钢筋和混凝土的高温力学性能共29页文档
- 格式:ppt
- 大小:2.79 MB
- 文档页数:29
混凝土在高温下的力学性能及原理一、引言混凝土是一种广泛使用的建筑材料,其力学性能是建筑结构的重要性能之一。
然而,在高温环境下,混凝土的力学性能会受到不同程度的影响,这直接影响着建筑结构的安全性能。
因此,深入研究混凝土在高温下的力学性能及其原理具有重要的理论和实际意义。
二、混凝土的力学性能混凝土的力学性能主要包括抗压、抗拉、抗弯和抗剪强度。
1. 抗压强度混凝土的抗压强度是指在单位面积上承受的最大压力。
在高温环境下,混凝土的抗压强度会下降,这主要是因为混凝土内部的水分会被蒸发,导致混凝土的孔隙率增加,从而降低了混凝土的密度和抗压强度。
此外,在高温环境下,混凝土中的化学反应也会发生变化,使混凝土的强度下降。
2. 抗拉强度混凝土的抗拉强度是指在拉应力作用下,混凝土中的应力达到破坏时所承受的最大应力。
在高温环境下,混凝土的抗拉强度也会下降,这主要是因为混凝土中的水分蒸发导致混凝土的干燥收缩,从而使混凝土内部产生裂缝,降低了混凝土的抗拉强度。
3. 抗弯强度混凝土的抗弯强度是指在弯曲应力作用下,混凝土中的应力达到破坏时所承受的最大应力。
在高温环境下,混凝土的抗弯强度也会下降,这主要是因为混凝土中的水分蒸发导致混凝土的干燥收缩,从而使混凝土内部产生裂缝,降低了混凝土的抗弯强度。
4. 抗剪强度混凝土的抗剪强度是指在剪切应力作用下,混凝土中的应力达到破坏时所承受的最大应力。
在高温环境下,混凝土的抗剪强度也会下降,这主要是因为混凝土中的水分蒸发导致混凝土的干燥收缩,从而使混凝土内部产生裂缝,降低了混凝土的抗剪强度。
三、混凝土在高温下的原理混凝土在高温下的力学性能下降是由多种因素共同作用导致的。
主要原理如下:1. 混凝土中的水分蒸发在高温环境下,混凝土中的水分会被蒸发,导致混凝土的孔隙率增加,从而降低了混凝土的密度和强度。
此外,水分的蒸发还会导致混凝土的干燥收缩,从而使混凝土内部产生裂缝,降低了混凝土的抗拉、抗弯和抗剪强度。
高温条件下混凝土的力学性能浅析摘要:通过高温状态下,对混凝土的抗压强度、抗拉强度和应力应变的分析实验进行研究,了解混凝土在高温状态下的受力特征,并进行总结和分析。
关键词:高温砼受力力学性能应力应变1、前言混凝土材料,作为现代建筑物最主要的承重体系,关键部位的关键结构必须保证在火灾发生的一段时间内,有足够的承载力,以保证人员安全撤离的时间,同时给予消防部门,对火灾进行灭火和救援提供充足的时间。
当发生火灾时,建筑物内部或着火位置温度上升较快,作为一个整体,形成不均匀的温度差,会导致整体的力学性能受损,作为建筑物的结构材料,不均匀的温度差会对其刚度、强度、稳定性等性能有较大影响。
当建筑物结构材料达到下列状态之一时,即可以认为结构抗火失效:(1)隔热极限。
通常认为,结构的背火面的平均温度达到140℃,或者局部最高温度达到180℃,并且由此引发相邻空间起火,导致火灾向他处蔓延,这种状态下,认为结构抗火失效。
(2)阻火极限。
如果在火灾发生时,结构内部有损伤,而存在较宽的裂缝或者蜂窝、空洞,并因此没有能力阻值火灾的蔓延和高温烟气的穿透,这种状态下,认为结构抗火失效。
(3)承载能力极限。
当火灾发生时,如果因为高温导致结构内部相关结构(例如:钢筋)的承载力不足,在使用荷载的作用下,产生了较大的变形、或者失稳等情况,这种状态下,认为结构抗火失效。
作为建筑物主要材料的钢筋混凝土结构,虽然钢筋的导热性能良好,但是被混凝土包裹后,作为一个整体其导热性能不均匀,并且缓慢,同时由于承重结构的截面高度较大,火灾发生时,内部的温度上升较慢,强度维持时间久,但是如果持续受到火灾影响,会导致外层起保护作用的混凝土受热破损,钢筋裸露,由于钢筋的传热性能良好,导致内部主筋在高温的状态下,承载力降低(主要体现在抗拉强度上),而内部混凝土结构热传导性差,强度保持效果良好(主要体现在抗压强度上),所以整个结构的承载力变化复杂,会产生表面龟裂,混凝土逐层脱落、甚至发生穿孔和垮塌。
