基本不等式题型大全
- 格式:docx
- 大小:672.48 KB
- 文档页数:31
不等式组常考题型
不等式组的常考题型包括:
1. 确定不等式组的解集:根据不等式的性质,确定不等式组的解集,包括找出不等式组的公共解、各不等式的解集以及它们之间的关系。
2. 最值问题:在给定条件下,求不等式组中的未知数的最大值或最小值,或者求出满足一定条件的未知数的取值范围。
3. 应用题:将不等式组与实际问题相结合,解决生活中的各种问题,如路程、价格、时间等问题。
4. 综合题:将不等式组与其他数学知识相结合,如方程、函数、几何等,综合考查学生的数学能力。
5. 参数问题:在含有参数的不等式组中,根据参数的取值范围,求不等式组的解集或最值。
6. 不等式证明:利用不等式的性质和已知条件,证明不等式或不等式组的成立,或探究不等式的性质和结构特征。
7. 不等式组的应用:利用不等式组的性质和结构特征,解决实际问题或进行实际应用,如资源分配、决策优化等。
以上是常见的关于不等式组的常考题型,希望对你有所帮助。
基本不等式题型练习含答案题目1:解不等式2x + 5 > 9。
解答1: 2x + 5 > 9 首先,将不等式两边都减去5。
2x > 4 然后,将不等式两边都除以2。
x > 2 所以,不等式的解集为x > 2。
题目2:解不等式3 - 2x ≤ 7。
解答2: 3 - 2x ≤ 7 首先,将不等式两边都减去3。
-2x ≤ 4 然后,将不等式两边都除以-2。
注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。
x ≥ -2 所以,不等式的解集为x ≥ -2。
题目3:解不等式4x + 3 < 19。
解答3: 4x + 3 < 19 首先,将不等式两边都减去3。
4x < 16 然后,将不等式两边都除以4。
x < 4 所以,不等式的解集为x < 4。
题目4:解不等式5 - 3x > 8。
解答4: 5 - 3x > 8 首先,将不等式两边都减去5。
-3x > 3 然后,将不等式两边都除以-3。
注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。
x < -1 所以,不等式的解集为x < -1。
题目5:解不等式2x - 1 ≤ 5x + 3。
解答5: 2x - 1 ≤ 5x + 3 首先,将不等式两边都减去2x。
-1 ≤ 3x + 3 然后,将不等式两边都减去3。
-4 ≤ 3x 最后,将不等式两边都除以3。
-4/3 ≤ x 所以,不等式的解集为x ≥ -4/3。
题目6:解不等式4 - 2x ≥ 10 - 3x。
解答6: 4 - 2x ≥ 10 - 3x 首先,将不等式两边都加上3x。
4 + x ≥ 10 然后,将不等式两边都减去4。
x ≥ 6 所以,不等式的解集为x ≥ 6。
题目7:解不等式2(3x + 1) > 4x + 6。
解答7: 2(3x + 1) > 4x + 6 首先,将不等式两边都展开。
基本不等式题型20种不等式是数学中重要的概念,它描述了数之间的大小关系。
在解决实际问题和推导数学推论中,不等式起着非常重要的作用。
本文将介绍20种常见的基本不等式题型。
一、一元一次不等式一元一次不等式是最简单的不等式类型。
例如:解不等式3x+4>10。
解:首先将不等式转化为等式:3x+4=10;然后解方程:3x=6;得到解:x=2。
二、一元二次不等式一元二次不等式是一元二次函数的不等式形式。
例如:解不等式x^2-5x+6>0。
解:首先求出一元二次函数的根:(x-2)(x-3)>0;然后画出函数的图像或根据韦达定理判断函数的正负;得到解:x<2或x>3。
三、绝对值不等式绝对值不等式是含有绝对值符号的不等式。
例如:解不等式|2x-3|≥5。
解:将含有绝对值的不等式拆分为两个不等式:2x-3≥5或2x-3≤-5;然后求解这两个不等式得到:x≥4或x≤-1。
四、分式不等式分式不等式是含有分式的不等式。
例如:解不等式(3x-2)/(2x+1)≤1。
解:首先将不等式化简:3x-2≤2x+1;然后解方程:x≤3。
五、根式不等式根式不等式是含有根式的不等式。
例如:解不等式√(x-4)≥2。
解:将不等式平方得:x-4≥4;然后解方程:x≥8。
六、乘法不等式乘法不等式是含有乘法的不等式。
例如:解不等式2x(x-1)≤0。
解:将不等式化简:2x(x-1)≤0;然后求解这个不等式得到:0≤x≤1。
七、除法不等式除法不等式是含有除法的不等式。
例如:解不等式(3x+6)/(x+2)≤4。
解:首先将不等式转化为等式:(3x+6)/(x+2)=4;然后解方程:x=-5;由于分母不能为0,所以解为x<-2或x>-5。
八、加法不等式加法不等式是含有加法的不等式。
例如:解不等式x+2>5。
解:将不等式化简:x>3。
九、减法不等式减法不等式是含有减法的不等式。
例如:解不等式2x-5≥1。
基本不等式是高中数学中非常重要且基础的一部分。
它在高一数学中占据着重要的地位,对于学生的数学基础和逻辑推理能力的培养起着至关重要的作用。
在高一数学教学中,基本不等式的学习也是一个重要的环节,不仅需要掌握它的概念和性质,还需要学会运用它解决实际问题。
本文将从基本不等式的概念入手,详细介绍其性质和运用方法,并列举17种题型,帮助学生全面理解和掌握基本不等式的相关知识。
一、基本不等式的概念基本不等式是指在任意三个实数a、b、c之间,必有以下基本不等式成立:1)正数的不等式:a >b ⟹ a +c > b + ca > 0,b > 0 ⟹ ac > bca > b, c > 0 ⟹ ac > bca > b, c < 0 ⟹ ac < bc2)负数的不等式:a <b ⟹ a +c < b + ca < 0,b < 0 ⟹ ac > bca < b, c > 0 ⟹ ac < bca < b, c < 0 ⟹ ac > bc以上基本不等式是学习基本不等式的基础,对于解决实际问题是非常重要的。
二、基本不等式的性质基本不等式还具有一些重要的性质,包括:1)传递性:若a > b,b > c,则a > c2)对称性:若a > b,则-b > -a3)倒置性:若a > b,则1/a < 1/b,且a/b > 0这些性质对于运用基本不等式解决实际问题时起着重要的作用,可以帮助学生更好地理解和运用基本不等式。
三、基本不等式的运用方法基本不等式在解决实际问题时有着广泛的应用,其运用方法主要包括:1)利用基本不等式的性质化简题目;2)利用基本不等式构造等式或方程组,进而求解问题;3)利用基本不等式证明不等式关系,讨论最值等问题。
学生在解决实际问题时,可以根据具体情况选择不同的运用方法,灵活运用基本不等式,解决各种复杂的问题。
基本不等式题型大全知识点:1.几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤ ②(基本不等式)2a b+≥()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号)⑦ban b n a m a m b a b <++<<++<1,其中(000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+2.几个著名不等式①平均不等式:1122a b a b --+≤≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++1122(,,,).x y x y R ∈④二维形式的柯西不等式: 22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.板块一 基本不等式及其变换一、“配、凑、拆”的技巧 ①基本不等式及变形1.函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x (x ∈R )值域为________;2.函数f (x )=x 2+1x 2+1的值域为________.2.若x >1,则x +4x -1的最小值为________. 解:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:53.已知x <0,则f (x )=2+4x +x 的最大值为________. 解:∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x+-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x+-x ≤2-4=-2,∴f (x )的最大值为-2..54124,45.1的最大值求函数已知-+-=<x x y x 答案:1.,)0(312)(.2的值并求取最值时的最值求x x x xx f ≠+=答案:略223.,,()().a b y x a x b =-+-(三星)为实常数求的最小值解:(1)方法一:方法二:(1)函数f (x )=x (1-x )(0<x <1)的值域为____________; (2)函数f (x )=x (1-2x )⎝ ⎛⎭⎪⎫0<x <12的值域为____________.解:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14, ∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0.x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.8.已知0<x <1,则x (3-3x )取得最大值时x 的值为________. 解:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.9.函数y =x 1-x 2的最大值为________.解:x 1-x 2=x 21-x 2≤x 2+1-x 22=12..)2)(12(,523.42222的最大值求已知++==+b a y b a答案:147162223.,1,1.2y x y R x x y +∈+=+(三星)设且求的最大值221y+≤2210.1,.x yx y xyx y+>=-(二星)若且求的最小值答案:23.设x,y∈R,且xy≠0,则⎝ ⎛⎭⎪⎫x2+1y2·⎝⎛⎭⎪⎫1x2+4y2的最小值为________.解:⎝⎛⎭⎪⎫x2+1y2⎝⎛⎭⎪⎫1x2+4y2=5+1x2y2+4x2y2≥5+21x2y2·4x2y2=9,当且仅当x2y2=12时“=”成立.14.在各项都为正数的等比数列{}n a中,若2018a=,则2017201912a a+的最小值为________.4 14.已知正数x y,满足2230x xy+-=,则2x y+的最小值是___________.3②二次分式有关12.已知t>0,则函数y=t2-4t+1t的最小值为________.答案-2解:∵t>0,∴y=t2-4t+1t=t+1t-4≥2-4=-2,且在t=1时取等号.13.当x>0时,则f(x)=2xx2+1的最大值为________.解:∵x>0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.14.(1)求函数f(x)=1x-3+x(x>3)的最小值;(2)求函数f(x)=x2-3x+1x-3(x>3)的最小值;解:(1)∵x>3,∴x-3>0.∴f(x)=1x-3+(x-3)+3≥21x-3·x-3+3=5.当且仅当1x-3=x-3,即x=4时取等号,∴f(x)的最小值是5.(2)令x-3=t,则x=t+3,且t>0.∴f(x)=t+32-3t+3+1t=t+1t+3≥2t·1t+3=5.当且仅当t=1t,即t=1时取等号,此时x=4,∴当x=4时,f(x)有最小值为5.15.设x>-1,求函数y=x+4x+1+6的最小值;解:∵x>-1,∴x+1>0.∴y=x+4x+1+6=x+1+4x+1+5≥2x+1·4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.∴当x=1时,函数y的最小值是9.4.当x>0时,则f(x)=2xx2+1的最大值为________.