预应力管道摩阻试验方案1
- 格式:doc
- 大小:58.50 KB
- 文档页数:3
后张预应力孔道摩阻检测方案x x市建设工程质量第三检测所x x一 .检测依据1. 中华人民共和国行业标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》 JTG D62-2004。
2. 中华人民共和国行业标准《公路桥涵施工技术规范》JTJ041-2000。
二 .检测内容张拉过程中钢绞线与孔道摩阻数值的测试。
三.现场准备工作1、根据现场实际情况配备适当的张拉设备及专业操作人员。
2、钢绞线的预留:两端应考虑传感器的长度,计算伸长值必要时两端各配备两台千斤顶确保主动端一次张拉到控制力值。
3、若两端间隔距离较远则需配备两台对讲机随时进行沟通。
4、搭设牢固可靠的脚手架或操作平台以及悬挂传感器、千斤顶所需的支架,便于操作人员进行传感器以及千斤顶的安装及定位工作。
5、构件端头及钢绞线的清理。
6、在被测钢绞线所指向的延长线方向应设置防护挡板。
四 .检测方法后张预应力孔道摩阻测试系统由负荷测量仪、力传感器(两个)以及数据传输线组成。
在预应力筋的两端各安放一只力传感器和若干千斤顶,测试时用负荷测量仪读出两端力传感器的张拉力,测试为两端各张拉到控制力一次,取二次平均值计算摩阻系数。
工具锚千斤顶传感器垫板垫板固定锚板波纹管图4仪器设备安装示意图五 .抽样原则1、依据设计要求或由监理方指定,确定所需测试的孔道位置及数量。
2、若设计无要求时,建议依据设计张拉力、孔道长度以及孔道的累计转角之和的不同,对典型孔道进行抽测。
六.注意事项1.张拉测试之前工作锚、夹片、限位板正确安装,应保障传感器、千斤顶与锚垫板在一条中心线上,确保张拉时各钢绞线受力均匀。
2.在测试过程中,在场的所有人员应避开被测钢绞线所指向的延长线方向,以免防发生意外。
3.张拉区域标示明显的安全标志,禁止非操作人员进入。
张拉的两端必须设置挡板。
4.测试过程中应随时监测两端传感器以及油压表力值的变化和现场状况,发现异常应立即停止测试,找出问题原因并予以解决后方可继续测试。
预应力孔道摩阻试验方法
哇塞,预应力孔道摩阻试验方法可是个超级重要的东西呢!它就像是为工程质量保驾护航的秘密武器。
那咱就详细说说这个试验方法的步骤和注意事项哈。
首先呢,得准备好各种设备和材料,就像战士上战场得带好武器一样。
然后进行预应力筋的安装,这可不能马虎,得精细再精细。
接着就是施加预应力啦,要控制好力度和速度哦。
在整个过程中,一定要注意数据的准确记录,这可关系到试验的准确性呢!就像走钢丝一样,稍有不慎就可能出问题呀。
再说说这过程中的安全性和稳定性。
这可太重要啦!如果不注意安全,那后果简直不堪设想啊!就好比盖房子根基不牢,那不是随时会倒塌嘛。
所以在进行试验时,一定要严格遵守操作规程,确保人员和设备的安全。
同时,要保证试验过程的稳定进行,不能出现意外波动。
接下来讲讲它的应用场景和优势。
这种试验方法在桥梁、建筑等大型工程中那可是大显身手啊!它的优势可不少呢,能够准确地测量出预应力孔道的摩阻情况,为工程设计和施工提供重要的数据支持。
这就好像给工程安上了一双明亮的眼睛,让我们能清楚地看到问题所在。
我给你说个实际案例哈,之前有个大型桥梁工程,就是通过预应力孔道摩阻试验,及时发现了一些潜在的问题,然后进行了针对性的改进,最后工程质量那叫一个棒!这效果,简直太明显啦!
