高辛烷值汽油
- 格式:doc
- 大小:44.00 KB
- 文档页数:6
第一篇设计说明书第 1 章概述甲基叔丁基醚(MTBE)是一种高辛烷值汽油添加剂,用MTBE取代四乙基铅可减少环境污染。
MTBE也是一种不腐蚀、低污染、成本低的碳四分离新手段。
iC=0.5%以下的直链丁烯用作丁裂解得到的聚合级异丁烯,供丁烯橡胶使用。
含4iC=只需要进行经过简烯氧化脱氨制丁二烯的原料。
将MTBE进行分解,所得的4单蒸馏及洗涤,即可得到99.5%的高纯度异丁烯。
MTBE作为新兴的重要的化工产品,已广泛应用在法国、意大利、加拿大等国家。
在我国也有着广泛的开发前景。
1.1 MTBE生产的历史前景的沿革自1970 年Raycher发现醇和烯烃醚化反应后的数十年间,其有关文摘指导极少,但却有大量的专利指导了甲基叔丁基醚。
1973年意大利第一套10万吨/年的MTBE工业装置投产后,MTBE作为新兴汽油添加剂,引起了各国石油化学界的普遍重视,其产量每年以54%的速度增长。
MTBE工业是当今极有前途的新兴工业之一。
1979年我国才开始研究MTBE合成工业。
1983年我国第一套500万吨/年化工型MTBE工业装置建成后,增长的速度较快,已形成一定规模的生产能力。
制备MTBE的原料异丁烯的技术发展呈多样化的趋势,用一种异丁烷制异丁烯的技术生产MTBE极为理想。
总收率达95%.意大利snan公司研发了直链丁烯异构制异丁烯的新方法,MTBE增加80%.MTBE生产工艺普遍采用用酸性的离iC=在液相70~100%下通过酸性的离子交子交换树脂合成MTBE,用MeoH和4换树脂在填充床内进行。
离子交换树脂是磺化聚苯乙烯和二乙烯基苯共聚物。
用硫酸作催化剂合成MTBE的工艺也不是很理想。
催化剂蒸馏是当今MTBE 醚化工艺的发展方向,世界公认的MTBE生产技术元老意大利斯拉姆公司的Paret Giancalo等人对新技术作了改进,采用六块塔盘的泡罩踏,将催化剂支撑体系设计的更为合理。
1987年底用于甲醇和异丁烯摩尔为简化。
异丁烷与小分子烯烃生成的烷基化油为C5~C9的异构烷烃混合物,其中以富含各种三甲基戊烷的C8为主要成分,是理想的高辛烷值清洁汽油组分。
烷基化油具有以下特点:①辛烷值高(其RON 可达96,MON 可达94,在内燃机中燃烧后,排气烟雾少,不引起爆震,是清洁汽油理想的高辛烷值调合组分;②不含烯烃、芳烃,硫含量也很低,将烷基化汽油调入汽油中通过稀释作用可以降低汽油中的烯烃、芳烃、硫等有害组分的含量;③蒸气压较低。
④烷基化油几乎完全是由饱和的分支链烷烃所组成,因此还可以用烷基化油作成各种溶剂油使用。
正是由于烷基化汽油的各种优点,使得烷基化工艺蓬勃发展。
烷基化油生产的发展开始于二次世界大战期间,用于生产航空汽油,但当时数量不大。
烷基化包括直接烷基化与间接烷基化(拟烷基化)两种反应形式及工艺技术。
直接烷基化是指异丁烷和丁烯在强酸催化剂的作用下发生烷基化反应生成烷基化油的过程。
在传统液体酸烷基化工艺中,可以按所用催化剂分为硫酸烷基化和氢氟酸烷基化工艺。
由于腐蚀和环保问题,寻求一种固体酸催化剂替代硫酸和氢氟酸生产烷基化油就成了炼油工业的热门课题。
常用的汽油指标
汽油是一种常见的燃料,被广泛应用于汽车、摩托车等内燃机车辆中。
为了确保汽车的性能和运行安全,我们需要了解汽油的一些指标以及它们的含义。
首先,汽油的辛烷值是一个重要的指标,它反映了汽油的抗爆震性能。
辛烷值越高,汽油的抗爆震性能越好,发动机工作时的抗爆震能力也就越强。
一般来说,高性能车辆需要选择辛烷值更高的汽油,以确保引擎的正常运行。
其次,汽油的燃烧效率也是一个重要的指标。
燃烧效率不仅影响着汽
车的动力性能,还会直接影响到车辆的油耗和排放情况。
较高的燃烧效率意味着汽油在燃烧过程中能够更充分地释放能量,从而提高车辆的燃油利用率。
除了上述两个指标外,还有一些其他常用的汽油指标,包括车用汽油
的硫含量、挥发性、密度、含氧化合物的量等。
这些指标都直接影响着汽油的品质和适用范围。