解:(1)∵x >0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.5.函数y=x2+2x-1(x>1)的最小值是________.解:∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2x-1+3x-1=x-12+2x-1+3x-1=x-1+3x-1+2≥2 x-13x-1+2=23+2.当且仅当x-1=3x-1,即x=1+3时,取等号.答案:23+2③平方平均数的应用228.,1,.x y R x y x y +∈+=+(一星)已知且求的最大值解:使用不等式变形2a b +≤.11.()0,0,1,.a b a b >>+=二星设答案:7.(三星)设,0,5,a b a b >+= _________. 解:因为,0,5,a b a b >+=所以()()139a b +++=由不等式2x y+≤2≤=,13.(四星)已知实数a b c ,,满足22201a b c a b c ++=++=,,则a 的最大值是 ____________. 解:∵222b c bc +≥,即()()2222222b c b c bc b c +++=+≥,∴()2222b c b c++≥,由0a b c ++=,得b c a +=-,由2221a b c ++=,得()22222122b c a a b c +-=+=≥,∴223a ≤,∴a ,故a .9.(三星)已知R k ∈,点(),P a b 是直线2x y k +=与圆22223x y k k +=-+的公共点,则ab 的最大值为( )BA .15B .9C .1D .53-1.(二星)若0,0x y >>的最小值为_________.2.)510)(51(.52的最值求函数≤≤-=x x x y答案:4675.cos sin ,.62的最大值求为锐角设θθθ=y答案:9二、附条件求最值:“1”的代换5:已知正数a ,b 满足a +2b =1,则1a +1b 的最小值是____. 解:1a +1b =a +2b a +a +2b b =3+2b a +ab ≥3+22b a ·ab =3+2 2.36.已知x >0,y >0,且2x +y =1,则1x +2y 的最小值是_________. 解 因为1x +2y =(2x +y )⎝ ⎛⎭⎪⎫1x +2y=4+y x +4x y ≥4+2y x ·4x y =8,等号当且仅当y =12,x =14时成立.37.已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; 解 ∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y=3+y x +2xy ≥3+2 2.当且仅当y x =2xy 时,取等号.38.已知x >0,y >0,且9x +1y =1,求x +y 的最小值. 解:∵9x +1y =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫9x +1y =10+9y x +x y ≥10+29y x ·xy =16.当且仅当9y x =x y 且9x +1y =1,即x =12,y =4时取等号. ∴当x =12,y =4时,x +y 有最小值为16.39.已知x ,y 为正实数,且1x +16y =1,求x +y 的最小值. 解:∵1x +16y =1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +16y =17+16x y +y x ≥17+216x y ·yx =25.当且仅当16x y =y x 且1x +16y =1时,等号成立. ∴x =5,y =20时,x +y 有最小值25.1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是________. 解: ∵a +b =2,∴a +b2=1.∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝⎛⎭⎪⎫a +b 2 =52+⎝ ⎛⎭⎪⎫2a b +b 2a≥52+22a b ·b 2a=92⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立. 故y =1a +4b 的最小值为92.40.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285 C .5 D .6解 ∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x=15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx =5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.41.正数x ,y 满足1x +9y =1. (1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y ≥2 1x ·9y 得xy ≥36,当且仅当1x =9y ,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+22y x ·9xy =19+62,当且仅当2y x =9xy ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.9.,,280,.x y R x y xy x y +∈+-=+(二星)已知且求的最小值答案:18227.()01,,,().1a b x a b f x x x<<=+-三星设为常数求的最小值答案:2()a b +2.(二星)若直线()10,0x ya b a b+=>>过点(1,1),则a b +的最小值等于( )A.2B.3C.4D.5解:因为直线过点(1,1),所以111=+b a ,所以ba ab b a a b b a b a b a ++=+++=++=+211)11)((,因为0,0>>b a ,所以4222=⨯+≥++baa b b a a b ,当且仅当“a=b=2”时等号成立.14.(二星)若()42log 34log a b +=则a b +的最小值是( )DA .6+B .7+C .6+D .7+112511.0,0,1,:.4a b a b a b a b ⎛⎫⎛⎫>>+=++≥ ⎪⎪⎝⎭⎝⎭(三星)设求证1.(四星)已知20x y >>,且满足181022x y x y++=-,求实数x 的最大值. 答案:[]2,181.已知,x y 都是正数,且1x y +=,则4121x y +++的最小值为__________.941.(三星)设,x y 是正实数,且1x y +=,则2221x y x y +++的最小值是___________.141.(三星)已知1,,(0,1)4ab a b =∈,则1211a b+--的最小值是__________.20.(四星)函数()22log 1log 1x f x x -=+,若()()1221f x f x +=(其中1x 、2x 均大于2),则()12f x x 的最小值为_______。
完整版)基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a^2+b^2)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)^2/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a^2+b^2)/2≤(a+b)^2/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a^2+b^2)(1+1)≥(a+b)^2二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)^2/42.已知a,b,c为两两不相等的实数,求证:a^2/(b-c)^2+b^2/(c-a)^2+c^2/(a-b)^2≥23.已知a+b+c=1,求证:a^2+b^2+c^2+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a^3+b^3≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a^2+b^2)/(a+b)+(b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a²+b²)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)²/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a²+b²)/2≤(a+b)²/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a²+b²)(1+1)≥(a+b)²二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)²/42.已知a,b,c为两两不相等的实数,求证:a²/(b-c)²+b²/(c-a)²+c²/(a-b)²≥23.已知a+b+c=1,求证:a²+b²+c²+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a³+b³≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a²+b²)/(a+b)+(b²+c²)/(b+c)+(c²+a²)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9选修4-5:不等式选讲1.设a,b,c均为正数,且a+b+c=1,证明:Ⅰ) ab+bc+ca≤1/3;Ⅱ) a^2b+b^2c+c^2a≥1/9.2.已知a≥b>0,求证:2a-b≥2ab-b^2.3.求下列函数的值域:1) y=3x+2;2) y=x(4-x);3) y=x+(x>2);4) y=x+(x<2)。
利用基本不等式求最值8大题型命题趋势基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点,在解决数学问题中有着广泛的应用,尤其是在函数最值问题中。
题型通常为选择题与填空题,但它的应用范围几乎涉及高中数学的所有章节,它在高考中常用于大小判断、求最值、求最值范围等。
在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点。
在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用。
利用基本不等式求最值的方法1.直接法:条件和问题间存在基本不等式的关系2.配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。
3.代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法;类型2:分母为多项式时方法1:观察法适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系;方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ3a +4b +μa +3b =3λ+μ a +4λ+3μ b∴3λ+μ=14λ+3μ=2 ,解得:λ=15μ=254.消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。
5.构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。