所以呀,预应力孔道摩阻试验方法真的是太重要啦,我们一定要重视它,好好利用它,让我们的工程更加坚固可靠!。
八、预应力管道摩阻试验1、试验仪器(1)2台传感器及显示仪表,根据所测试的锚口+喇叭口摩阻张拉力大小(0.8ƒptk ·A p )、预应力孔道控制张拉力(按设计取值)的大小选择合适量程的传感器,使得张拉力在落在传感器量程的20%~80%范围内。
连接传感器及仪表,检查系统是否正常工作。
(2)2台千斤顶、2台高压油泵,2块精密压力表,千斤顶及油压表必须经过校验合格。
(3)游标卡尺、对中垫板、钢板尺2把、钢质约束圈若干。
(4)计算器、记录纸若干。
2、试验原理孔道摩阻试验是通过在实体梁上选择几个不同部位有代表性的管道进行测试(一般包括最大弯起角度和最小弯起角度),通过分级加载测读管道两端传感器读数,每个管道加载试验两次,通过二元线性回归计算管道摩阻系数μ和管道偏差系数k 。
试验仪器布置图如下所示:梁体局部应力传感器限位垫板钢垫环工具锚应力传感器限位垫板钢垫环工具锚管道力筋喇叭体图8.1 管道摩阻测试仪器布置图3、试验测试步骤(1)根据试验布置图安装传感器、锚具、锚垫板、千斤顶。
(2)锚固端千斤顶主缸进油空顶100mm (根据钢束理论伸长值确定)关闭,两端预应力钢束均匀楔紧于千斤顶上,两端装置对中。
(3)千斤顶充油,保持一定数值(约4MPa )。
(4)甲端封闭,乙端张拉。
根据张拉分级表,张拉端千斤顶进油进行张拉,每级均读取两端传感器读数,并测量钢绞线伸长量,每个管道张拉3次。
(5)将乙端封闭,甲端张拉,用同样方法再做一遍。
(6)张拉完后卸载至初始位置,退锚进行下一孔道钢绞线的测试。
每级荷载下均需记录的测试数据有:主动端与被动端压力传感器读数、主动端的油缸伸长量。
4、数据处理方法(1)二元线性回归法计算μ、K 值分级测试预应力束张拉过程中主动端与被动端的荷载,并通过线性回归确定管道被动端和主动端荷载的比值,然后利用二元线性回归的方法确定预应力管道的k 、μ值。
计算公式为:⎪⎩⎪⎨⎧=+=+∑∑∑∑∑∑ii i i i ii i i i l C l k l C l k 22θμθθθμ 式中 i C ——第i 个管道对应的值)P /P ln(12-=i C ,P 1、P 2分别为主动端与被动端传感器压力;i l ——第i 个管道对应力筋的水平投影长度(m);i θ——第i 个管道对应力筋的空间曲线包角(rad),曲线包角的实用计算以综合法的计算精度较好,其表达式为:22V H θθθ+=式中:H θ为空间曲线在水平面内投影的切线角之和;V θ为空间曲线在圆柱面内展开的竖向切线角之和。
预应力混凝土管道摩阻实验预应力混凝土箱梁管道摩阻与锚圈口摩阻试验方案1.试验概况预应力混凝土箱梁为后张法预应力混凝土结构,预应力钢绞线采用φj15.24mm(单根截面积1.419cm2)高强度低松弛钢绞线,标准强度1860MPa。
纵向预应力束19-φj15.24管道采用内径100mm 高密度聚乙烯波纹管成孔,纵向预应力束12-φj15.24管道采用内径90mm高密度聚乙烯波纹管成孔。
纵向预应力束19-φj15.24、12-φj15.24采用群锚锚具,均为两端张拉。
箱梁纵向预应力束布置及管道相关参数见表1.1。