例如,硫含量过高会导致车辆尾气排放超标,挥发性过大则会影响汽油的稳定性和储存期限。
在实际选择汽油时,我们需要综合考虑各种指标,并根据车辆的具体
情况来确定最适合的汽油类型。
有一点需要注意的是,汽油并非越贵越好,而应根据车辆的需要来选择适合的汽油,以兼顾性能、经济性和环保性。
让我们让我们总结一下,常用的汽油指标对于保障车辆的正常运行和
延长发动机使用寿命具有重要意义。
通过了解这些指标,我们可以更好地选
择合适的汽油,为我们的行驶提供更好的保障。
希望本文能对读者有所启发,让大家在选择汽油时能够更加明智地做出决策。
mtbe反应式【实用版】目录1.MTBE 反应式的概述2.MTBE 反应式的特点3.MTBE 反应式的应用4.MTBE 反应式的环境影响正文一、MTBE 反应式的概述MTBE 反应式,即甲基叔丁基醚(Methyl Tert-Butyl Ether)的生成反应式,是一种常见的有机化学反应。
MTBE 是一种高辛烷值汽油添加剂,用于提高汽油的抗爆性能。
其反应式为:C4H10O + O2 → C5H12O + H2O其中,C4H10O 代表甲基叔丁醇(Tert-Butanol),C5H12O 代表甲基叔丁基醚(MTBE)。
二、MTBE 反应式的特点1.反应条件:MTBE 反应式在高温(通常为 300-400 摄氏度)和高压下进行,需要催化剂存在。
催化剂通常为钼、钨、铬等金属。
2.反应选择性:该反应的选择性较高,可生成纯度较高的 MTBE 产品。
3.副反应:在反应过程中,可能会生成副产品,如水和一些杂质。
三、MTBE 反应式的应用MTBE 作为高辛烷值汽油添加剂,广泛应用于汽油的生产和调合。
添加适量的 MTBE 可以提高汽油的抗爆性能,从而提高发动机的性能,降低排放污染。
四、MTBE 反应式的环境影响MTBE 反应式在生产过程中可能会产生一些有害物质,对环境和人体健康造成影响。
因此,在生产和使用过程中,需要严格遵循环保法规,加强环保设施的建设和管理,降低环境污染风险。
同时,MTBE 的燃烧产物中也可能含有有害物质,需要关注其对大气环境和人体健康的影响。
总之,MTBE 反应式在石油化工领域具有重要意义,为提高汽油性能和降低排放污染提供了一种手段。
汽油标号与辛烷值目前市场上汽油有90、93、95、97等标号,这些数字代表汽油的辛烷值,也就是代表汽油的抗爆性,与汽油的清洁无关。
所谓“高标号汽油更清洁”的纯属误导。
按照发动机的压缩比或汽车使用说明书的要求加油,更科学、更经济,并能充分发挥发动机的效率。
汽车发动机在设计阶段,会根据压缩比设定所用燃油的标号。
压缩比是发动机的一个非常重要的结构参数,它表示活塞在下止点压缩开始时的气体体积与活塞在上止点压缩终了时的气体体积之比。
从动力性和经济性方面来说,压缩比应该越大越好。
压缩比高,动力性好、热效率高,车辆加速性、最高车速等会相应提高。
但是受汽缸材料性能以及汽油燃烧爆震的制约,汽油机的压缩比又不能太大。
简单地说,高压缩比车使用高标号的燃油。
燃油标号越高,油的燃烧速度就越慢,燃烧爆震就越低,发动机需要较高的压缩比;反之,低标号燃油的燃烧速度较快,燃烧爆震大,发动机压缩比较低。
燃油的标号还涉及到发动机点火正时的问题。
低标号汽油燃烧速度快,点火角度要滞后;高标号燃油燃烧速度慢,点火角度要提前。
例如一台发动机按照说明书要求应加93号汽油,现在加了90号汽油,可能会造成发动机启动困难;加速时,发动机内有清脆的金属碰撞声音;长途行车后,关闭点火开关时发动机抖动。
选择汽油标号的主要依据是发动机的压缩比。
盲目使用高标号汽油,不仅会在行驶中产生加速无力的现象,而且其高抗爆性的优势无法发挥出来,还会造成金钱的浪费。
油号的基本概念93汽油与97汽油一、基本概念:1、压缩比:汽车选择汽油标号的首要标准就是发动机的压缩比,也是当代汽车的核心节能指标。
引擎的运行是由汽缸的“吸气——压缩——燃烧——排气——吸气”这样周而复始的运动所组成,活塞在行程的最远点和最近点时的汽缸体积之比就是压缩比。