热点题型解读【题型1直接法求最值】【例1】(2022春·辽宁锦州·高三校考阶段练习)已知x >0,y >0,且x +y =12,则xy 的最大值为()A.16B.25C.36D.49【答案】C【解析】因为x >0,y >0,x +y =12≥2xy ,即xy ≤36,当且仅当x =y =6时取到等号,故xy的最大值为36.故选:C【变式1-1】(2022·四川广安·广安二中校考模拟预测)已知3x+9y=18,当x+2y取最大值时,则xy的值为( )A.2B.2C.3D.4【答案】B【解析】由已知3x+9y=18可得3x+32y=18,则18=3x+32y≥23x×32y=23x+2y,即3x+2y≤81,所以x+2y≤4,当且仅当x=2y=2时取等号,即x=2,y=1,此时xy=2.故选:B.【变式1-2】(2023·河南郑州·高三校联考阶段练习)已知正数a,b满足a2+2b2=1,则ab2的最大值是()A.13B.33C.39D.19【答案】C【解析】解:由题知1=a2+2b2=a2+b2+b2≥33a2b2b2,∴3a2b4≤1 3,当且仅当a=b=33时取等号,所以ab2≤39.故选:C.【变式1-3】(2022·上海·高三统考学业考试)已知x>1,y>1且lg x+lg y=4,那么lg x·lg y的最大值是( )A.2B.12C.14D.4【答案】D【解析】∵x>1,y>1,∴lg x>0,lg y>0,∴lg x⋅lg y≤lg x+lg y22=42 2=4,当且仅当lg x=lg y=2,即x=y=100时等号成立.故选:D.【变式1-4】(2022春·云南·高三校联考阶段练习)已知正数a,b满足a+5b2a+b=36,则a+2b的最小值为()A.16B.12C.8D.4【答案】D【解析】因为a+5b2a+b≤a+5b+2a+b22,所以9(a+2b)24≥36.又a>0,b>0.所以a+2b≥4,当且仅当a=83,b=23时,等号成立.故选:D【题型2配凑法求最值】【例2】(2022·全国·高三专题练习)已知-3<x<0,则f x =x9-x2的最小值为________.【答案】-9 2【解析】因为-3<x<0,所以f x =x9-x2=-9-x2⋅x2≥-9-x2+x22=-92,当且仅当9-x 2=x 2,即x =-322时取等,所以f x =x 9-x 2的最小值为-92.【变式2-1】(2022春·上海静安·高三上海市市西中学校考期中)函数f (x )=x +9x -1(x >1)的值域为______.【答案】7,+∞【解析】由题知,x >1,所以x -1>0,所以f (x )=x -1 +9x -1+1≥2x -1 ⋅9x -1+1=7,当且仅当x -1=9x -1,即x =4时取等号,所以函数f (x )=x +9x -1(x >1)的值域为7,+∞ .【变式2-2】(2022春·湖南长沙·高三雅礼中学校考阶段练习)已知x >0,y >0,且x +y =7,则1+x 2+y 的最大值为()A.36B.25C.16D.9【答案】B【解析】由x +y =7,得x +1 +y +2 =10,则1+x 2+y ≤1+x +2+y 2 2=25,当且仅当1+x =2+y ,即x =4,y =3时,取等号,所以1+x 2+y 的最大值为25.故选:B .【变式2-3】(2022春·山东济宁·高三统考期中)已知向量m =a -5,1 ,n =1,b +1 ,若a >0,b >0,且m⊥n ,则13a +2b +12a +3b 的最小值为()A.15B.110C.115D.120【答案】A【解析】根据题意,m ⋅n =a -5+b +1=0,即a +b =4,则3a +2b +2a +3b =20,又a >0,b >0,故13a +2b +12a +3b =12013a +2b +12a +3b 3a +2b +2a +3b =1202+2a +3b 3a +2b +3a +2b 2a +3b≥120×2+22a +3b 3a +2b ×3a +2b 2a +3b =15,当且仅当2a +3b 3a +2b =3a +2b2a +3b,且a +b =4,即a =b =2时取得等号.故选:A .【题型3消元法求最值】【例3】(2022春·湖南永州·高三校考阶段练习)设x ≥0,y ≥0,x 2+y 22=1,则x 1+y 2的最大值为()A.1B.22C.324D.2【答案】C【解析】因为x 2+y 22=1,所以y 2=2-2x 2≥0,解得:x ∈0,1 ,故x 1+y 2=x 1+2-2x 2=x 3-2x 2=222x 23-2x 2 ≤22×2x 2+3-2x 22=324,当且仅当2x 2=3-2x 2,即x =32时,等号成立,故x 1+y 2的最大值为324.【变式3-1】(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知正数a ,b 满足a 2-2ab +4=0,则b-a4的最小值为()A.1 B.2C.2D.22【答案】B【解析】∵a ,b >0,a 2-2ab +4=0,则有b =a 2+2a,∴b -a 4=a 2+2a -a 4=a 4+2a≥2a 4⋅2a =2,当且仅当a 4=2a ,即a =22时等号成立,此时b =322,故选:B .【变式3-2】(2022春·广东广州·高三执信中学校考阶段练习)设正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则xy z的最大值为()A.0B.2C.1D.3【答案】C【解析】因为正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则z =4x 2-3xy +y 2,则xy z =xy 4x 2-3xy +y 2=14x y +y x -3≤124x y ⋅y x-3=1,当且仅当y =2x >0时取等号.故xy z 的最大值为1.故选:C .【变式3-3】(2023·全国·高三专题练习)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xyz取得最大值时,2x +1y -2z 的最大值为()A.0B.3C.94D.1【答案】D【解析】由正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,∴z =x 2-3xy +4y 2.∴xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤12x y ⋅4y x-3=1,当且仅当x =2y >0时取等号,此时z =2y 2.∴2x +1y -2z =22y +1y -22y2=-1y -1 2+1≤1,当且仅当y =1时取等号,即2x +1y -2z的最大值是1.故选:D 【变式3-4】(2022春·湖南长沙·高三湖南师大附中校考阶段练习)(多选)已知a ,b ,c 均为正实数,ab +ac=2,则1a +1b +c +8a +b +c的取值不可能是()A.1B.2C.3D.4【答案】ABC【解析】a ,b ,c 均为正实数,由ab +ac =2得:a b +c =2,即b +c =2a,所以1a +1b +c +8a +b +c =1a +a 2+8a +2a=2+a 22a +8a a 2+2,由基本不等式得:1a +1b +c +8a +b +c =2+a 22a +8a a 2+2≥22+a 22a ⋅8a a 2+2=4,当且仅当2+a 22a =8aa 2+2,即a =2±2时,等号成立.故选:ABC【变式3-5】(2022春·云南昆明·高三云南师大附中校考阶段练习)若x 21+y 21=4,x 22+y 22=4,x 1⋅y 2=-2,则x 2⋅y 1的最大值为___________.【答案】2【解析】x 2⋅y 1 2=4-y 22 4-x 21 =4-4x 214-x 21 =20-44x 21+x 21,由y 2=-2x 1,所以y 2 =-2x 1=2x 1≤2,所以1≤x 1 ≤2,所以x 2⋅y 1 2=20-44x 21+x 21≤20-4×24x 21⋅x 21=4,当且仅当|x 1|=2时,等号成立,所以x 2⋅y 1≤2,当且仅当x 2=2,y 1=2或x 2=-2,y 1=-2时取等号,所以x 2⋅y 1的最大值为2.【题型4代换法求最值】【例4】(2022春·上海崇明·高三上海市崇明中学校考阶段练习)已知x >0,y >0,且4x +y =1,则1x +9y的最小值是_____.【答案】25【解析】因为x >0,y >0,且4x +y =1,所以1x +9y =4x +y 1x +9y =4+36xy +y x+9≥13+236x y ⋅y x=25,当且仅当36x y =y x ,即x =110,y =35时,等号成立.【变式4-1】(2022春·江西·高三九江一中校联考阶段练习)已知a >0,b >0,a +b =2,则b a +4b的最小值为_______.【答案】22+2【解析】因为a >0,b >0,且a +b =2,所以b a +4b =b a +4b a +b 2 =b a +2a b +2≥2b a ×2a b+2=22+2,当且仅当b 2=2a 2时取等号故b a +4b 的最小值为22+2【变式4-2】(2022春·江西抚州·高三金溪一中校考阶段练习)若正实数x ,y 满足2x +y =xy ,则x +2y 的最小值为______.【答案】9【解析】由2x +y =xy 得2y +1x=1,又因为x >0,y >0,所以x +2y =x +2y 2y +1x =2xy +2y x +5≥22x y ⋅2y x +5=9,当且仅当x =y =3时等号成立,故x +2y 的最小值为9.【变式4-3】(2022春·黑龙江鹤岗·高三鹤岗一中校考阶段练习)已知x >-2,y >0,2x +y =3,则x +2y +2x +2+7y的最小值为()A.4B.6C.8D.10【答案】B【解析】因为x >-2,y >0,2x +y =3,所以2x +2 +y =7,x +2>0,所以x +2y +2x +2+7y =x +2y +2x +2+2x +2 +y y =2+2y x +2+2x +2 y≥2+22yx +2⋅2x +2 y=6,当且仅当x +2=y ,即x =13,y =73时等号成立,即x +2y +2x +2+7y 的最小值为6,故选:B .【变式4-4】(2022·广西·统考一模)如图,在△ABC 中,M 为线段BC 的中点,G 为线段AM 上一点且AG=2GM ,过点G 的直线分别交直线AB 、AC 于P 、Q 两点,AB =xAP (x >0),AC =yAQ (y >0),则1x+1y +1的最小值为()A.34B.1C.43D.4【答案】B【解析】由于M 为线段BC 的中点,则AM =12AB +12AC又AG =2GM ,所以AM =32AG ,又AB =xAP (x >0),AC =yAQ (y >0)所以32AG=x 2AP +y 2AQ ,则AG =x 3AP +y 3AQ因为G ,P ,Q 三点共线,则x3+y 3=1,化得x +y +1 =4由1x +1y +1=14x +y +1 1x +1y +1 =14x y +1+y +1x+2 ≥142x y +1⋅y +1x+2=1当且仅当x y +1=y +1x 时,即x =2,y =1时,等号成立,1x +1y +1的最小值为1故选:B 【题型5双换元法求最值】【例5】(2022春·天津河西·高三天津市新华中学校考阶段练习)设x >-1,y >-2,且x +y =4,则x 2x +1+y 2y +2的最小值是__________.【答案】167【解析】令x +1=a (a >0),y +2=b (b >0),则x =a -1,y =b -2,因为x +y =4,则有a +b =7,所以x 2x +1+y 2y +2=(a -1)2a +(b -2)2b =a +1a -2+b +4b -4=7-2-4+1a +4b=1+17(a +b )1a +4b =1+171+4+b a +4a b≥1+17×5+2b a ×4a b =167当且仅当b =2a ,即a =73,b =143时取等号,则x ,y 分别等于43,83时,x 2x +1+y 2y +2的最小值是167.