钢筋在高温工况下的力学性能研究钢筋作为一种重要的建筑材料,在高温工况下的力学性能研究一直是一个重要的课题。
高温会对钢筋的力学性能产生显著影响,因此对其性能进行研究和评估是提高建筑结构耐火性能的关键。
首先,钢筋在高温下的力学性能受到温度的影响。
当钢筋暴露在高温环境中时,温度会影响其强度和延展性。
温度升高会引发钢筋晶粒的生长和晶界的移动,从而导致钢筋的材料力学性能发生变化。
此外,高温还会使得钢筋内部的组织结构发生相变,从而对其力学性能产生影响。
其次,高温下的钢筋还会受到应力和变形的影响。
高温环境会使钢筋的强度下降,从而对结构的承载能力产生影响。
此外,高温还会使得钢筋发生热膨胀,从而导致结构的变形和变形速度的增加。
因此,正确评估钢筋在高温工况下的力学性能对于确保结构的安全性和可靠性至关重要。
在高温下评估钢筋的力学性能需要采用多种测试方法和分析技术。
一种常用的方法是热拉伸试验,通过在高温下对钢筋进行拉伸测试,可以得到其高温下的强度、断裂延伸和变形等力学性能指标。
此外,还可以采用微观分析技术,如扫描电子显微镜(SEM)和X射线衍射(XRD),来观察钢筋在高温下的组织结构和相变情况,以进一步理解其力学性能变化的机理。
根据研究结果,可以采取一系列措施来提高钢筋在高温工况下的力学性能。
一种常见的方法是添加合适的材料,如钨、铌等元素的合金,来增强钢筋的高温强度和抗氧化性能。
另外,合理设计结构,并采用耐火材料包覆钢筋,可以有效减缓高温对钢筋的影响,提高结构的耐火性能。
此外,钢筋的防火涂层也是提高其在高温工况下力学性能的重要措施之一。
防火涂层可以有效地隔绝钢筋和高温环境的接触,减少钢筋的温度上升速度,延缓其力学性能的衰减。
常用的防火涂层材料包括耐火砂浆、防火涂料等,选择合适的防火涂层材料可以提高钢筋的耐火性能。
总之,钢筋在高温工况下的力学性能研究是提高建筑结构耐火性能的关键。
通过对钢筋的力学性能进行研究和评估,可以帮助设计师和工程师选择合适的钢筋材料和结构设计方案,并采取相应的措施来确保建筑结构在高温环境下的安全性和可靠性。
试析高温下钢筋混凝土性能在钢筋混凝土结构中,钢筋和混凝土这两种材料之所以能够共同工作的基本前提是具有足够的粘结强度,能承受由于变形差(相对滑移)沿钢筋与混凝土接触面上产生的剪应力,通常把这种剪应力叫做粘结应力。
粘结强度受多种因素的影响,其中包括接下来要说的温度。
近年来,常有钢筋混凝土结构不同程度地受到高温(火灾)作用,国内外学者对于高温(火灾)作用下混凝土及钢筋的力学性能、热工性能、构件及结构在高温下的反应等问题进行了大量的研究工作。
高温下混凝土与钢筋之间粘结性能的退化研究同样也受到重视,国内外学者对此进行了一系列的研究,并取得了一定的研究成果。
但由于影响粘结的因素较多,破坏机理复杂,特别是由于试验技术等方面的原因,高温下钢筋和混凝土的粘结性能尚未进行深入研究。
1、高温下钢筋混凝土的性能1.1力学性能高温下钢材强度随温度的升高而降低,降低的幅度因钢材温度的高低和钢材种类的不同而不同。
对于混凝土,在高温下,钢筋混凝土的抗压强度随着温度的升高而降低,从国内外的研究试验中都发现了这一点,当温度在0℃~400℃时,抗压强度会出现反复、回升现象。
高温下混凝土的抗拉强度由于失水、裂缝和界面裂缝从而引起应力集中,所以其强度降低量比抗压强度降低幅度更大。
1.2热工性能1.2.1高温条件下,钢筋的热工性能影响因素1)导热系数。
一般的说,钢材的导热系数是随温度的升高而递减的,但当温度到758℃时,导热系数几乎成了常数,另外各种钢材的导热系数不完全一致,主要受含碳量的影响,但这种影响在计算中一般可以忽略不计。
2)比热。
钢的比热随温度变化比较复杂。
3)热膨胀系数。
钢材在热应力作用下同样产生膨胀,其膨胀率和温度基本成正比关系。
4)质量密度。
钢材的质量密度基本不随温度的变化而改变,在进行结构场分析时,一般将质量密度取为与温度无关的常量。
1.2.2高温条件下,混凝土热工性能影响因素1)热传导系数。
影响热传导系数的主要因素归为:骨料类型、含水量、混凝土配合比和温度。