降低油耗的成本最低效果最好的方法就是提高发动机的压缩比。
提高压缩比只是改变活塞行程,混合油气压缩得越厉害,它燃烧的反作用也越大,燃烧越充分。
但压缩比不是轻易能动的,因为得有另一个指标配合,即汽油的抗爆性指标,亦称辛烷值,即汽油标号。
辛烷值是衡量汽油在汽缸内抗爆震燃烧能力的一种数字指标,其值高表示抗爆性好。
汽油在汽缸中正常燃烧时火焰传播速度为10-20公尺/秒,在爆震燃烧时可达1500-2000公尺/秒,后者条件下使气缸温度剧升,汽油燃烧不完全,机器强烈震动,从而使输出功率下降,机件受损。
不同化学结构的烃类,具有不同的抗爆震能力。
异辛烷(2,2,4-三甲基戊烷)的抗爆性能较好,辛烷值设定为100;正庚烷的抗爆性差,辛烷值设定为0。
汽油辛烷值的测定是以异辛烷和正庚烷为标准燃料,按标准条件,在实验室单缸汽油机上用对比法进行的。
调节标准燃料组成的比例,使标准燃料产生的爆震强度与试样相同,此时标准燃料中异辛烷所占的体积百分数就是试样的辛烷值。
依测定条件不同,主要有以下几种辛烷值:马达法辛烷值:测定条件较为苛刻,发动机转速为900转/分,进气温度149℃。
它反映汽车在高速,重负荷条件下行驶的汽油抗爆性。
研究法辛烷值:测定条件缓和,转速为600转/分,进气为室温。
此辛烷值反映汽车在慢速行驶时的汽油抗爆性。
对同一种汽油,其研究法辛烷值比马达法辛烷值高出0-15个单位,两者之间的差值,称为敏感性(度)。
道路法辛烷值也称行车辛烷值,用汽车进行实测或在全功率试验台上模拟汽车在公路上行驶的条件进行测定。
道路辛烷值也可用马达法和研究法辛烷值按经验公式计算求得。
马达法辛烷值和研究法辛烷值的平均值称作抗爆指数,它可以近似地表示道路辛烷值。
====== 某一汽油在引擎中所产生之爆震,正好与98%异辛烷及2%正庚烷之混合物的爆震程度相同,即称此汽油之辛烷值为98。
此燃油若再渗合其它添加剂,辛烷值可大于98或小于98甚或超过100。
一般所谓的95、92无铅汽油即是指其辛烷值,所以95比92的抗爆性来的好。
辛烷值只是一个相对指标,而不是真的只以正庚烷或异辛烷来混合,所以有些燃油再渗合其它添加剂时的辛烷值可以超过100,可以为负。
若车辆『压缩比』在9.1以下者应以92无铅汽油为燃料;压缩比9.2至9.8使用95无铅汽油;压缩比9.8以上或者涡轮增压引擎车种才需要使用98无铅汽油。
汽油辛烷值介绍为评定燃油的抗爆震性能,一般采用两种方法:马达法和研究法。
评定工作一般在一台专门设计的可变压缩比的单缸发动机上进行。
马达法规定试验工况为:进气温度149℃,冷却水温度100℃,发动机转速900r/min,点火提前角为上止点前14°~26°。
试验时,先用被测定燃油工作,逐渐改变压缩比,直到爆震仪上指出标准爆震强度为止。
然后,保持压缩比等条件不变,换用标准燃油工作。
标准燃油是由抗爆性很高的异辛烷C8H18(定其辛烷值为100)和易爆燃的正庚烷(定其辛烷值为0)的混合液。
逐渐改变异辛烷和正庚烷的比例,直到标准燃油所产生的爆燃强度与上述被测燃油相同时为止。
这时标准燃油中所含异辛烷的体积百分数就是被测燃油的辛烷值。
辛烷值高,燃油的抗爆震性就好,反之抗暴性就差。
例如:某燃油辛烷值为80,这就是说该燃油与含异辛烷80%和正庚烷20%的混合液的抗爆性相同。
这就是对燃油抗爆性的评价标准。
研究法与马达法的试验方法相同,只是规定的试验条件不同而已。
研究法规定的工况为:进气温度为51.7℃,冷却水温度为100℃,发动机转速600 r/min,点火提前角为13°。
由于马达法规定的条件比研究法苛刻,因此所测出的辛烷值比较低。
同一种燃油用马达法测出的辛烷值为85时,相当于研究法辛烷值为92;马达法为90时,研究法为97。
现在加油站用的是研究法辛烷值。
一般来说,工厂提高汽油辛烷值的途径有三个:一是选择良好的原料和改进加工工艺,例如采用催化裂化、重整等二次加工工艺。
二是向产品中调入抗爆性优良的高辛烷值成分,例如异辛烷、异丙苯、烷基苯等。
三是加入抗爆剂。