【变式5-1】(2022春·江西南昌·高三南昌二中校考阶段练习)已知正数x ,y 满足3x +2y y +83x +2y x=1,则xy 的最小值是()A.54B.83C.43D.52【答案】D 【解析】xy =xy 3x +2y y +83x +2y x=3x x +2y +8y 3x +2y ,令x +2y =m ,3x +2y =n ,则x =n -m 2,y =3m -n4,xy =3x x +2y +8y 3x +2y =3n 2m +6m n -72≥23n 2m ⋅6m n -72=52,当且仅当3n 2m =6m n 且3x +2y y +83x +2y x =1,即x =5,y =52时,等号成立,所以xy ≥52,故xy 有最小值52.故选:D .【变式5-2】(2022·全国·高三专题练习)设正实数x ,y 满足x >12,y >1,不等式4x 2y -1+y 22x -1≥m 恒成立,则m 的最大值为()A.8 B.16C.22D.42【答案】A【解析】设y -1=b ,2x -1=a ,则y =b +1b >0 ,x =12a +1 a >0 所以4x 2y -1+y 22x -1=a +1 2b +b +1 2a ≥2a +1b +1 ab =2ab +a +b +1ab=2ab +1ab +a +b ab ≥22ab ⋅1ab +2ab ab=2⋅2+2 =8当且仅当a =b =1即x =2,y =1时取等号所以4x 2y -1+y 22x -1的最小值是8,则m 的最大值为8.故选A【变式5-3】(2022春·浙江·高三浙江省新昌中学校联考期中)已知x >0,y >0,若x +y =1,则33x +2y+11+3y的最小值是___________.【答案】85【解析】设x +y +k =λ3x +2y +μ1+3y ,由对应系数相等得1=3λ1=2λ+3μk =μ,得λ=13k =μ=19所以x +y +19=133x +2y +191+3y整理得1=3103x +2y +1101+3y 即1=1109x +6y +1+3y所以33x +2y +11+3y =1109x +6y +1+3y 33x +2y +11+3y=1+11031+3y 3x +2y +9x +6y 1+3y≥85.经验证当x =y =12时,等号可取到.【题型6齐次化求最值】【例6】(2020春·浙江金华·高三浙江金华第一中学校考阶段练习)已知a ,b 都是负实数,则a a +2b +ba +b的最小值是____________ .【答案】22-2【解析】a a +2b +b a +b =a 2+2ab +2b 2a 2+3ab +2b 2=1-ab a 2+3ab +2b2=1-1a b+2b a +3,因为a ,b 都是负实数,所以a b>0,2ba >0,所以a b +2b a ≥2a b ×2b a =22(当且仅当a b=2b a 时等号成立).所以a b +2b a +3≥22+3,所以1a b+2b a +3≤122+3,所以-1a b +2b a +3≥-122+3=22-3,所以1-1a b+2b a +3≥1+22-3=22-2.即a a +2b +b a +b的最小值是22-2.【变式6-1】(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)已知对任意正实数x ,y ,恒有x 2+y 2≤a x 2-xy +y 2 ,则实数a 的最小值是___________.【答案】2【解析】因为x >0,y >0,则x 2-xy +y 2=x -y 2+xy >0,则x2+y2≤a x2-xy+y2,即x2+y2x2-xy+y2≤a,又x2+y2x2-xy+y2=11-xyx2+y2,因为x2+y2≥2xy,所以1-xyx2+y2≥12,所以11-xyx2+y2≤2,即x2+y2x2-xy+y2≤2,当且仅当x=y时,取等号,所以x2+y2x2-xy+y2max=2,所以a≥2,即实数a的最小值是2.【变式6-2】(2022·全国·高三专题练习)已知x>0,y>0,则x2+3y2xy+y2的最小值为____.【答案】2【解析】∵x,y>0,则x2+3y2xy+y2=x2y2+3xy+1,设xy=t,t>0,则x2+3y2xy+y2=t2+3t+1=t+12-2t+1+4t+1=(t+1)+4t+1-2≥2t+1×4t+1-2=4-2=2,当且仅当t+1=4t+1,即t=1时取等号,此时x=y,故x2+3y2xy+y2的最小值为2.【题型7构造不等式法求最值】【例7】(2013春·浙江嘉兴·高三阶段练习)已知正实数a,b满足2ab=a+b+12,则ab的最小值是_____ ______.【答案】9【解析】由2ab=a+b+12得,2ab≥2ab+12,化简得ab-3ab+2≥0,解得ab≥9,所以ab的最小值是9.【变式7-1】已知x>0,y>0,2xy=x+y+4,则x+y的最小值为______.【答案】4【解析】由题知x>0,y>0,由基本不等式得xy≤x+y22,即x+y+4≤2×x+y22,令t=x+y,t>0,则有t+4≤2×t22,整理得t2-2t-8≥0,解得t≤-2(舍去)或t≥4,即x+y≥4,当且仅当x=y=2时等号成立,所以x+y的最小值为4.【变式7-2】(2022·全国·高三专题练习)若4x2+y2+xy=1,则2x+y的最大值是___________.【答案】2105【解析】∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1≥(2x +y )2-322x +y 2 2=58(2x +y )2,当且仅当2x =y 时,等号成立,此时(2x +y )2≤85,所以2x +y ≤2105,即2x +y 的最大值是2105.【变式7-3】(2020春·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)若x >0,y >0,y +1x+4x +2y =5,则2x +y 的最小值为___________.【答案】8【解析】因为x >0,y >0,所以2x +y >0由y +1x +4x +2y=5两边同时乘xy ,得y 2+y +4x 2+2x =5xy ,即4x 2+y 2+4xy +2x +y =5xy +4xy ,则2x +y 2+2x +y =9xy ,因为2xy ≤2x +y 2 2=2x +y 24,所以9xy =92×2xy ≤92×2x +y 24=982x +y2,故2x +y 2+2x +y ≤982x +y 2,整理得2x +y 2-82x +y ≥0,即2x +y 2x +y -8 ≥0,所以2x +y ≥8或2x +y ≤0(舍去),故2x +y 的最小值为8.【题型8多次使用不等式求最值】【例8】(2022春·重庆沙坪坝·高三重庆八中校考阶段练习)已知a >0,b >0,则4b +ba2+2a 的最小值为()A.22 B.42C.42+1D.22+1【答案】B【解析】因为a >0,b >0,所以4b +ba2+2a ≥24b ⋅b a 2+2a =4a+2a ≥24a⋅2a =42,当且仅当4b =b a2且4a =2a ,即a =2,b =22时取等号,即4b +ba2+2a 的最小值为4 2.故选:B .【变式8-1】(2022春·江苏淮安·高三校联考期中)当0<x <2a ,不等式1x 2+12a -x2≥1恒成立,则实数a 的取值范围是()A.2,+∞B.0,2C.0,2D.2,+∞【答案】B【解析】1x 2+12a -x 2≥1恒成立,即1x 2+12a -x 2 min≥1∵0<x <2a ,∴2a -x >0,又1x 2+1(2a -x )2≥21x 2(2a -x )2=2x (2a -x )≥2x +2a -x 22=2a 2,上述两个不等式中,等号均在x =2a -x 时取到,∴1x 2+12a -x 2min=2a 2,∴2a2≥1,解得-2≤a ≤2且a ≠0,又a >0,实数a 的取值范围是0,2 .故选:B .【变式8-2】(2022·全国·模拟预测)已知a >0,b >0,c >1,a +2b =2,则1a +2bc +2c -1的最小值为()A.92B.2C.6D.212【答案】D【解析】1a +2b =121a +2b a +2b =125+2b a +2a b≥125+4 =92,当且仅当a =b =23时等号成立,(应用基本不等式时注意等号成立的条件)所以1a +2bc +2c -1≥92c -1 +2c -1+92≥29c -1 2⋅2c -1+92=212,当且仅当9c -1 2=2c -1,即c =53且a =b =23时,等号成立,故最小值为212,故选:D【变式8-3】(2022春·安徽·高三校联考阶段练习)已知a ,b ,c ∈R +,θ∈-π2,π2,不等式2b a +c a 2+4b 2+c 2≤cos θ恒成立,则θ的取值范围是()A.-π2,π2B.-π3,π3C.-π4,π4D.-π6,π6【答案】C【解析】因为a ,b ,c ∈R +,θ∈-π2,π2 ,不等式2b a +c a 2+4b 2+c 2≤cos θ恒成立,所以2b a +c a 2+4b 2+c 2 max≤cos θ,因为a ,b ,c ∈R +,所以2ab =12×2a 2b ≤12a 2+2b 2 =12a 2+2b 2,当且仅当a =2b 时等号成立;2bc =12×2c 2b ≤12c 2+2b 2 =12c 2+2b 2,当且仅当c =2b 时等号成立.所以2b a +c a 2+4b 2+c 2=2ab +2bc a 2+4b 2+c 2≤12a 2+2b 2 +12c 2+2b 2a 2+4b 2+c 2=22,当且仅当a =2b =c 时等号成立,所以2b a +c a 2+4b 2+c2的最大值为22,所以cos θ≥22,又因为θ∈-π2,π2,所以θ∈-π4,π4.故选:C.【变式8-4】(2023·全国·高三专题练习)若a,b,c均为正实数,则ab+bca2+2b2+c2的最大值为()A.12B.14C.22D.32【答案】A【解析】因为a,b均为正实数,则ab+bca2+2b2+c2=a+ca2+c2b+2b≤a+c2a2+c2b×2b=a+c22a2+c2=12a2+2ac+c22a2+c2=1212+aca2+c2≤1212+ac2a2×c2=12,当且仅当a2+c2b=2b,且a=c,即a=b=c时取等号,则ab+bca2+2b2+c2的最大值为12.故选:A.限时检测(建议用时:60分钟)1.(2022春·江苏徐州·高三学业考试)若正实数x,y满足1x+2y=1,则x+2y的最小值为()A.7B.8C.9D.10【答案】C【解析】因为x,y是正数,所以有1x+2yx+2y=5+2yx+2xy≥5+22yx∙2xy=9,当且仅当2yx=2xy时取等号,即当且仅当x=y=3时取等号,故选:C2.(2022春·广东湛江·高三校考阶段练习)已知x>2,y=x+1x-2,则y的最小值为()A.2B.1C.4D.3【答案】C【解析】因为x>2,所以x-2>0,1x-2>0,由基本不等式得y=x+1x-2=x-2+1x-2+2≥2x-2⋅1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立,则y的最小值为4.故选:C3.(2022春·河南·高三安阳一中校联考阶段练习)已知a>1,b>1,且aln+4bln=2,则a elog+b e4log的最小值为()A.92lg B.212 C.252 D.12【答案】C【解析】a e log =1a ln ,b e 4log =4b ln ,因为a >1,b >1,故a >0ln ,b ln >0,a e log +b e 4log =1a ln +4b ln =12×a ln +4b ln 1a ln +4bln=12×17+4b ln a ln +4a ln bln≥12×17+24b ln a ln ⋅4a ln bln=252,当且仅当a ln =b ln 时,即a =b =e 25时等号成立.所以a e log +b e 4log 的最小值为252.故选:C4.(2022春·吉林四平·高三四平市第一高级中学校考阶段练习)已知正数a ,b 满足4a +9b =4,则ab 的最大值为()A.19B.16C.13D.12【答案】A【解析】正数a ,b 满足4a +9b =4,由基本不等式得:4a +9b =4≥24a ⋅9b ,解得:ab ≤19,当且仅当4a =9b ,即a =12,b =29时,等号成立,ab 的最大值为19.