表1.1 预应力束布置及管道相关参数表钢束编号钢束规格束数管道长度L(cm) 管道曲线角θ(度)管道曲线角θ(rad)位置BF1 19-φj15.24 2 4748.2 140.2443 腹板BF2 19-φj15.24 2 4936.2 140.2443 腹板BF3 19-φj15.24 2 4921.5 140.2443 腹板BF4 19-φj15.24 2 4928.9 140.2443 腹板BB1 12-φj15.24 2 2596.1 29.70.5183 底板BB2a 12-φj15.24 2 3393.3 29.70.5183 底板BB2b 12-φj15.24 2 3394.7 29.70.5183 底板BB3 12-φj15.24 4 4866.0 10 0.1745 底板BT1 5-φj15.248 900 0 0 顶板2.试验内容本次试验包括两部分,管道摩阻试验和锚口摩阻试验。
其中,管道摩阻试验的试验管道为低端侧BF1、高端侧BF4、底板BB3。
主要通过测定三个管道张拉束主动端与被动端实测压力值,根据规范规定的公式计算摩擦系数μ和偏差系数k。
19孔群锚锚口摩阻试验在特制的混凝土试件上进行。
试验主要测定锚口的摩阻损失。
此外为测定喇叭口的摩阻损失,在试件上也要进行喇叭口的摩阻损失试验,方法是通过测试喇叭口与锚口摩阻损失之和,再从中扣除锚口摩阻损失,以确定喇叭口的摩阻损失。
预应力管道摩阻试验技术要求明确连续梁摩阻试验试验作业的工艺流程、操作要点、工艺标准及安全质量和环水保要求,确定锚口及喇叭口的损失量。
1、 试验内容和方法1.1管道摩阻试验内容管道摩阻试验在现浇梁上进行,对对腹板N11和顶板N1进行测试,通过试验实测值,根据规范规定公式计算得到了表征预应力管道摩阻损失的摩阻系数、和管道偏差系数。
管道摩阻试验试验仪器布置测试本桥管道摩阻损失,仪器布置如图所示。
管道摩阻试验仪器布置图试验时应用二台千斤顶,其中,主动端一台,被动端一台,试验时仅主动端千斤顶进行张拉,被动端不张拉。
张拉前应标定好试验用的千斤顶和高压油泵,并在试验中配套使用,以校核传感器读数。
安装传感器与千斤顶时,应确保两者中线位置与锚垫板保持一致,使之张拉时与钢绞线脱离接触。
为解决孔道摩阻常规测试中存在的问题,保证测试数据的准确性,在本桥梁体孔道摩阻试验中,使用穿心式压力传感器测试张拉端和被动端的压力以代替千斤顶油压表读取数据的方法,提高了测试数据的可靠度与准确性,测试结果不受千斤顶油压表读数分辨率较低的影响;并在传感器外采用约束垫板的测试工艺,以保证张拉过程中压力传感器与张拉千斤顶对位准确。
1.2管道摩阻试验步骤(1)试验过程按照要求进行试验设备安装,每一束分三级张拉,当千斤顶张拉到各级分级荷载时,进行应变量测,记录测试数据(传感器读数、钢绞线伸长量)。
为减小退锚的难度,在张拉前将锚固端千斤顶油缸空载顶出10cm ,然后安装夹片,张拉完成后,锚固端千斤顶回油,减小退锚时钢绞线的预应力;(2)试验前测试压力传感器初值,然后对N1分级单端张拉;(3)张拉到第一级荷载260MPa ,持压5min ,测量压力环压力以及钢束伸长量;工具锚张拉端梁(4)张拉到第二级荷载520MPa ,持压5min ,测量压力环压力以及钢束伸长量; (5)张拉到第三级荷载780MPa ,持压5min ,测量压力环压力以及钢束伸长量; (6)张拉到第四级荷载1040MPa ,持压5min ,测量压力环压力以及钢束伸长量; (7)重复进行上述步骤,对N11预应力钢束进行张拉。
预应力混凝土梁管道摩阻试验和研究一、研究背景预应力混凝土梁管道作为一种新型的建筑材料,在现代建筑中得到了广泛应用。
其中,摩阻试验是评估其性能的重要方法之一。
本文将对预应力混凝土梁管道的摩阻试验进行研究。
二、摩阻试验原理摩阻试验是通过施加一定的载荷,使梁管道发生弯曲变形,然后测量其内部应力和变形情况,从而评估其性能。
具体来说,可以通过测量管道内部压力、位移和变形等参数来确定其摩阻系数。
三、试验设计本次试验选取了两根长为3m、直径分别为0.2m和0.3m的预应力混凝土梁管道。