来源:世界石油网异辛烷(2,2,4-三甲基戊烷)的抗爆性较好,辛烷值给定为100。
正庚烷的抗爆性差,给定为0。
汽油辛烷值的测定是以异辛烷和正庚烷为标准燃料,按标准条件,在实验室标准单缸汽油机上用对比法进行的。
调节标准燃料组成的比例,5#适用的最低气温为8℃以上;0#适用的最低气温为4℃以上;-10#适用的最低气温为-5℃以上;-20#适用的最低气温为-14℃以上;-35#适用的最低气温为-29℃以上;-50#适用的最低气温为-44℃以上。
汽油的特性主要是什么?随着人们生活水平的不断提高,现在家家户户都有了小汽车,那么加汽油也变成了一件习以为常的事情。
汽油是比较适合小型车辆的一种油,它和柴油相比有许多不同的特性,那么汽油的特性都有哪些呢?1、清洁性汽油常常含有机械杂质和水分。
机械杂质会造成油路堵塞,磨损加剧等严重后果。
水分混入汽油中,会加速汽油的氧化,并与汽油中低水分子有机酸生成酸性水溶液而腐蚀金属,低温时易结冰形成冰粒堵塞油路。
所以车用汽油中应严格控制机械杂质和水分混入。
2、腐蚀性汽油腐蚀性与硫及含硫化合物、有机酸、水溶性酸或碱有关。
3、抗爆性衡量燃料是否易于发生爆震的性质称为抗爆性,汽油抗爆性通过辛烷值(RON)表示。
汽油的辛烷值越高,抗爆性就越好。
对同族烃类,碳数小,抗爆性好,辛烷值高。
碳数相同的各族烃,辛烷值由大到小的顺序为芳香烃异构烷烃和异构烯烃正构烯烃及环烷烃正构烷烃。
同一原油的不同直馏馏分,馏分越轻,辛烷值越高;不同原油沸程相同的馏分,化学组成不同,辛烷值不同。
4、安定性汽油在常温和液相条件下抵抗氧化的能力称为汽油的氧化安定性,简称安定性。
评定汽油安定性的指标分为碘值、实际胶质、诱导期。
指汽油在各种使用条件下抗爆震燃烧的能力。
车用汽油的抗爆性用辛烷值表示。
辛烷值越高,抗爆性越好。
汽油抗爆能力的大小与化学组成有关。
带支链的烷烃以及烯烃、芳烃通常具有优良的抗爆性。
规定异辛烷的辛烷值为100,抗爆性好;正庚烷的辛烷值为0,抗爆性差。
汽油辛烷值由辛烷值机测定。
高辛烷值汽油可以满足高压缩比汽油机的需要。
汽油机压缩比高,则热效率高,可以节省燃料。
提高汽油辛烷值主要靠增加高辛烷值汽油组分,但也通过添加MTBE等抗爆剂来实现。
汽油的牌号是按辛烷值划分的。
5、蒸发性汽油在发动机气缸内,必须要迅速气化并与空气形成均匀的可燃混合气,这主要是由汽油的本身蒸发性所决定。
反映蒸发性的主要指标是馏程和饱和蒸气压。
①馏程能大体上表示汽油的沸点范围和蒸发性能,一般用馏程的10%、50%、90%点馏出温度和终馏点来反映不同工作条件下汽油的汽化性能。
第7 章高辛烷值汽油组分生产知识目标:了解石油气体种类及其利用;熟悉石油气体的精制、叠合、烷基化、异构化过程的反应机理及最新技术简介;掌握气体各加工过程的操作条件及产品特征。
能力目标:能根据炼油厂所产生的气体的组成和性质合理选择气体加工利用方式;能对影响石油气体加工生产过程的因素进行分析和判断,进而能对实际生产过程进行操作和控制。
7.1 概述7.1.1 汽油的基础组分我国原油一般偏重,轻质油品含量低,为增加汽、柴油、乙烯裂解原料等轻质油品产量,我国原油二次加工路线已经形成了以催化裂化为主体,延迟焦化、加氢裂化和减粘裂化等工艺为辅助的加工体系。
汽油是以炼厂中各加工途径生产出的汽油组分调合构成基础组分,为兼顾汽油的产量和质量,汽油的基础组分是动态变化的。
美国1995 年的汽油构成大致为催化裂化汽油占1/3,催化重整汽油占1/3,其他高辛烷值调合组分占1/3。
西欧催化汽油27%,催化重整汽油47%,剩余部分主要是其他高辛烷值组分。
我国汽油中催化裂化汽油比例较高,1998 年达85%,重整汽油、烷基化油、MTBE 等比例很低,汽油组成的差别使得我国汽油质量与国外有明显差距。
我国目前车用汽油质量的主要问题是,烯烃含量和硫含量较高。
7.1.2 汽油抗爆剂为了弥补汽油各方面质量的不足,需添加各种汽油添加剂。
这里以抗爆剂为主介绍。