故选:A 5.(2022春·黑龙江牡丹江·高三牡丹江一中校考期末)已知a >0,b >0,9是3a 与27b 的等比中项,则a 2+2a +3b 2+1b 的最小值为()A.9+26 B.21+264C.7D.14+263【答案】B【解析】由等比中项定义知:3a ⋅27b =3a +3b =92,∴a +3b =4,∴a 2+2a +3b 2+1b =a +3b +2a +1b =4+142a +1b a +3b =4+145+6b a +a b≥4+145+26b a ⋅a b =4+5+264=21+264(当且仅当6b a =ab,即a =46-8,b =43-6 3时取等号),即a 2+2a +3b 2+1b的最小值为21+264.故选:B .6.(2022春·河南南阳·高三校考阶段练习)在△ABC 中,过重心E 任作一直线分别交AB ,AC 于M ,N 两点,设AM =xAB ,AN =yAC ,(x >0,y >0),则4x +y 的最小值是()A.43B.103C.3D.2【答案】C【解析】在△ABC 中,E 为重心,所以AE =23⋅12AB +AC =13AB +AC ,设AM =xAB ,AN =yAC ,(x >0,y >0),所以AB =1x AM ,AC =1y AN ,所以AE =13⋅1x AM +13⋅1yAN .因为M 、E 、N 三点共线,所以13x +13y=1,所以4x +y 13x +13y=43+13+y 3x +4x 3y ≥53+2y 3x ⋅4x 3y =3(当且仅当y 3x =4x 3y ,即x =12,y =1时取等号).故4x +y 的最小值是3.故选:C .7.(2022春·四川德阳·高三阶段练习)已知实数a 、b >0,且函数f x =x 2-2a +b x +2a +b -1的定义域为R ,则a 2b +2a 的最小值是()A.4B.6C.22D.2【答案】A【解析】∵f x =x 2-2a +b x +2a +b -1定义域为R ,∴x 2-2a +b x +2a +b -1≥0在R 上恒成立,∴△=-2a +b 2-4×2a +b -1 ≤0,即:a +b 2-2a +b +1≤0∴a +b -1 2≤0,解得:a +b =1又∵a >0,b >0∴a 2b +2a =1-b 2b +2a =12b +2a -12=12b +2a a +b -12=a 2b +2ba +2≥2a 2b ⋅2b a+2=4当且仅当a 2b =2b a ,即a =23,b =13时取等号.故选:A .8.(2022春·江西宜春·高三校考阶段练习)设x >y >z ,且1x -y +1y -z ≥nx -zn ∈N 恒成立,则n 的最大值为()A.2B.3C.4D.5【答案】C【解析】因为x >y >z ,所以x -y >0,y -z >0,x -z >0,所以不等式1x -y +1y -z ≥n x -z 恒成立等价于n ≤x -z 1x -y +1y -z恒成立.因为x -z =x -y +y -z ≥2x -y y -z ,1x -y +1y -z≥21x -y ⋅1y -z ,所以x -z ⋅1x -y +1y -z≥4x -y y -z⋅1x -y ⋅1y -z =4(当且仅当x -y =y -z 时等号成立),则要使n ≤x -z 1x -y +1y -z恒成立,只需使n ≤4n ∈N ,故n 的最大值为4.故选:C 9.(2022春·重庆沙坪坝·高三重庆南开中学校考阶段练习)(多选)已知实数a ,b 满足4a 2-ab +b 2=1,以下说法正确的是()A.a ≤21515B.a +b <1C.45≤4a 2+b 2≤43D.2a -b ≤2105【答案】ACD【解析】由4a 2-ab +b 2=1,可得b 2-ab +4a 2-1=0,关于b 的方程有解,所以△=-a 2-44a 2-1 ≥0,所以a 2≤415,即a ≤21515,故A 正确;取a =0,b =1,4a 2-ab +b 2=1,则a +b =1,故B 错误;由4a 2-ab +b 2=1,可得4a 2+b 2=ab +1=1+12⋅2ab ,又-4a 2+b 22≤2ab ≤4a 2+b 22,令t=4a 2+b 2,则-t 2≤2t -1 ≤t 2,所以45≤t ≤43,即45≤4a 2+b 2≤43,故C 正确;由4a 2-ab +b 2=1,可得2a -b 2+3ab =1,所以2a -b 2=1-3ab =1+32⋅2a ⋅-b ,令u =2a -b ,由2a ⋅-b ≤2a -b 22,可得u 2≤1+38u 2,所以u 2≤85,即2a -b ≤2105,故D 正确.故选:ACD .10.(2022·浙江·模拟预测)(多选)已知a ,b 为正数,且2a +b -2=0,则()A.a 2+16>8a B.2a +1b≥9 C.a 2+b 2≥255D.32<a +b -5a -2<4【答案】ACD【解析】对于A 选项,a 2+16-8a =a -4 2≥0,当且仅当a =4时等号成立,当a =4时,由于2a +b -2=0,得b =2-2a =2-8=-6,与b 为正数矛盾,故a ≠4,即得a 2+16>8a ,故A 选项正确;对于B 选项,∵2a +b -2=0,∴a +b2=1.又∵a >0,b >0∴2a +1b =2a +1b a +b 2 =2+b a +a b+12≥52+2b a ⋅a b =92,当且仅当b a =a b,即a =b =23时等号成立;故B 选项不正确;对于C 选项,∵2a +b -2=0,∴b =2-2a ,a ∈0,1 .∵a 2+b 2=a 2+2-2a 2=5a 2-8a +4=5a -45 2+45,∴a 2+b 2≥45,当且仅当a =45时等号成立,∴a 2+b 2≥255,故C 选项正确;对于D 选项,∵2a +b -2=0,∴b =2-2a ,a ∈0,1 .∴a +b -5a -2=a +2-2a -5a -2=-a -3a -2=-a -2 -5a -2=-1-5a -20<a <1 ,当0<a <1时,-2<a -2<-1,∴-5<5a -2<-52,得32<-1-5a -2<4,即32<a +b -5a -2<4,故D 选项正确.故选:ACD11.(2022春·山西·高三校联考阶段练习)(多选)若a >b >1,且a +3b =5,则()A.1a -b +4b -1的最小值为24 B.1a -b +4b -1的最小值为25C.ab -b 2-a +b 的最大值为14 D.ab -b 2-a +b 的最大值为116【答案】BD【解析】由a >b >1,可知a -b >0,b -1>0,a -b +4b -1 =a +3b -4=5-4=1,1a -b +4b -1=a -b +4b -1 a -b +4a -b +4b -1 b -1=17+4b -1 a -b +4a -b b -1≥17+24b -1 a -b ⋅4a -b b -1=25当且仅当a -b =b -1=15 时,等号成立,1a -b +4b -1的最小值为25.又1=a -b +4b -1 ≥2a -b ⋅4b -1 =4a -b ⋅b -1 .当且仅当a -b =4b -1 =12时,等号成立,所以ab -b 2-a +b =a -b ⋅b -1 ≤116,故ab -b 2-a +b 的最大值为116.故选:BD .12.(2022春·山东·高三利津县高级中学校联考阶段练习)(多选)在下列函数中,最小值是4的是()A.y =x +4xB.y =x +5x +1x >0 C.y =x sin +4xsin ,x ∈0,π2D.y =4x +41-x【答案】BD【解析】对于A ,当x >0时,y =x +4x ≥2x ⋅4x =4,当且仅当x =4x,即x =2时取等号;当x <0时,y =x +4x =--x +-4x ≤-2x ⋅4x =-4,当且仅当-x =-4x ,即x =-2时取等号,所以y ∈-∞,-4 ⋃4,+∞ ,A 错误;对于B ,y =x +5x +1=x +1+4x +1=x +1+4x +1,因为x >0,所以x +1>1,x +1+4x +1≥2x +1⋅4x +1=4,当且仅当x +1=4x +1,即x =3时取等号,所以y =x +5x +1x >0 的最小值为4,B 正确;对于C ,因为x ∈0,π2,所以x sin ∈0,1 ,由对勾函数性质可知:y =x sin +4x sin ,x ∈5,+∞ ,C 错误;对于D ,4x >0,y =4x +41-x =4x +44x ≥24x ×44x =4,当且仅当4x =44x ,即x =12时取等号,所以y =4x +41-x 的最小值为4,D 正确.故选:BD13.(2022春·山东·高三利津县高级中学校联考阶段练习)已知正实数x ,y 满足4x +7y =4,则2x +3y+12x +y的最小值为______.【答案】94【解析】因为4x +7y =4,所以2x +3y +12x +y =142x +3y +2x +y 2x +3y +12x +y ,所以2x +3y +12x +y =144+2x +3y 2x +y +22x +y x +3y +1,因为x ,y 为正实数,所以2x +3y 2x +y >0,22x +yx +3y>0,所以2x +3y 2x +y +22x +y x +3y≥22x +3y 2x +y ⋅22x +yx +3y =4,当且仅当x +3y =2x +y 4x +7y =4时等号成立,即x =815,y =415时等号成立,所以2x +3y +12x +y ≥144+4+1 =94,当且仅当x =815,y =415时等号成立,所以2x +3y +12x +y 的最小值为94.14.(2022春·天津静海·高三静海一中校考阶段练习)若a ,b ∈R ,且b 2-a 2=1,则a +b2-a 2b的最大值为___________.【答案】2【解析】由题知,a ,b ∈R ,且b 2-a 2=1,即b 2=a 2+1,所以a +b2-a 2b =a +1b ,当a =0时,b 2=1,即b =±1,此时a +1b =±1,所以a +b 2-a 2b的最大值为1,当a ≠0时,a +1b2=a 2+2a +1b 2=1+2a a 2+1≤1+2a 2a =2,当且仅当a =1时取等号,此时-2≤a +1b ≤2;所以a +a 2-b 2b 的最大值为2.综上,a +a 2-b 2b的最大值为2.15.(2022春·天津和平·高三耀华中学校考阶段练习)已知正数x ,y 满足83x 2+2xy +3xy +2y 2=1,则xy的最小值是_________.【答案】52【解析】根据题意,由83x 2+2xy +3xy +2y 2=1可得8xy +2y 2 +33x 2+2xy 3x 2+2xy xy +2y 2=1,即16y 2+9x 2+14xy =3x 3y +8x 2y 2+4xy 3=xy 4y 2+3x 2+8xy所以16y 2+9x 2+14xy 4y 2+3x 2+8xy =xy =16y 2x2+9+14y x 4y 2x2+3+8y x ;又因为x ,y 均是正数,令y x =t ∈0,+∞ ,则xy =f t =16t 2+14t +94t 2+8t +3所以, f t =16t 2+14t +94t 2+8t +3=4-18t +34t 2+8t +3=4-14t 2+8t +318t +3令 g t =4t 2+8t +318t +3,则g t =29t +1127+16918t +3=29t +16 +16918t +3+1027≥229t +16 ×16918t +3+1027=1827当且仅当29t +16 =16918t +3,即t =12时,等号成立;所以f t =4-14t 2+8t +318t +3≥4-11827=4518=52所以f t 的最小值为f t min =52;即当t =y x =12,x =2y =5时,即x =5,y =52时,等号成立.16.(2022春·陕西商洛·高三校联考阶段练习)已知正实数a ,b ,c 满足a 2+ab +b 2-12c 2=0,则当a +bx取得最大值时,a -b 2+c 的最大值为______.【答案】916【解析】由a 2+ab +b 2-12c 2=0,可得12c 2=a +b 2-ab ≥a +b 2-a +b 22=34a +b 2,即a +bc≤4,当且仅当a =b 时,等号成立,所以当a +b c 取得最大值时,a =b ,c =a +b 4=a 2,所以a -b 2+c =32a -a 2=-a -342+916,故当a =34,b =34,c =38时,a -b 2+c 取最大值916.。
