2.3(2)二元一次方程组的解法(浙2013版七下数学)
- 格式:ppt
- 大小:768.50 KB
- 文档页数:15
浙教版数学七年级下册2.3《解二元一次方程组》(第2课时)教学设计一. 教材分析《解二元一次方程组》是浙教版数学七年级下册第2.3节的内容,主要介绍了解二元一次方程组的基本方法和技巧。
本节课的内容是学生在学习了二元一次方程的基础上进行的,是进一步学习更复杂方程组的基础。
教材通过具体的例子引导学生掌握解二元一次方程组的方法,并能够灵活运用。
二. 学情分析七年级的学生已经掌握了二元一次方程的基本知识,对于解方程有一定的了解。
但是,解二元一次方程组相对于单个方程来说更加复杂,需要学生能够将两个方程结合起来进行求解。
因此,学生在学习本节课的内容时可能会感到有一定的困难,需要通过大量的练习来掌握解题方法。
三. 教学目标1.让学生掌握解二元一次方程组的基本方法。
2.培养学生解决实际问题的能力。
3.提高学生合作交流的能力。
四. 教学重难点1.重难点:解二元一次方程组的方法和技巧。
2.难点:如何将实际问题转化为二元一次方程组,并灵活运用解题方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决问题来学习解二元一次方程组的方法。
2.使用多媒体辅助教学,通过动画和例子来形象地展示解题过程。
3.分组讨论,让学生在合作中学习,提高学生的合作交流能力。
4.大量的练习,让学生在实践中掌握解题方法。
六. 教学准备1.准备相关的教学多媒体材料,如动画、例子等。
2.准备练习题,包括基础题和提高题。
3.准备黑板和粉笔,用于板书解题过程。
七. 教学过程1.导入(5分钟)通过一个实际问题引入二元一次方程组的概念,激发学生的学习兴趣。
2.呈现(15分钟)使用多媒体展示二元一次方程组的解法,引导学生理解解题思路。
3.操练(15分钟)让学生分组讨论,每组解决一个二元一次方程组的问题,并展示解题过程。
4.巩固(10分钟)让学生独立解决一些基础的二元一次方程组问题,巩固所学知识。
5.拓展(10分钟)引导学生思考如何将实际问题转化为二元一次方程组,并灵活运用解题方法。
浙教版数学七年级下册2.3《解二元一次方程组》(第3课时)教学设计一. 教材分析《解二元一次方程组》是浙教版数学七年级下册第3课时的重要内容。
这部分内容是在学生已经掌握了二元一次方程的基础知识上,进一步探究如何解二元一次方程组。
本课时主要让学生了解解二元一次方程组的方法,以及如何运用这些方法解决实际问题。
教材通过具体的案例,引导学生掌握解二元一次方程组的基本步骤和技巧。
二. 学情分析学生在进入这一课时之前,已经学习了二元一次方程的基本概念和性质,对解一元一次方程有了初步的认识。
但学生在解二元一次方程组时,可能会遇到一些困难,如对齐、符号判断等。
因此,在教学中,需要引导学生总结解题规律,提高解题速度和正确率。
三. 教学目标1.知识与技能目标:使学生掌握解二元一次方程组的基本方法,能够熟练地运用加减消元法、代入消元法解二元一次方程组。
2.过程与方法目标:通过合作交流,让学生学会如何将实际问题转化为二元一次方程组,并运用解方程组的方法解决问题。
3.情感态度与价值观目标:培养学生勇于探索、克服困难的意志,增强小组合作意识,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:使学生掌握解二元一次方程组的基本方法,能够熟练地运用加减消元法、代入消元法解二元一次方程组。
2.教学难点:如何将实际问题转化为二元一次方程组,以及在不同情况下选择合适的解方程组的方法。
五. 教学方法采用问题驱动法、合作交流法、案例教学法等。
通过设置问题,引导学生主动探究;鼓励学生合作交流,分享解题心得;以具体案例为载体,使学生掌握解二元一次方程组的方法。
六. 教学准备1.准备相关案例和练习题,用于引导学生学习和巩固解二元一次方程组的方法。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用一个实际问题,引导学生思考如何将其转化为二元一次方程组。
例如,某商店同时出售两种商品,甲商品每件50元,乙商品每件30元,现有一笔钱,问如何选择购买商品才能使花费最接近总额的一半?2.呈现(10分钟)呈现一个具体的二元一次方程组案例,引导学生进行分析。
浙教版七年级数学严选学习材料一线名师严选内容,逐一攻克☆基本概念、基本原理、基础技能一网打尽☆点拨策略思路,侧重策略指导,拓宽眼界思路☆专题02 二元一次方程组及其解法知识网络重难突破知识点一有关概念及应用1.二元一次方程含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。
使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解。
2.二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。
同时满足二元一次方程组中各个方程的解,叫做这个二元一次方程组的解。