汽油抗爆添加组分的作用是抑制燃烧反应自动加速,将汽油的燃烧速度限制在正常范围之内,即在火焰前锋到达之前,抑制烃类自燃,使未燃混合气体的自燃诱导期延长,或使火焰的传播速度增加,达到消除燃料爆震燃烧的目的。
烷基铅、铁基化合物、锰基化合物连同后来有人研究的稀土羧酸盐等作为抗爆剂,统称为金属有灰类抗爆剂,金属有灰类抗爆剂虽能有效提高汽油的抗爆性,但由于存在颗粒物的排放问题,欧美等发达国家已不再提倡使用。
近一段时期以来,汽油抗爆剂的开发研究一直朝着有机无灰类方向发展。
有机无灰类抗爆剂主要包括一些醚类、醇类、酯类等。
汽油得性能指标汽油得性能指标用汽油蒸发性、抗爆性、氧化安定性及防腐性来衡量、其中最主要得就是汽油得抗爆性与蒸发性、1、抗爆性抗爆性就是指汽油在发动机汽缸内燃烧时抵抗爆震得能力,常用辛烷值表示、辛烷值越高,汽油得标号亦越高,其抗爆性能越好。
发动机要产生动力,必须压缩发动机汽缸内得油气混合物,在做功冲程将混合物用电火花引爆,产生强大得膨胀气体,推动活塞及连杆做功输出动力、气体压缩愈强,爆发力愈大,发动机动力越澎湃。
但压缩比越大,形成爆燃得可能性就越大。
所谓爆燃,就是指汽油发动机火花塞得电极中心形成电火花后,以电极为中心形成一个焰心,焰锋以一定方向与速率向整个燃烧室传播。
远离焰心得油气混合物,如果在焰锋到达前开始形成爆炸性燃烧,形成强烈得振动与冲击性压力波,称为爆燃。
爆燃不但会引起发动机过热、油耗过高,而且还会导致发动机内部机件损坏,产生异响,时间一长易引发严重机械故障。
这时就必须使用高标号汽油来保证不形成爆燃。
标号越高,形成爆燃得趋势越小。
2、汽油得蒸发性物理学中,把液体变为气态称为汽化(或蒸发)。
汽油得蒸发性就是指汽油由液态变为气态得难易程度。
不管就是传统得化油器汽油发动机,还就是揉合现代高科技得EFI 电子燃油喷射发动机,在做功冲程中要使汽油燃烧产生爆发力,必须先使汽油形成汽化物质,再由火花塞点火产生动力。
汽油得蒸发性越好,就越易汽化,形成得油气混合物也越均匀。
汽化良好得混合气燃烧速度快,发动机易起动,加速及时,油门响应快,同时可以减少发动机得机械磨损,降低油耗及汽车尾气有害物质得排放。
但物极必反,若蒸发性过高,汽油在炎热气候与大气压较低得地区易发生“气阻"而使车辆出现加油不畅、加速不起、易死火等故障。
同时也会使汽油得储运损失增大。
汽油得选用在车辆得日常使用中,我们无法知悉汽油得蒸发性等汽油性能参数,也没必要花时间了解,但有一点我们很容易知道而且需要用心选用,那就就是汽油得辛烷值,即在加油站所加汽油标号得大小,再通俗一点就就是指选择加90号汽油,还就是加97号汽油。
提高汽油辛烷值方法论文摘要:文章探讨了一些提高汽油辛烷值的方法。
从工艺方面看,虽然目前很多炼油厂仍采用固定床催化重整工艺,连续催化重整、异构化及改善FCC工艺已正在实施进而是发展的一个趋势。
从调和方面看,高辛烷值连续重整汽油和异构化油是顺应市场需求的。
从辛烷值改进剂的使用来看,目前MTBE等一系列醚类添加剂占据一定的市场,一旦被禁用,甲醇、乙醇汽油会有更好的市场前景。
0 引言辛烷值(ON)是衡量汽油抗爆性能的质量指标。
根据测定方法分类有研究法辛烷值(RON)和马达法辛烷值(MON),目前常用研究法辛烷值(RON)来衡量辛烷值的高低。
发动机在高辛烷值汽油的作用下油耗较低并且工作稳定,而在较低辛烷值作用下工作粗暴,容易出现敲缸现象,对发动机的损伤比较严重。
近年来随着发动机涡轮增压技术革新,车用汽油对辛烷值的要求也逐渐提高,各大炼厂都在竭力探寻提高汽油辛烷值的方法。
其中主要的一些方法是采用相应的加工工艺、加入添加剂、调和高辛烷值的汽油组分。
1 改善工艺技术提高汽油辛烷值1.1 固定床半再生式催化重整[1] 催化重整是提高汽油辛烷值的重要途径之一。
目前一些小型的炼油厂仍然采用的是固定床半再生式重整工艺,该工艺采用双金属或者多金属催化剂,反应和再生交替进行,所用的贵金属催化剂可再生5-10次,再生周期一般1-2年,该工艺可使汽油的辛烷值提高到85-100(RON),为了提高生产效率可以提高循环氢的纯度并且改善循环氢压缩机的压缩效果从而避免反应器各床层温降过大。