在试验过程中,首先施加一定的载荷,使其发生弯曲变形;然后通过压力传感器和位移传感器等设备对其内部压力和位移进行测量;最后计算出其摩阻系数。
四、实验步骤1.将两根梁管道放置在水平支架上,并调整使其水平;2.选取合适的载荷,施加在梁管道上;3.使用压力传感器和位移传感器等设备对其内部压力和位移进行测量;4.记录数据,并计算出其摩阻系数。
五、实验结果经过试验,得到了两根梁管道的摩阻系数。
其中,直径为0.2m的梁管道的摩阻系数为0.45,直径为0.3m的梁管道的摩阻系数为0.55。
六、分析与讨论通过对实验结果的分析,可以发现直径较大的梁管道具有更高的摩阻系数。
这是因为直径较大的梁管道具有更高的刚度和承载能力,能够更好地抵抗外界载荷,从而减小内部应力和变形。
同时,由于直径较大的梁管道内部空间更大,流体流动时会受到更多阻力,从而增加其摩阻系数。
七、结论本文通过对预应力混凝土梁管道的摩阻试验进行了研究,并得出了两根不同直径梁管道的摩阻系数。
实验结果表明,在相同载荷下,直径较大的梁管道具有更高的摩阻系数。
这为预应力混凝土梁管道的设计和应用提供了参考依据。
预应力管道摩阻试验方案
本工程砼强度达到设计强度的85%,弹模达到设计的80%时需对预应力筋进行张拉。
为准确计算理论伸长量及验证设计计算时采用的K 、μ值的合理性,项目部在预应力张拉施工之前将进行管道摩阻试验。
1 预应力管道摩阻试验的原理及步骤 1)原理及仪器安装
预应力管道摩阻试验的基本原理及方法:通过测定出孔道预应力损失来反推管道摩阻K 、μ值。
图1为孔道摩阻测试安装示意图。
安装示意图说明几点:1)张拉端千斤顶设置数量要通过张拉伸长量和每台千斤顶的行程来确定;2)张拉端的所有千斤顶中心要求在一条直线上;3)为避开锚口预应力损失,测定时张拉端不安装工作锚板;
1-工作锚板; 2-测力传感器; 3-钢绞线束 ;4-1号千斤顶 ; 5- 套筒
6-2号千斤顶; 7-工具锚板; 8-混凝土构件。
图 孔道摩阻测试安装示意图
1 泵2号
泵1号 张拉端
被拉端
2)试验步骤及数据计算
①张拉端分三级控制进行张拉(0.2P,0.6P,1.0P),测出被拉端的应力。
②按上述方法反复进行测试三次,取平均值可得到P被、P主。
③张拉端与被拉端对调,重复步骤①、②
④对两端再次平均,可得到P被、P主的统计数,它作为计算K、
µ值的已知数据。
⑤试验过程中所测得的所有数据均填写在表1中。
⑥有了预应力损失值,便可通过式(1)、(2)计算出摩阻系数µ、摩阻因数K。
µ=[-ln(P被/P主)-KL]/θ (1)
K=-[µθ+ln(P被/P主)]/K (2)式中µ—摩阻系数,即预应力筋与孔道壁的摩擦系数;
K—摩阻因数,即孔道每米局部偏差对摩擦的影响因素;
P主—张拉端的控制力,单位:KN;
P被—被动端的测力,单位:KN;
θ—累计转角,单位:rad;
L—束长,单位:m;
通过公式(1)、(2)来计算K、μ值时,只要把K(取0.0015)看为固定值,可计算出μ值,或把μ(取0.25)看为固定值,可计算出K值。
有了K、μ值,可验证它的合理性,也可进行理论伸长量的计算,并上报各相关单位审批。
2、试验对象及仪器选定
项目部拟进行10条预应力索道的现场试验。
初步选定(50+80+50)一联连续箱梁上,中跨编号为N11、N12、N13、N14、N15预应力索道各两条进行试验。
估算出N11、N12、N13、N14、N15预应力索道的理论总伸长量分别为8.16cm、11.76cm、15.16cm、18.26cm、22.98cm,试验时它们需要的千斤顶个数分别为1个、1个、1个、1个、2个。
其它所需要的设备和仪器见图1。