高中数学基本不等式题型总结
高中数学中,基本不等式是一个非常重要的概念,涉及到了很多的题型。
下面是对高中数学基本不等式题型的总结:
1. 一元一次不等式:求解形如ax+b<0的不等式,其中a和b是已知的实数,x是未知数。
2. 一元二次不等式:求解形如ax^2+bx+c>0或ax^2+bx+c<0的不等式,其中a、b和c是已知的实数,x是未知数。
3. 绝对值不等式:求解形如|ax+b|<c或|ax+b|>c的不等式,其中a、b和c是已知的实数,x是未知数。
4. 分式不等式:求解形如f(x)/g(x)>0或f(x)/g(x)<0的不等式,其中f(x)和g(x)是已知的函数。
5. 根式不等式:求解形如√(ax+b)<c或√(ax+b)>c的不等式,其中a、b和c是已知的实数,x是未知数。
6. 函数不等式:求解形如f(x)>0或f(x)<0的不等式,其中f(x)是已知的函数。
7. 求最值问题:通过不等式条件确定函数的最大值或最小值。
以上是高中数学中常见的基本不等式题型总结。
高中数学必修5基本不等式精选题目(附答案)高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤? ????a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <="">D .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数,求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数,且a +b +c =1,求证:? ????1a -1? ????1b -1? ??1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<="">x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bc< p="">C.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lg< p="">a+b2=R.所以P<q<r.< p="">3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得? ????2b a +a 2b +? ????3c a +a 3c +? ????3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴? ????2b a +a 2b -1+? ????3c a +a 3c -1+? ????3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1,所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得? ????1a -1? ????1b -1? ????1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2,即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20,当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6,∴xy =16(2x ·3y )≤16·?2x +3y 22=16·? ????622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1,∴x +y =(x +y )·? ??1x +9y=1+9x y +y x +9=y x +9xy +10,又∵x >0,y >0,∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立.由y =3x ,1x +9y=1,得x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6? 2a +1b =1,∴2a +b =6? ????2a +1b ·(2a +b )=6? ?5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy ,=120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0,故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100,求得x =15,即铁栅的长是15米.练习:1.解析:选B A 中,当0<="">lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤?a +b 22≤? ??422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =? ????2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当 a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4? ??900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号,所以有xx 2+3x +1=1x +1x +3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15. 答案:15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3,∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-43-x +(3-x )+3≤-243-x·(3-x )+3=-1,当且仅当43-x=3-x ,即x =1时取等号,∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )? ????1x +3y =4+? ????y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号.又x +y =4,∴1x +3y ≥1+32,故1x +3y 的最小值为1+32.</q<r.<></lg<></bc<>。
基本不等式30题解析一、多选题1.(23-24高一下·山东济宁·阶段练习)已知正实数,x y 满足2x y xy +=,则()A .16xy ≥B .29x y +≥C .6x y +>D .1831x y+≥-2.(21-22高一下·全国·开学考试)下列不等式一定成立的是()A .()21lg lg 04x x x ⎛⎫+≥> ⎝⎭B .()lgeln 21lg x x x+>>C .()21012x x x ≥>+D .()1121x x <∈+R 【答案】AD【分析】结合对数函数的单调性利用基本不等式判断A ,举反例判断BC ,根据指数函数的有界性判断D.3.(23-24高一上·安徽芜湖·阶段练习)已知,a b 均为实数,则()222a b a b ab+++的可能值为()A .43B .34C .1D .24.(22-23高一下·陕西西安·阶段练习)若62,63a b ==,则下列不等关系正确的有()A2B .114a b+>C .2212a b +>D .14ab <【答案】BCD【分析】根据题意分析可知()1,,0,1a b a b +=∈,结合不等式性质以及基本不等式逐项5.(23-24高三下·河南·阶段练习)已知位于第一象限的点(),a b 在曲线1x y+=上,则()A .()()111a b --=-B .4ab ≥C .49a b +≤D .221223a b +≥6.(23-24高一下·云南·阶段练习)已知p q 、为函数()lg f x x t =-的两个不相同的零点,则下列式子一定正确的是()A .222p q +<B .228p q +>C .33log log 0p q ⋅<D .1pq =由图可知,当0t >时,直线设p q <,则01p q <<<,由由()lg 0f q q t =-=,可得lg 对于A 选项,222p q pq +>=对于B 选项,2222p q p ++>对于C 选项,33log log 1p <=对于D 选项,由上可知1pq =故选:CD.7.(2024高三·全国·专题练习)已知x ≥1,则下列函数的最小值为2的有()A .22x y x =+B .2y =C .13y x x=-D .411y x x =-++【答案】ACD 【详解】因为x ≥1,所以+≥2(当且仅当x =2时取等号);y ==+>2,等号取不到;因为函数y =3x -在[1,+∞)上单调递增,所以3x -≥2;因为x ≥1,所以y =x -1+=x +1+-2≥4-2=2(当且仅当x =1时取等号).故选ACD.8.(2024高三·全国·专题练习)(多选)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c .若b =1,且a 2-c 2=2,则下列结论正确的是()A .a <32B .tan A +3tanC =0C .角B 的最大值为3πD .△ABC 的外接圆面积的最小值为π9.(23-24高一下·重庆·阶段练习)如图所示,在ABC 中,4BC =,且M 点为BC 边的中点,则下列结论正确的有()A .设G 是AM 的中点,则0GA GB GC ++=B .sin sin BAM ACCAM AB∠=∠C .若π3BAC ∠=,则AM的最小值为D .若π6BAM ∠=,则AC 边的最小值为2【详解】对于B ,分别在ABM 和ACM △中由正弦定理可得sin sin sin sin AMB BAMAC CM AMC CAM ⎧=⎪⎪∠∠⎨⎪=⎪∠∠⎩,因为2πBM CM AMB AMC ==⎧⎨∠+∠=⎩,则sinsin AB CAMAC BAM ∠=∠,正确;对于C ,在ABC 中,由余弦定理可得2216b c bc +-=,所以22162b c bc bc +=+≥,则16bc ≤,当且仅当4bc ==时取等,又2AB AC AM +=,所以AM AM ===,当且仅当4b c ==时取等,故AM 最大值为对于D ,在ABM 中,由正弦定理可得242πsin 6R==,故ABM 的外接圆圆O 的半径为2R =,则点A 在优弧 BM上运动,则AC 的最小值为2OC R R -=-=-,正确.故选:BD10.(2024·贵州毕节·二模)已知252100a b ==,则下列式子中正确的有()A .211a b+=B .121a b+=C .8ab >D .29a b +>【答案】BCD 【分析】由指对互化得到25log 100a =,2log 100b =,进而结合对数运算性质和基本不等式的应用即可求解.【详解】11.(2024·江苏·一模)已知,x y ∈R ,且123x =,124y =,则()A .y x >B .1x y +>C .14xy <D <【答案】ACD 【分析】用对数表示x ,y ,利用对数函数的性质、对数的计算、基本不等式等即可逐项计算得到答案.【详解】12.(23-24高一下·安徽宿州·开学考试)若正实数,a b 满足1a b +=,则下列选项中正确的是()A .ab 有最大值14B .122a b->C .14a b+的最小值是10D【答案】AB 【分析】利用均值不等式和“1”的妙用判断ACD ,由12a b b -=-讨论b 的范围判断B 即可.