1.2 连续再生式重整工艺固定床半再生式催化重整由于催化剂的再生周期比较长,从而会导致催化剂因积炭而被迫停工。
为了保持催化剂较高的活性并且有利于芳构化反应条件下进行操作,连续重整工艺应运而生,该工艺设有再生器,催化剂可以在两器之间循环再生,再生周期3-7天,该工艺采用低压稳定性较好的铂锡双金属催化剂,该工艺反应压力低,液体产品收率比半再生式高,生成油的芳烃含量较高,辛烷值可达105,生成油辛烷值高、烯烃含量低、硫含量低是理想的车用汽油调合组分,并且反应操作稳定[1]。
汽车汽油分类
汽车汽油一般根据辛烷值的不同可以分为两种类型:普通汽油和高辛烷值汽油。
1. 普通汽油(Regular Unleaded Gasoline):普通汽油是指辛烷值在87到89之间的汽油。
这种汽油价格相对较低,适用于一般的家用轿车。
然而,它的燃烧效率低,相对污染较大。
2. 高辛烷值汽油(Premium Unleaded Gasoline):高辛烷值汽油是指辛烷值在91以上的汽油。
这种汽油价格较高,适用于性能更高的汽车,如跑车或豪华车。
相比普通汽油,高辛烷值汽油在燃烧效率和减少污染方面表现更好。
此外,还有其他汽油种类,如柴油、甲醇汽油和乙醇汽油等。
这些汽油根据原料和生产工艺的不同,具有不同的性能和适用范围。
高辛烷值汽油添加摘要高辛烷值汽油又称高辛烷燃料。
指含有高辛烷值的烃类(如多支链烷烃和芳香烃)或加有抗震剂的汽油。
具有高的抗震性。
在汽油机中燃烧时能经受较高的压缩比而不致发生爆震,可以提高汽油机的热效率。
用作航空汽油和车用汽油。
目录[隐藏]1 简介2 中国高辛烷值汽油的发展历史3 技术发展趋势4 参考资料高辛烷值汽油-简介汽车用油主要成分是C5H12~C12H26之烃类混合物,当汽油蒸气在汽缸内燃烧时(活塞将汽油与空气混合压缩后,火星塞再点火燃烧),常因燃烧急速而发生引擎不正常燃爆现象,称为爆震(震爆)。
烃类的化学结构不同,抗震爆能力也有很大的不同。
燃烧的抗震程度以辛烷值表示,辛烷值越高表示抗震能力愈高。
其中燃烧正庚烷CH3(CH2)5CH3的震爆情形最严重,定义其辛烷值为0。
异辛烷(2,2,4-三甲基戊烷)的辛烷值定义为100。
辛烷值可为负,也可以超过100。
当某种汽油之震爆性与90%异辛烷和10%正庚烷之混合物之震爆性相当时,其辛烷值定为90。
如环戊烷的辛烷值为85,表示燃烧环戊烷时与燃烧85%异辛烷和15%正庚烷之混合物之震爆性相当。
汽油发生震爆时,由于燃烧室内之压力突然增高此压力碰击四周机件而产生类如金属的敲击声,如果汽油一旦辛烷值过低,将使引擎内产生连续震爆现象,造成机件伤害,连续的震爆容易烧坏气门,活塞等机件。
因此使用高辛烷值汽油就成为保护汽车发动机、提高汽车驾驶性能的重要手段。
目前常用的高辛烷值汽油有92、93、95、97、98号无铅汽油,此类汽油含有高支链成分及更多芳香族成分之烃类,如苯、芳香烃、硫合物等。
若车辆“压缩比”在9.1以下者应以92无铅汽油为燃料;压缩比9.2至9.8使用95无铅汽油;压缩比9.8以上或者涡轮增压引擎车种才需要使用98无铅汽油。
下表列出了一些物质的辛烷值。
品名辛烷值品名辛烷值正壬烷-45 异辛烷100正辛烷-17 甲苯103.5正庚烷0 甲醇107正戊烷62.5 乙醇1082-戊烯80 苯1151-丁烯97 甲基第三丁基醚116乙基苯98.9高辛烷值汽油-中国高辛烷值汽油的发展历史1956年一汽投产的“老解放”汽车用汽油机、1965年北京内燃机总厂开始生产的492汽油机和70年代投产的东风6100汽油机,是长期占据我国车用汽油机市场的“老三样”。
由于60年代我国供应的汽油是主要是66号汽油,70年代开始供应70号汽油,所以三种汽油机的压缩比很低,只有6.2~7.2。
上世纪80年代改革开放以后,中国的汽车工业得到迅速发展。
1984年北京吉普汽车有限公司成立,开创我国汽车行业引进外资的先例。
