能、高并发,数据库设计考虑系统的吞吐量。
二、OLAP数据库联机分析处理(OLAP)数据库与OLTP数据库功能是相反的,它们用于长期存储大量历史数据,通常从OLTP数据库中收集而来,而且用于支持组织全局大范围的决策制定、数据报告和数据分析。
OLAP数据库采用远比SQL数据库更灵活的数据仓库技术来处理数据,在这里,多个维度的数据一般存储为单个维度中的多个数据块。
例如,物品,时间和位置可能都是维度。
OLAP数据库适用于统计分析、数据挖掘等需要分析历史数据的场景。
它们的主要目的是支持周报、月报和季度报告等“长期”视图。
OLAP数据库通常包含相对较少的数据,但需要经常查询。
三、OLTP和OLAP数据库的比较从上面的介绍,我们可以看出OLTP和OLAP数据库的设计和用途是不同的。
OLTP数据库是对于快速和频繁的在线事务处理而设计的,而OLAP数据库则主要用于数据分析和乘坐商业决策。
除了这些核心应用场景之外,OLTP和OLAP数据库还有以下不同之处:1.性能OLTP数据库需要快速地响应各种不同类型的事务处理请求。
BI、数据仓库、OLTP、OLAP⼀、BI 商业智能(Business Intelligence,简称:BI),⼜称商业智慧或商务智能,指⽤现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进⾏数据分析以实现商业价值。
商业智能的概念在1996年最早由加特纳集团(Gartner Group)提出,加特纳集团将商业智能定义为:商业智能描述了⼀系列的概念和⽅法,通过应⽤基于事实的⽀持系统来辅助商业决策的制定。
商业智能技术提供使企业迅速分析数据的技术和⽅法,包括收集、管理和分析数据,将这些数据转化为有⽤的信息,然后分发到企业各处。
⼆、数据仓库 Data Warehouse,可简写为DW或DWH。
数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据⽀持的战略集合。
它是单个数据存储,出于分析性报告和决策⽀持⽬的⽽创建。
为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。
数据仓库是⾯向主题的;操作型数据库的数据组织⾯向事务处理任务,⽽数据仓库中的数据是按照⼀定的主题域进⾏组织。
主题是指⽤户使⽤数据仓库进⾏决策时所关⼼的重点⽅⾯,⼀个主题通常与多个操作型信息系统相关。
数据仓库是集成的,数据仓库的数据有来⾃于分散的操作型数据,将所需数据从原来的数据中抽取出来,进⾏加⼯与集成,统⼀与综合之后才能进⼊数据仓库 概括来说,数据仓库系统是指具有综合企业数据的能⼒,能够对⼤量企业数据进⾏快速和准确分析,辅助做出更好的商业决策的系统。
它本⾝包括三部分内容:1、数据层:实现对企业操作数据的抽取、转换、清洗和汇总,形成信息数据,并存储在企业级的中⼼信息数据库中。
2、应⽤层:通过联机分析处理,甚⾄是数据挖掘等应⽤处理,实现对信息数据的分析。
3、表现层:通过前台分析⼯具,将查询报表、统计分析、多维联机分析和数据发掘的结论展现在⽤户⾯前。
从应⽤⾓度来说,数据仓库系统除了联机分析处理外,还可以采⽤传统的报表,或者采⽤数理统计和⼈⼯智能等数据挖掘⼿段,涵盖的范围更⼴;就应⽤范围⽽⾔,联机分析处理往往根据⽤户分析的主题进⾏应⽤分割,例如:销售分析、市场推⼴分析、客户利润率分析等等,每⼀个分析的主题形成⼀个OLAP应⽤,⽽所有的OLAP应⽤实际上只是数据仓库系统的⼀部分。
数据仓库设计与建模的OLAP与OLTP系统差异前言在当今信息时代,数据成为了企业和组织的重要资产之一。
为了更好地管理和利用这些海量的数据,数据仓库设计与建模成为非常重要的技术。
而在数据仓库设计与建模中,OLAP(On-Line Analytical Processing)和OLTP(On-Line Transaction Processing)系统是两种常用的应用模式。
本文将从不同角度来探讨OLAP与OLTP系统的差异,并分析其特点与适用场景。
一、概念简介1. OLAP系统OLAP系统是指在线分析处理系统,在数据仓库中被广泛应用于决策支持和业务分析。
它通过多维数据分析的方式,提供灵活的查询和报表功能,帮助用户更好地了解和分析企业的经营情况和趋势。
2. OLTP系统OLTP系统是指在线事务处理系统,用于支持日常的交易和业务操作。
它注重高并发、高效率的数据处理能力,通过实时的事务处理,记录和管理企业的日常业务数据。
二、差异点辨析1. 数据处理方式OLAP系统主要通过批量处理的方式对数据进行分析,常常需要对大批量的历史数据进行全面的统计,以揭示潜在的商业认识。