【详解】选项A :因为,a b 为正实数,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时等号成立,所以ab 有最大值14,A 说法正确;选项B :由1a b +=可得12a b b -=-,因为,a b 为正实数,所以01b <<,1121b -<-<,所以1212222a b b --<=<,B 说法正确;选项C :由题意可得()14144559a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4a bb a =,即13a =,23b =时等号成立,所以14a b +的最小值是9,C 说法错误;选项D :由A 得212a b =++=+≤,当且仅当12a b ==,不存在最小值,D 说法错误;故选:AB13.(23-24高一上·江苏连云港·期末)下列各函数中,最小值为2的是()A .2610y x x =-+B .3y x =-+C .1y xx=+D .2y =14.(23-24高三下·广东·阶段练习)若0a >,0b >,8a b +=,则下列不等式恒成立的是()A 4≤B 4+≥C .2232a b +≥D .1498a b +≥【详解】15.(23-24高一下·河南信阳·阶段练习)已知0x >,0y >,且24x y +=,则()A .ln ln ln2x y +≤B .248x y +<C .1294x y +≥D .324e e x x y-≥16.(23-24高一下·内蒙古鄂尔多斯·开学考试)下列函数中,最小值是4的有()A .()134x f x x=++B .()f x =C .()()31011f x x x x=+<<D .()f x =17.(23-24高三下·重庆大足·阶段练习)设正实数0x >,0y >,且满足3x y xy ++=,则()A .413x y +≥B .9xy ≤C .2218x y +≤D .1123x y +≥18.(2024·贵州贵阳·一模)已知0,0a b >>,且2a b +=,则()A .22a b+≥B .112a b+≥C .22log log 1a b +≤D .222a b +≥【答案】ABCD【分析】首先结合选项变形,再根据基本不等式,即可判断选项.19.(2024·河南信阳·一模)已知正数,m n 满足322m n+=,则()A .12mn ≥B .222m n +≥C .32m n +≥D .2,(0,),()2m n m n mn mn-∃∈+∞≥20.(23-24高一上·广东茂名·期中)下面命题正确的是()A .“1a >”是“11a<”的充分不必要条件B .命题“x ∃∈R ,使20x ax a ++<”是假命题,则实数a 的取值范围为04a ≤≤C .不等式21x>的解集是(),2-∞D .设a +∈R ,则24a a+的最小值为4.21.(23-24高三上·湖南常德·期末)已知0a b >>,则下列不等式一定成立的是()A .11a ba b >++B .2ab a b +C .()ln 2a b ab ++>D .111ln 1ln a b<22.(23-24高一上·江苏无锡·阶段练习)已知0a b >>,则下列不等式可能成立,也可能不成立的是()A .22()(1)a b b +>+B .11b b a a ->-2223.(23-24高一上·浙江·期末)设正实数,a b满足2a b+=,则()A.11a b+的最小值为2B.1122a b a b+++的最大值为23C2D.3ab b-的最大值为1424.(23-24高三下·河北·阶段练习)已知正数,a b 满足()()111a b --=,则下列选项正确的是()A .111a b+=B .25ab b+³C .4a b +≥D .228a b +≥25.(22-23高一上·江苏宿迁·期中)已知3824a b ==,则a ,b 满足的关系是()A .111a b+=B .112a b+=C .()()22112a b -+-<D .()()22112a b -+->26.(23-24高一上·河北石家庄·期末)下列说法正确的是()A .若a b >,则22a b >B .44ππcos sin 882-=27.(23-24高一上·安徽马鞍山·期末)若,m n 均为正数,且满足22m n +=,则()A .mn的最大值为12B .11m n+的最小值为3+C .24m n +的最小值为4D .2mm n+的最小值为1+28.(23-24高三下·云南昆明·阶段练习)已知0a b >>,下列说法正确的是()A .11a b b a+>+B .2b a a b+>C .若0c >,则b b ca a c+<+D .若c d >,则a c b d->-【答案】ABC29.(23-24高三上·海南·期末)已知0,0a b >>,且4a b ab +-=,则()A .3a b +≥B .104ab <≤或94ab ≥C .221(1)(1)2a b -+-≤D .11413a b <+≤或114a b+≥试卷第21页,共21页30.(23-24高一上·浙江杭州·期中)已知0,0a b >>,且1a b +=,则()A .41ab >B .2728a b +≥C .41912a b +≥D 2≤。
高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。
基本不等式(很全面).(精选)知识框架】1、基本不等式原始形式若a,b∈R,则a2+b2≥2ab2)若a,b∈R,则ab≤(a+b)2/42、基本不等式一般形式(均值不等式)若a,b∈R*,则a+b≥2ab3、基本不等式的两个重要变形1)若a,b∈R*,则a+b/2≥√(ab)2)若a,b∈R,则ab≤(a2+b2)/2总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
特别说明:以上不等式中,当且仅当a=b时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论1)若x>1,则x+1/x≥2(当且仅当x=1时取“=”)2)若x<1,则x+1/x≤-2(当且仅当x=-1时取“=”)3)若ab>0,则a+b/2≥√(ab)(当且仅当a=b时取“=”)4)若a,b∈R,则ab≤(a2+b2)/25)若a,b∈R*,则a+b/2≤√(ab)≤(a+b)/2≤√(a2+b2)/26、柯西不等式1)若a,b,c,d∈R,则(a2+b2)(c2+d2)≥(ac+bd)22)若a1,a2,a3,b1,b2,b3∈R,则有:(a12+a22+a32)(b12+b22+b32)≥(a1b1+a2b2+a3b3)23)设a1,a2,…,an与b1,b2,…,bn是两组实数,则有(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2题型归纳】题型一:利用基本不等式证明不等式题目1、设a,b均为正数,证明不等式:ab≥(a+b)2/4题目2、已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca题目3、已知a+b+c=1,求证:a2+b2+c2≥1/3题目4、已知a,b,c∈R+,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc题目5、已知a,b,c∈R+,且a+b+c=1,求证:(1-a)(1-b)(1-c)≤abc/8题目6:设$a,b,c$均为正数,且$a+b+c=1$,证明:frac{1}{a^2b^2c^2}\geq\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\geq \frac{1}{3abc}$$ 题型二:利用不等式求函数值域题目1:求下列函数的值域1)$y=3x^2+\frac{1}{2x^2}$2)$y=x(4-x)$3)$y=x+\frac{11}{x}$,其中$x>0$4)$y=x+\frac{1}{x}$,其中$x\neq 0$题型三:利用不等式求最值(一)(凑项)1、已知$x>2$,求函数$y=2x-4+\frac{4}{x}$的最小值;变式1:已知$x>2$,求函数$y=2x+\frac{4}{x}$的最小值;变式2:已知$x<2$,求函数$y=2x+\frac{4}{x}$的最大值;变式3:已知$x<2$,求函数$y=2x+\frac{4x}{2-x}$的最大值;练:1、已知$x>\frac{5}{4}$,求函数$y=4x-2+\frac{4}{4x-5}$的最小值;题目2、已知$x<\frac{5}{4}$,求函数$y=4x-2+\frac{4}{4x-5}$的最大值;题型四:利用不等式求最值(二)(凑系数)题目1:当$0<x<4$时,求$y=x(8-2x)$的最大值;变式1:当$0<x<4$时,求$y=4x(8-2x)$的最大值;变式2:设$0<x<\frac{3}{2}$,求函数$y=4x(3-2x)$的最大值。
基本不等式典型常见题型基本不等式典型常见题型不等式是数学中的一种重要关系式,它可以描述数字之间的大小关系。
考察不等式的题目在各类数学考试中都是常见的。
下面我们将介绍一些基本的不等式题型,并给出解题方法和技巧。
一、一次不等式一次不等式是由一次多项式构成的不等关系。
它的一般形式为ax + b > 0(或<0)或ax + b ≥ 0(或≤0)。
其中,a和b是常数,x是未知数。
解一次不等式的关键是找到x的取值范围。
我们可以通过变形和移项来求解。
例题1:解不等式3x + 7 > 4。
解法:首先,我们可以通过移项得到3x > 4 - 7,即3x > -3。
然后,除以3得到x > -1。
所以,不等式的解集为x > -1。
例题2:解不等式2x + 5 ≤ 9。
解法:首先,我们可以通过移项得到2x ≤ 9 - 5,即2x ≤ 4。
然后,除以2得到x ≤ 2。
所以,不等式的解集为x ≤ 2。
二、绝对值不等式绝对值不等式是含有绝对值符号的不等式。
它的一般形式为|ax + b| > c或|ax + b| ≥ c。
其中,a、b和c是常数,x是未知数。
解绝对值不等式的关键是考虑x的取值范围,并分情况讨论。
例题3:解不等式|2x - 3| > 4。
解法:我们可以分两种情况讨论:情况1:当2x - 3 > 0时,不等式化为2x - 3 > 4,即2x > 7。
解得x > 7/2。
情况2:当2x - 3 < 0时,不等式化为-(2x - 3) > 4,即-2x + 3 > 4,解得x < -1/2。
综上所述,不等式的解集为x < -1/2或x > 7/2。
三、二次不等式二次不等式是含有二次多项式的不等关系。
它的一般形式为ax² + bx + c > 0(或< 0)或ax² +bx + c ≥ 0(或≤ 0)。
