5.3酶促反应动力学
- 格式:doc
- 大小:47.00 KB
- 文档页数:4
酶促反应动力学实验报告酶促反应动力学实验报告摘要:本实验旨在研究酶促反应的动力学过程。
通过测量不同底物浓度下酶催化反应速率的变化,分析酶的催化特性和底物浓度对反应速率的影响。
实验结果表明,酶促反应速率与底物浓度呈正相关关系,但随着底物浓度增加,反应速率逐渐趋于饱和。
1. 引言1.1 酶的作用1.2 酶促反应动力学2. 实验方法2.1 材料准备2.2 实验步骤3. 实验结果与分析3.1 反应速率与底物浓度关系曲线3.2 酶活性计算公式及计算结果4. 讨论与结论4.1 反应速率与底物浓度关系解释4.2 实验误差及改进方案1 引言1.1 酶的作用酶是一类生物催化剂,能够加速生物体内化学反应的进行。
它们通常是蛋白质或核酸分子,并具有高度特异性。
在细胞内,酶参与调节代谢途径、合成新物质以及降解废物等重要生物过程。
1.2 酶促反应动力学酶促反应动力学研究酶催化反应速率与底物浓度、温度和pH等因素之间的关系。
其中,底物浓度是影响酶催化速率的重要因素之一。
当底物浓度较低时,反应速率随着底物浓度的增加而迅速增加;当底物浓度较高时,反应速率逐渐趋于饱和。
2 实验方法2.1 材料准备- 酶溶液:根据实验要求选择合适的酶溶液。
- 底物溶液:根据实验要求配置不同浓度的底物溶液。
- 缓冲液:用于维持实验环境中恒定的pH值。
- 试管或微孔板:用于进行反应混合和观察。
- 分光光度计:用于测量反应混合液的吸光度变化。
2.2 实验步骤1. 准备一系列不同浓度的底物溶液,并标明其浓度。
2. 在试管或微孔板中分别加入相同体积的酶溶液和不同浓度的底物溶液,混合均匀。
3. 将反应混合物放入分光光度计中,设置适当的波长并记录吸光度值。
4. 在一定时间间隔内,测量吸光度值的变化,并记录下来。
5. 根据实验数据计算反应速率。
3 实验结果与分析3.1 反应速率与底物浓度关系曲线根据实验数据绘制反应速率与底物浓度关系曲线。
实验结果显示,随着底物浓度的增加,反应速率也增加。
实验四实验四 酶促反应动力学酶促反应动力学————pH pH pH、、温度温度、、激活剂激活剂、、抑制剂对酶促反应速度的影响抑制剂对酶促反应速度的影响目的目的::1.了解pH、温度、激活剂和抑制剂对酶活力的影响。
2.学习测定酶最适pH 的方法。
(一) pH 对酶活力的影响对酶活力的影响1.1.实验原理实验原理实验原理对环境酸碱度敏感是酶的特点之一。
对每一种酶来说,只能在一定pH 范围内才表现其活力,否则酶即失活。
另外,在这个有限pH 范围内,酶的活力也随着环境pH 的改变有所不同。
酶通常在某一pH 时,才表现最大活力。
酶表现最大活力时的pH 称为酶的最适pH。
一般酶的最适pH 在4~8之间。
淀粉遇碘呈蓝色。
糊精按其分子大小,遇碘可呈蓝色、紫色、暗褐色或红色。
最简单的糊精和麦芽糖遇碘不呈色。
在不同条件下,淀粉被唾液淀粉酶水解的程度可由水解混合物是遇碘呈现的颜色来判断。
本实验观察pH 对唾液淀粉酶活力的影响,唾液淀粉酶的最适pH 约为6.8。
2实验器材实验器材恒温水浴锅、试管、试管架、锥形瓶(50ml 或100ml)、吸量管(1、2、5、10ml)、秒表、白瓷板、pH 试纸、稀释50倍的新鲜唾液(在漏斗内塞入少量脱脂棉,下接洁净试管,嗽口后含一小口蒸馏水,半分钟后收集过滤唾液。
取滤液2ml 放入锥形瓶内,加蒸馏水稀释至100ml,充分混匀)。