相对而言,OLTP系统更注重实时的数据处理,对每一笔交易都进行记录和处理。
2. 数据查询与报表需求OLAP系统提供灵活的查询和报表功能,可以根据不同维度(如时间、地域、产品等)对数据进行透视和分析。
而OLTP系统则更依赖于事务处理,主要用于日常的数据录入、修改和查询。
3. 数据设计方式在数据设计方面,OLAP系统更关注数据的冗余和维度的设计。
它通过多维数据模型(如星型模型和雪花模型)来实现数据的高效查询和分析。
OLTP系统则更注重数据的一致性和可靠性,往往采用规范化的数据模型设计。
4. 用户需求和访问模式OLAP系统的用户主要是决策者和分析师,他们对数据进行复杂的分析和决策支持。
而OLTP系统的用户主要是日常的业务操作人员,他们更关注数据的录入和处理。
面向多维度数据分析的 OLAP 技术研究随着互联网技术的迅速发展,移动互联网的普及以及人们的信息获取渠道的不断丰富,数据产生与积累的速度快速加快。
越来越多的企业和组织开始将数据视为重要的资产来进行管理和分析。
在面对海量数据时,如何快速、准确地进行数据分析成为一个亟待解决的问题,而 OLAP 技术的应用为多维度数据分析提供了有力的支持。
一、 OLAP 技术概述OLAP 的全称是“Online Analytical Processing”,即在线分析处理,它可以对数据进行多维度的分析和查询。
OLAP 技术可以将数据按照不同的角度进行查看和聚合,比如按照时间、地区、产品类型等进行分析。
而传统的数据分析只能进行单一的维度查看。
OLAP 技术主要包括以下三个方面的内容:1. 数据仓库:OLAP 以数据仓库作为数据存放的基础。
数据仓库可以将分散在不同系统中的数据按一定规则进行整合,形成一个包含多维数据信息的统一数据存储区域。
2. 多维分析:多维分析就是按不同的维度对数据进行分析。
OLAP 的基本操作就是多维分析,可以进行切片、钻取、轮换等多维分析操作。
3. 数据可视化:数据可视化就是通过图表、报表等方式进行数据展示。
数据可视化可以帮助用户快速了解数据,发现数据中隐藏的规律和关联。
二、 OLAP 技术的优点OLAP 技术有很多优点,主要包括以下几个方面:1. 多维度分析:OLAP 技术可以通过对数据进行多维度分析,实现对数据的深入挖掘和分析,可以更全面地了解数据中蕴含的信息。
2. 交互性强:OLAP 可以实现用户对数据的自主分析和交互操作,用户可以根据需要对数据进行不同角度和粒度的分析。
3. 灵活性强:OLAP 可以根据用户需求对数据进行自由的切换和组合,同时可以进行灵活的查询和过滤操作。
4. 高性能:OLAP 技术具有高效的查询和分析速度,可以快速响应数据分析请求,同时能够处理大规模的数据集合。
三、 OLAP 技术的应用OLAP 技术的应用十分广泛,主要涵盖以下几个领域:1. 金融领域:OLAP 技术可以帮助金融机构进行风险管理、资产配置和投资决策等方面的分析。
数据仓库架构中的OLAP技术在大数据分析中的应用与效果评估在大数据时代,数据分析变得越来越重要,尤其是对于企业来说,良好的数据分析可以帮助企业发现潜在的商业机会、优化运营策略以及制定精确的业务决策。
数据仓库架构中的在线分析处理(OLAP)技术在大数据分析中发挥着重要的作用,并且在应用过程中取得了显著的效果。
首先,数据仓库架构中的OLAP技术能够提供实时、多维度的分析。
大数据时代的数据量巨大且复杂,传统的关系型数据库已经无法满足对这些数据进行高效分析的需求。
而OLAP技术通过对数据进行多维度的切片、透视、切块等操作,使得用户可以迅速地从各个角度深入分析数据。
这种多维分析的能力不仅能够帮助企业发现数据之间的潜在关联,还能够帮助企业进行趋势分析、模式识别等。
其次,数据仓库架构中的OLAP技术具有高度可扩展性。
在大数据分析中,数据量的增长速度极快,传统的数据库系统可能会面临存储容量不足、性能下降等问题。
而OLAP技术采用的多维数据存储结构以及预处理技术,使得数据的查询和分析可以在多个维度上进行,并且能够通过添加更多的服务器来实现系统的扩展。
这种高度可扩展性使得企业可以更好地应对日益增长的数据量,保证分析的准确性和效率。
此外,数据仓库架构中的OLAP技术能够提供自助式分析。
在传统的数据分析中,数据科学家或者分析师需要依赖技术团队提供的报表、图表等分析结果来支持业务决策。
而OLAP技术使得数据分析变得更加自主,用户可以通过可视化的界面进行数据的探索和分析,不再需要依赖专业知识。
这种自助式分析的能力不仅提高了业务用户的工作效率,还可以促进数据驱动决策的普及,推动企业的创新和发展。