【典例1】(2019春•诸暨市期末)下列方程中,属于二元一次方程的是()A.x+xy=8B.y=x﹣1C.x+=2D.x2﹣2x+1=0【点拨】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【解析】解:A、含有两个未知数,但是含有未知数的项的最高次数是2,故本选项错误;B、符合二元一次方程定义,是二元一次方程,故本选项正确;C、不是整式方程,故本选项错误;D、x含有一个未知数,不是二元一次方程,故本选项错误.故选:B.【点睛】此题考查二元一次方程定义,关键是根据二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.【变式训练】1.(2019春•余姚市校级月考)若方程x|a|﹣1+(a﹣2)y=3是二元一次方程,则a的值为﹣2.【点拨】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面确定a的取值.【解析】解:根据二元一次方程的定义,得|a|﹣1=1且a﹣2≠0,解得a=﹣2.故答案是:﹣2.【点睛】本题考查二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.2.(2019春•嘉兴期末)已知是二元一次方程mx+4y=2的一个解,则代数式m﹣2n的值为()A.﹣2B.2C.﹣1D.1【点拨】把x与y代入方程计算,即可求出所求.【解析】解:把代入方程得:﹣2m+4n=2,整理得:﹣2(m﹣2n)=2,即m﹣2n=﹣1,故选:C.【点睛】此题考查了二元一次方程的解,以及代数式求值,熟练掌握运算法则是解本题的关键.3.(2019春•余姚市期末)下列各组数中,是二元一次方程2x﹣3y=1的解的是()A.B.C.D.【点拨】把x、y的值代入方程,看看左边和右边是否相等即可.【解析】解:A、把代入方程2x﹣3y=1得:左边=﹣1,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;B、把代入方程2x﹣3y=1得:左边=1,右边=1,左边=右边,所以是方程2x﹣3y=1的解,故本选项符合题意;C、把代入方程2x﹣3y=1得:左边=﹣5,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;D、把代入方程2x﹣3y=1得:左边=5,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;故选:B.【点睛】本题考查了二元一次方程的解,能熟记方程的解的定义是解此题的关键.知识点二二元一次方程组的解法常用方法:代入消元法、加减消元法解方程组的基本思想是“消元”,也就是把解二元一次方程组转化为解一元一次方程,这种解方程组的方法称为代入消元法,简称代入法。
2024年数学七下浙教版精彩教案全套一、教学目标1.知识与技能:掌握浙教版七年级下册数学教材中的重要知识点。
能够运用所学知识解决实际问题。
2.过程与方法:培养学生的数学思维能力,提高分析问题和解决问题的能力。
通过合作探究,培养学生的团队协作能力和沟通能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生热爱数学的情感。
培养学生自觉遵循数学规律,严谨治学的态度。
二、教学内容1.第一章:实数1.1实数的概念1.2实数的运算1.3实数的应用2.第二章:二元一次方程组2.1二元一次方程组的解法2.2二元一次方程组的应用2.3二元一次方程组在实际问题中的应用3.第三章:不等式与不等式组3.1一元一次不等式3.2一元一次不等式组3.3不等式的应用4.第四章:数据的收集、整理与分析4.1数据的收集4.2数据的整理4.3数据的分析5.第五章:概率初步5.1概率的定义5.2概率的计算5.3概率的应用三、教学过程1.导入新课利用生活中的实例,引发学生对实数的认识,激发学生学习实数的兴趣。
2.知识讲解(1)讲解实数的概念,让学生明确实数的分类及性质。
(2)讲解实数的运算,引导学生掌握实数的加减乘除法则。
(3)讲解实数的应用,通过实例让学生体会实数在实际问题中的运用。
3.实例分析选取典型例题,引导学生分析问题,培养学生的解题能力。
4.练习巩固设计针对性练习题,让学生在练习中巩固所学知识。
5.小组讨论将学生分成小组,针对某一问题进行讨论,培养学生的团队协作能力和沟通能力。
四、教学策略1.采用启发式教学,引导学生主动探究,培养学生的自主学习能力。
2.注重知识点的讲解与实例分析相结合,提高学生的解题能力。
3.创设生动有趣的教学情境,激发学生的学习兴趣。
4.利用现代教育技术,丰富教学手段,提高教学效果。
五、教学评价1.课堂表现:观察学生在课堂上的参与程度,了解学生的学习状态。
2.作业完成情况:检查学生作业的完成质量,评价学生对知识的掌握程度。
数学七年级下册二元一次方程组性质数学七年级下册二元一次方程组性质导语:书是人类进步的阶梯,这句话说得真不错,我总是爱看书。
因为我从书本里明白了很多很多的道理。
下面是小编为大家整理的,数学知识,想要知更多的资讯,请多多留意CNFLA学习网!第一章二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。
②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
二元一次方程组的解的讨论:a1x + b1y = c1 已知二元一次方程组a2x + b2y = c2①、②、③、当a1/a2 ≠ b1/b2 时,有唯一解; 当a1/a2 = b1/b2 ≠ c1/c2时,无解; 当a1/a2 = b1/b2 = c1/c2时,有无数解。
x + y = 4 2x + 2y = 8x + y = 4 x + y = 3 例如:对应方程组:①、②、③、 3x - 5y = 9 2x + 2y = 5例:判断下列方程组是否为二元一次方程组:a +b = 2 ②、x = 4 ③、3t + 2s = 5 ④、x = 11 ①、b +c = 3 y = 5 ts + 6 = 0 2x + 3y = 03、用含一个未知数的代数式表示另一个未知数:用含X的代数式表示Y,就是先把X看成已知数,把Y看成未知数;用含Y的代数式表示X,则相当于把Y看成已知数,把X看成未知数。