3实验试剂实验试剂(1)新配制的溶于0.3%NaCl 的0.5%淀粉溶液称取可溶性淀粉0.5g,先用少量0.3%NaCl 溶液加热调成糊状,再用热的0.3%NaCl 溶液稀释至100ml。
(2)0.2mol/L Na 2HPO 4溶液称取Na 2HPO 4·7H 2O 53.65g(或Na 2HPO 4·12H 2O 71.7g),溶于少量蒸馏水中,移入1000ml 容量瓶,加蒸馏水稀释到刻度。
(3)0.1mol/L 柠檬酸溶液称取含一个水分子的柠檬酸21.01g,溶于少量蒸馏水中,移入1000ml 容量瓶,加蒸馏水至刻度。
5.3酶促反应动力学
酶促反应动力学
酶促反应动力学是研究酶促反应的速度以及影响酶促反应速度的各种因素,包括低物浓度、酶浓度、pH 、温度、激活剂与抑制剂、等。
一、酶的量度
酶的含量不能直接用重量和摩尔数表示(不纯、失活、分子量不知),而采用酶的活力单位表示
1、酶活力与酶促反应速度
酶活力:用在一定条件下,酶催化某一反应的反应速度表示。
反应速度快,活力就越高。
酶量—酶活力一反应速度
酶促反应速度的表示方法:单位时间、单位体积中底物的减少量或产物的增加量。
单位:浓度/单位时间
研究酶促反应速度,以酶促反应的初速度为准。
因为底物浓度降低、酶部分失活产物抑制和逆反应等因素,会使反应速度随反应时间的延长而下降。
2、酶的活力单位(U )
国际酶学会标准单位:在特定条件下,1分钟内能转化1umol 底物的酶量,称一个国际单位(IU )。
特定条件:25℃ pH 及底物浓度采用最适条件(有时底物分子量不确定时,可用转化底物中1umol 的有关基团的酶量表示)。
2、酶的比活力 Specific activity
每毫克酶蛋白所具有的酶活力。
酶的比活力是分析酶的纯度是重要指标。
单位:U/mg 蛋白质。
有时用每克酶制剂或每毫升酶制剂含有多少个活力单位表示。
酶的提纯过程中,总蛋白减少,总活力减少,比活力增高。
酶的纯化倍数:
酶的回收率: ×100% 4、酶的转换数和催化周期
分子活性定义:每mol 的 enzyme 在1秒内转化substrate 的 mol 数。
亚基或催化中心活性定义:每mol 的active subunit 或 active center 在一秒内转化的substrate 的mol 数,称为转换数Kcat
转换数的倒数即为催化周期:一个酶分子每催化一个底物分子所需的时间。
二、底物浓度对酶促反应速度的影响
单底物酶促反应,包括异构酶、水解酶及大部分裂合催化的反应。
1913 Michaelis 和Menten 提出米—曼方程。
1、底物浓度对酶促反应速度的影响——米式学说的提出, 底物浓度与酶促反应速度的关系:
第一步总活力每一步比活力第一步总活力每一步比活力
当底物浓度不断增大时,反应速度不再上升,趋向一个极限,酶被底物饱和(底物饱和现象)。
中间产物假说:酶与底物先络合成一个中间产物,然后中间产物进一步分解成产物和游离的酶。
证据:(1)竞争性抑制实验(2)底物保护酶不变性(3)结晶ES 复合物的获得。
米式学说:
1913年,Michaelis 和Menten 继承和发展了中间产物学说,在前人工作基础上提出酶促动力学的基本原理,并以数学公式表明了底物浓度与酶促反应速度的定量关系,称米式学说:
2、米式方程的导出:
⑴、Km 的物理意义
当反应速度v=1/2 Vmax 时, Km = [S],
Km 的物理意义是:当反应速度达到最大反应速度的一半时底物的浓度。
单位:与底物浓度的单位一致,mol·L-1或mmol·L-1
Km 是酶的特征常数之一。
一般只与酶的性质有关,与酶的浓度无关。