当然,要评估数据仓库架构中的OLAP技术在大数据分析中的效果,需要综合考虑多方面的因素。
首先是数据的准确性和完整性。
大数据分析的结果直接依赖于输入的数据质量,如果数据质量不好,无论采用任何技术都不可能得到准确的结果。
因此,在应用OLAP技术之前,需要确保数据源的质量可靠,可以通过数据清洗、数据归一化等方法来提高数据的准确性和完整性。
数据仓库和LOAP应用技术传统数据库以及OLTP(On-Line Transaction Processing联机事务处理)在日常的管理事务处理中获得了巨大的成功,但是对管理人员的决策分析要求却无法满足。
因为,管理人员常常希望能够通过对组织中的大量数据进行分析,了解业务的发展趋势。
而传统数据库只保留了当前的业务处理信息,缺乏决策分析所需要的大量的历史信息。
为满足管理人员的决策分析需要,就需要在数据库的基础上产生适应决策分析的数据环境——数据仓库(Data Warehouse)。
数据仓库系统是一个信息提供平台,是决策支持系统和联机分析应用数据源的结构化数据环境。
数据仓库研究和解决从数据库中获取信息的问题。
从功能结构化分,数据仓库系统至少应该包含数据获取(Data Acquisition)、数据存储(Data Storage)、数据访问(Data Access)三个关键部分。
其体系结构如下:业务处理系统即是数据库去实现的即时记录的功能,在数据准备区进行ETF处理,数据经过抽取、转换之后加载到数据仓库中,因此也说数据仓库是利用的已经存在的历史记录去整合,是利用原有数据分析下一步行动的决策,是有风险的。
分析完主题和数据元后建立数据模型(概念模型、逻辑模型、物理模型)并形成事实表和纬度表,然后通过粒度分析将历史记录先抽取整合,然后再根据决策者可能用到的数据集合分解成若干记录,以备不同决策者使用;再利用OLAP工具技术进行数据的分析导出。
当然,这些都在了解了管理者即客户的需求之后进行的,或者是由企业的管理者自己进行的技术应用或分析。
模型设计的过程如下:数据仓库是管理决策分析的基础,要有效地利用数据仓库的信息资源,必须要有强大的工具对数据仓库的信息进行分析决策。
On-line Analytical Processing(在线分析处理或联机分析处理)就是一个应用广泛的数据仓库使用技术。
它可以根据分析人员的要求,迅速灵活地对当量的数据进行复杂的查询处理,并以直观的容易理解的形式将查询结果提供给各种决策人员,使他们能够迅速准确地掌握企业的运营情况,了解市场的需求。
一数据仓库与OLAP技术1 数据仓库的定义与特征1.1 数据仓库的定义数据仓库已被多种方式定义,使得很难给出一种严格的定义。
宽松地来讲,数据仓库是一个数据库,它与组织机构的操作数据库分别维护,数据仓库系统允许将各种应用系统集成在一起,为统一的历史数据分析提供坚实的平台,为信息处理提供支持。
下面给出数据仓库之父对数据仓库的定义:数据仓库是面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于经营管理中的决策支持。
随着数据库技术的应用和发展,人们尝试对数据库DB中的数据进行再加工,形成一个综合的,面向分析的环境,以更好支持决策分析,从而形成了数据仓库技术。
其中,作为决策支持系统,数据仓库系统如图1.1包括:1. 数据仓库技术2. 联机分析处理技术3. 数据挖掘技术图1.1 数据仓库系统结构图1.2 数据仓库的特征数据仓库的四个主要特征。
1. 面向主题(subject-oriented)数据仓库中的数据是根据面向主题的方式组织的。
主题是用户所关心的数据对象,每个主题对应一个客观分析领域,如客户、商店等。
在系统中数据是根据业务流程进行组织的,同一主题的数据往往存放在多个数据表中,用户查询时需要在不同的数据表之间切换。
而在数据仓库中数据是根据主题组织的,同一主题的数据往往在一个事实表中,并且只有符合主题的数据才可进入数据仓库。
2. 集成(integrated)指在数据进入数据仓库之前,必须经过数据加工和集成,这是建立数据仓库的关键步骤,首先要统一原始数据中的矛盾之处,还要将原始数据结构做一个从面向应用向面向主题的转变。
通常构造数据仓库是将多个数据源,如关系数据库、文件和一些外部数据源,集成在一起。
使用数据清理和数据集成技术,确保命名约定、编码结构、属性度量等的一致性。
3. 时变(time-variant)数据仓库是不同时间的数据集合,数据存储从历史的角度提供信息。
它要求数据仓库中的数据保存时限能满足进行决策分析的需要,而且数据仓库中的数据都要标明该数据的历史时期。