此后,上海大众、南京依维柯、东风神龙富康、一汽轿车等合资企业相继成立,在引进世界和大公司汽车的同时,各类轿车和客车用汽油机也进入中国市场,打破了“老三样”的一统天下。
在车用汽油机仅有“老三样”的年代,石油炼制行业和汽车行业一直争论是先提高汽油辛烷值还是先提高汽油机压缩比。
石油行业的理由是,车用汽油机压缩比低,没有必要提高汽油标号;汽车行业的理由是,如果石油行业不能普遍供应高辛烷值汽油,高压缩比汽油机燃用低辛烷值汽油,将损坏发动机并失去用户。
大量引进车型进入市场,结束了石油行业和汽车行业的争论。
因为引进车用汽油机的压缩比都比较高,促使我国车用汽油的品质和种类都须要大幅度提高。
按研究法辛烷值评定的90号汽油,替换了供应多年的按马达法辛烷值评定的70号汽油。
1991年中国颁布了中国第一个车用无铅汽油标准包括90号、93号、95号三个牌号。
与普通汽油标准相比,除了不允许加铅外,将高标号汽油97号改为95号,即降了2个辛烷值单位,这是因为靠生产工艺,而不是靠加铅提高汽油辛烷值要困难得多,成本也高,这在国外通常也是这样办的。
因此,含铅汽油与无铅汽油在相当长的一段时间内并存。
2000年中国车用汽油实行全面无铅化,在此期间淘汰沿用20多年的70号汽油老标准。
高标号无铅汽油的出现可以说是这一时期车用汽油质量标准明显的提升。
这时汽油机的压缩比开始提高,达到8.5左右。
在这一年国家颁布实施了新的车用无铅汽油标准GB17930—1999,与旧的标准相比,不仅提高了一些项目指标的限值,而且增加了新的项目内容。
如硫含量指标由原先的不大于0.15%降为0.1%,铅、铁、锰等金属含量规定的更严了。
增加了苯含量、芳烃含量、烯烃含量的限值指标,此外对汽油中的含氧量也做出了规定。
为保证电喷发动机能长期正常工作,新的汽油标准还要求加入有效的汽油清净剂。
这一时期汽油发动机为适应日益提高的环保要求和节能要求,发动机压缩比提高,大部分达到9.0以上,少数达到10.0以上,发动机喷射技术开始淘汰化油器技术,大多改用电脑喷射技术。
目前市场上见到的汽油发动机都能体现这一特点,从最近中国汽油工程学会和中国环境保护协会推荐的车型就很明显。
2004年起中国将实施相当于欧洲Ⅱ号法规的汽车排放标准,这仅靠汽车自身的技术水平是不够的,严格的排放法规需要汽车技术和油品质量两者共同匹配才能实现。
我国现有的车用汽油质量标准还有待提高。
尽管目前国际上还没有真正统一的汽油质量标准,但是在我国加入WTO后,经济全球化的形势将迫使我们向国际通用的产品标准靠拢。
高辛烷值汽油-技术发展趋势目前提高汽油辛烷值的技术主要有催化重整技术、烷基化技术、异构化技术、高辛烷值裂化催化剂及助辛剂和添加汽油辛烷值改进剂等。
催化重整技术催化重整汽油的最大优点是它的重组分的辛烷值较高,而轻组分的辛烷值较低,这正好弥补了FCC(流化催化裂化)汽油重组分辛烷值低,轻组分辛烷值高的不足。
IFP公司介绍了其连续重整工艺两个主要新进展。
设计先进的再生器技术以及与之相关的新一代催化剂CR401。
该再生技术把再生分为4个独立的阶段:预烧焦、最终烧焦、氯化更新和焙烧。
在预烧焦部分最大限度地降低导致烧焦过程中催化剂脱氯的主要因素--水分含量,即“干烧”。
最终烧焦部分采用革新的温度和含氧量调节系统。
其优点是延长催化剂寿命、提高烧焦可靠性、改进再生器操作灵活性。
该工艺花费不大于常规系统,而催化剂年消耗减少30%~70%。
目前已有4套装置采用这一技术。
CR401催化剂已工业化,中试结果表明,与CR201相比,C5+汽油收率提高0.2%~0.8%,产氢稳定性相当或更好,可提高产率0.1%~0.5%,活性稍有改善,更耐磨,而且保留氯的性能明显改进。
烷基化技术烷基化油具有辛烷值高、敏感度好、蒸气压低、沸点范围宽,是不含芳烃、硫和烯烃的饱和烃,是理想的高辛烷值清洁汽油组分。
目前烷基化主要有液体酸烷基化技术、固体酸烷基化技术和拟烷基化技术。
长期以来,液体酸烷基化技术一直沿用硫酸和氢氟酸作催化剂。