不同的酶Km 值不同。
⑵、Km 与天然底物
如果一个酶有几种底物,则每一种底物各有一个特定的Km ,其中Km 最小的底物称该酶的最适底物或天然底物。
因为Km 愈小(达到Vmax 一半所需的底物浓度愈小)表示V 变化越灵敏底物。
][][*
max S K S V V m
+=
3、Km 和Vmax 的求解方法
(1)双倒数作图法
要从实验数据所得到的v-[S]曲线来直接决定Vmax 是很困难的,也不易求出Km 值。
由米式方程两边取倒数:
将实验所得的初速度数据v 和[S]取倒数,得各种1/v 和1/[S]值,将1/v 对1/[S]作图,得
上图[S]范围在0.330—2.0Km ,最适。
若[S]范围在3.3—20 Km ,直线斜率太小。
若[S]范围在0.033––0.2 Km ,直线斜率太大。
如当Km=1×10-5mol/L 时,实验所取底物浓度范围应在0.33×10-5-2.0×10-5mol/L 。
一般选底物浓度应考虑能否得到1/[S]的常数增量。
(2)V —V/[S]作图法
三、多底物的酶促反应
前面讨论的米氏方程(推导米氏方程时用的是单底物),适用于单底物酶促反应,如异构、水解及大部分裂合反应,不适用于多底物反应。
A 、
B 、
C 表示底物,按照底物与酶的结合顺序,产物则按它们从酶产复合物中释放次序分别用P 、Q 、R 表示。
双底物酶促反应已知有三种机理
1、有序顺序反应机理
底物A 、B 与酶结合的顺序是一定的,产物P 、Q 的释放顺序也是一定的。
举例:P251 乙醇脱氢酶
2、随机顺序反应机理
底物A 、B 与酶结合的顺序是随机的,产物P 、Q 的释放顺序也是随机的。
3、乒乓反应机理
先结合第一个底物A ,释放第一个产物P ,酶的构象发生变化,结合第二个底物B ,释放第二个产物Q 。
四、pH 对酶促反应速度的影响
1. pH 影响酶活力的因素
①影响酶蛋白构象,过酸或过碱会使酶变性。
②影响酶和底物分子解离状态,尤其是酶活性中心的解离状态,最终影响ES 形成。
③影响酶和底物分子中另一些基团解离,这些基团的离子化状态影响酶的专一性及活性中心构象。
max max 1][11V S V K V m +*=
2.酶的最适pH和稳定性pH
最适pH:使酶促反应速度达到最大时的介质pH。
稳定性pH:在一定pH范围内,酶不会变性失活,此范围称酶的稳定性pH。
五、温度对酶促反应速度的影响。
1.最适温度及影响因素
温度对酶促反应速度的影响有两个方面:
①提高温度,加快反应速度。
②提高温度,酶变性失活。
这两种因素共同作用,在小于最适温度时,前一种因素为主;在大于最适温度时,后一种因素为主。
最适温度就是这两种因素综合作用的结果。
温度系数Q10:温度升高10℃,反应速度与原来的反应速度之比,Q10一般为1~2。
温血动物的酶,最适温度35℃—40℃,植物酶最适温度40℃—50℃,细菌Taq DNA聚合酶70℃。
2.酶的稳定性温度
在某一时间范围内,酶活性不降低的最高温度称该酶的稳定性温度。
酶的稳定性温度有一定的时间限制。
稳定性温度范围的确定方法:将酶分别在不同温度下预保温一定时间,然后回到较低温度(即酶的热变性失活作用可忽略的温度),测酶活性。
酶浓度高、不纯、有底物、抑制剂和保护剂会使稳定性温度增高。
酶的保存:
①液体酶制剂可以利用上述5种因素中的几种,低温(几个月)。
②干粉,可在室温下放置一段时间,长期保存,应在低温冰箱中。
六、酶浓度对酶促反应速度的影响
如果底物浓度足够大,使酶饱和,则反应速度与酶浓度成正比。
[S]过量且不变时,v∝[E]。