由于腐蚀和环保问题,寻求一种固体酸催化剂替代硫酸和氢氟酸生产烷基化油就成了炼油工业的热门课题。
固体酸催化剂有杂多酸、沸石、离子交换树脂,无机氧化物上附载卤化物的固体酸等多种体系。
目前开发较成熟的固体酸烷基化技术有UOP公司的Alkylene工艺。
该工艺采用特定的固相均相催化剂。
该催化剂具有优化的颗粒分布和孔径,并能保证良好的传质,对异丁烯具有很高的烷基化活性。
Topsoe公司开发的固体酸烷基化工艺采用固定床反应,所用催化剂是在载体上吸附的液体超强酸。
异构化技术异构化是提高整体汽油辛烷值最便宜的方法之一,可使轻直馏石脑油的辛烷值提高10%~22%。
正构化烷烃进行异构化取决于所用催化剂,所以近几年对异构化的研究主要集中在烷基异构化及其催化剂的研究。
C5/C6异构化技术是比较成熟的烷基异构化技术,典型的技术有UOP与壳牌合作的完全异构化技术(TIP),该工艺由异构化和分子筛吸附分离两部分组成。
直馏C5、C6馏分,经异构化后研究法辛烷值可从68左右提高到79,然后用分子筛吸附,将正构烃分离出来进行循环异构,辛烷值可以提高到88~89。
另外,UOP还推出了多代异构化技术,如基于HS-10分子筛催化剂的异构化、金属氧化物LPI-100催化剂的Pari2som技术和基于贵金属含氯氧化铝1-8催化剂的Penex技术等。
目前使用的异构化催化剂主要有两类。
其一是无定形催化剂,使用此类催化剂时,反应温度较低(120℃~150℃),氢/烃比小于0.1,不需要氢气循环,但对原料需进行严格的预处理和干燥。
采用此类催化剂的有UOP公司的Penex工艺。
其二是沸石类催化剂,使用此类催化剂时,反应温度较高(230℃~270℃),氢/烃比大于1.0,因此需要氢气循环。
UOP公司的TIP工艺就是采用此类催化剂。
高辛烷值裂化催化剂及助辛剂催化装置催化剂的使用对于催化汽油的辛烷值有很大的影响,超稳分子筛(USY)催化剂对于提高汽油辛烷值最为有效。
其主要原因为,USY型催化剂硅铝比高,导致骨架中铝原子减少,铝原子之间的距离增大,从而使酸性中心密度减小,但却提高了酸性中心强度,由于强酸性活性中心对裂化反应的催化作用要比氢转移反应强,所以提高酸性中心强度将导致裂化/氢转移速率比提高,抑制了裂化过程中的氢转移反应,汽油的烯烃度提高,因此辛烷值显著提高。
石油化工科学院研究开发出以常压渣油为原料,最大量生产液化气和高辛烷值汽油的ARGG工艺技术以及与之相配的RAG系列催化剂,该工艺具有可简化加工流程、减少投资的特点。
长岭催化剂厂成功地开发出了加工大庆类原油的辛烷值裂化催化剂DOCR,经过工业应用,取得了令人满意的效果。
随后通过对择型沸石的调配又开发出了轻质油损失少的提高汽油辛烷值的裂化催化剂DOCP。
提高汽油辛烷值的另一途径是使用催化裂化助辛烷值剂(简称助辛剂),助辛剂是一种双功能催化剂,它既具有裂化活性又具有提高汽油辛烷值的能力。
目前,广泛应用的助辛剂的核心是择型沸石,这种沸石只允许直链分子或带一个甲基的异构烃进入沸石孔道发生裂化反应。
在催化反应过程中,汽油中辛烷值较低的C7、C8以上的直链烃进入择型沸石辛烷值孔道,裂化为具有高辛烷值的小分子烃类。
这样不仅减少了汽油中的低辛烷值组分,而且增加了高辛烷值组分,结果使汽油辛烷值得到大幅度的提高。
石油化工科学院开发出了CHO系列助辛剂,通过工业应用,取得了较好的效果。
汽油辛烷值改进剂在汽油中添加新的组分—辛烷值改进剂是提高汽油辛烷值的有效方法。
其中讨论最多的辛烷值改进剂是醚类和醇类化合物。
(1)醚类辛烷值改进剂甲基叔丁基醚(MTBE)是开发和应用最早的醚类辛烷值改进剂。
自1979年美国环保局批准将MTBE作为无铅汽油添加剂使用以来,它在美国已广泛用于调和汽油中。
MTBE的沸点比较低,将其调入汽油后使汽油的馏程温度降低。
这一效应给生产超高辛烷值汽油的炼油厂带来了很大的经济效益。
同MTBE一样,把乙基叔丁基醚(ETBE)调入汽油中,相当于在汽油中调入了乙醇。
ETBE不但在提高汽油辛烷值的效果方面比MTBE好,而且还可以作为共溶剂使用。