题型1 基本不等式正用a +b ≥2ab例1:(1)函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x(x ∈R )值域为________;(2)函数f (x )=x 2+1x 2+1的值域为________. 解析:(1)∵x >0,x +1x≥2x ·1x=2,∴f (x )(x >0)值域为[2,+∞); 当x ∈R 时,f (x )值域为(-∞,-2]∪[2,+∞); (2)x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2x 2+1·1x 2+1-1=1,当且仅当 x =0 时等号成立.答案:(1)[2,+∞) (-∞,-2]∪[2,+∞) (2)[1,+∞)4.(2013·镇江期中)若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5 [例1] (1)已知x <0,则f (x )=2+4x+x 的最大值为________.(1)∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x +-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x=-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x +-x ≤2-4=-2,∴f (x )的最大值为-2.例:当x >0时,则f (x )=2xx 2+1的最大值为________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x,即x =1时取等号. 3.函数y =x 2+2x -1(x >1)的最小值是________.解析:∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥2 x -13x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.答案:23+2 10.已知x >0,a 为大于2x 的常数,求y =1a -2x-x 的最小值. 解:y =1a -2x +a -2x 2-a 2≥2 12-a 2=2-a 2.当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a2. 题型2 基本不等式反用ab ≤a +b2例:(1)函数f (x )=x (1-x )(0<x <1)的值域为__________;(2)函数f (x )=x (1-2x )⎝ ⎛⎭⎪⎫0<x <12的值域为__________.解析:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0. x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.答案:(1)⎝ ⎛⎭⎪⎫0,14 (2)⎝ ⎛⎭⎪⎫0,18 3.(教材习题改编)已知0<x <1,则x (3-3x )取得最大值时x 的值为________.解析:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.答案:123.函数y =x 1-x 2的最大值为________.解析:x 1-x 2=x 21-x 2≤x 2+1-x 22=12.4.已知0<x <1,则x (3-3x )取得最大值时x 的值为 ( )A.13B.12C.34D.23解析 ∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝ ⎛⎭⎪⎫x +1-x 22=34.当x =1-x ,即x =12时取等号.答案 B 10.已知x >0,a 为大于2x 的常数,求函数y =x (a -2x )的最大值;解:∵x >0,a >2x ,∴y =x (a -2x )=12×2x (a -2x )≤12×⎣⎢⎡⎦⎥⎤2x +a -2x 22=a 28,当且仅当x =a4时取等号,故函数的最大值为a 28.题型三:利用基本不等式求最值2.已知t >0,则函数y =t 2-4t +1t的最小值为________.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,且在t =1时取等号.答案 -2例:当x >0时,则f (x )=2xx 2+1的最大值为________.解析:∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x,即x =1时取等号.例1:(1)求函数f (x )=1x -3+x (x >3)的最小值;(2)求函数f (x )=x 2-3x +1x -3(x >3)的最小值;思维突破:(1)“添项”,可通过减3再加3,利用基本不等式后可出现定值.(2)“拆项”,把函数式变为y =M +aM的形式. (1)∵x >3,∴x -3>0.∴f (x )=1x -3+(x -3)+3≥21x -3·x -3+3=5.当且仅当1x -3=x -3,即x =4时取等号,∴f (x )的最小值是5.(2)令x -3=t ,则x =t +3,且t >0.∴f (x )=t +32-3t +3+1t =t +1t+3≥2t ·1t+3=5. 当且仅当t =1t,即t =1时取等号,此时x =4,∴当x =4时,f (x )有最小值为5.技巧总结:当式子不具备“定值”条件时,常通过“添项”达到目的;形如y =cx 2+dx +fax +b(a ≠0,c ≠0)的函数,一般可通过配凑或变量替换等价变形化为y =t +p t(p 为常数)型函数,要注意t 的取值范围; 例:设x >-1,求函数y =x +4x +1+6的最小值;解:∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2x +1·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴当x =1时,函数y 的最小值是9. 1.若x >0,y >0,且x +y =18,则xy 的最大值是________. 解析 由于x >0,y >0,则x +y ≥2xy ,所以xy ≤⎝⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,xy 取到最大值81. 答案 815.已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为_______________.解析 ∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案 36.(2013·大连期中)已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________.解析:∵12=4x +3y ≥24x ×3y ,∴xy ≤3.当且仅当⎩⎪⎨⎪⎧4x =3y ,4x +3y =12,即⎩⎪⎨⎪⎧x =32,y =2时xy 取得最大值3.答案:32.已知m >0,n >0,且mn =81,则m +n 的最小值为________.解析:∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立.答案:18 5.已知x >0,y >0,lg x +lg y =1,则z =2x +5y的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10.则2x +5y≥210xy=2,故⎝ ⎛⎭⎪⎫2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立.答案:2(2012·天津高考)已知log 2a +log 2b ≥1,则3a +9b的最小值为________. 解析:由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b≥2×3a +2b 2(当且仅当3a =32b,即a =2b 时取等号).∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号),∴3a+9b≥2×32=18.即当a =2b 时,3a+9b有最小值18. 3.设x ,y ∈R ,a >1,b >1,若a x =b y=3,a +b =23,则1x +1y的最大值为 ( )A .2 B.32 C .1 D.12解析 由a x =b y=3,得:x =log a 3,y =log b 3,由a >1,b >1知x >0,y >0,1x +1y =log 3a +log 3b =log 3ab ≤log 3⎝ ⎛⎭⎪⎫a +b 22=1,当且仅当a =b =3时“=”成立,则1x +1y的最大值 为1. 答案 C6.(2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2·⎝ ⎛⎭⎪⎫1x2+4y 2的最小值为________.解析 ⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.答案 9例:若正数x ,y 满足x +3y =5xy ,求xy 的最小值.解:∵x >0,y >0,则5xy =x +3y ≥2x ·3y ,∴xy ≥1225,当且仅当x =3y 时取等号.∴xy 的最小值为1225.4.若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________. 答案 18解析 由x >0,y >0,2x +y +6=xy ,得xy ≥22xy +6(当且仅当2x =y 时,取“=”),即(xy )2-22xy -6≥0, ∴(xy -32)·(xy +2)≥0. 又∵xy >0,∴xy ≥32,即xy ≥18. ∴xy 的最小值为18.例:已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是 ( )A .3B .4 C.92 D.112解析 依题意,得(x +1)(2y +1)=9, ∴(x +1)+(2y +1)≥2x +12y +1=6,即x +2y ≥4.当且仅当⎩⎪⎨⎪⎧x +1=2y +1,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立.∴x +2y 的最小值是4.3.若x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值范围; (2)求x +y 的取值范围.解:由x +2y +xy =30,(2+x )y =30-x , 则2+x ≠0,y =30-x2+x >0,0<x <30.(1)xy =-x 2+30xx +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32 =-⎣⎢⎡⎦⎥⎤x +2+64x +2+34≤18,当且仅当x =6时取等号,因此xy 的取值范围是(0,18]. (2)x +y =x +30-x 2+x =x +32x +2-1=x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧x =42-2,y =42-1时,等号成立,又x +y =x +2+32x +2-3<30,因此x +y 的取值范围是[82-3,30).例:已知a >b >0,则a 2+16b a -b的最小值是________.解析:∵a >b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24, 当且仅当a =2b 时等号成立.∴a 2+16b a -b ≥a 2+16a 24=a 2+64a2≥2a 2·64a2=16,当且仅当a =22时等号成立.∴当a =22,b =2时,a 2+16ba -b取得最小值16. 8.设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz的最小值是________.解析:由已知条件可得y =x +3z2,所以y 2xz =x 2+9z 2+6xz 4xz=14⎝ ⎛⎭⎪⎫x z +9z x +6 ≥14⎝⎛⎭⎪⎫2 x z ×9z x +6=3, 当且仅当x =y =3z 时,y 2xz取得最小值3.答案:3例:已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.解析:由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.1.已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为________. 解析:依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xy x +y ≤2(当且仅当x =2y 时取等号),即x +22xyx +y的最大值是2;又λ≥x +22xyx +y,因此有λ≥2,即λ的最小值是2.答案:21.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________. 解析:因为x >a ,所以2x +2x -a =2(x -a )+2x -a+2a ≥22x -a ·2x -a+2a =2a +4,即2a +4≥7,所以a ≥32,即a 的最小值为32.答案:325.圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,则ab 的取值范围是 ( )A.⎝ ⎛⎦⎥⎤-∞,14B.⎝ ⎛⎦⎥⎤0,14C.⎝ ⎛⎭⎪⎫-14,0D.⎝⎛⎭⎪⎫-∞,14 答案 A解析 由题可知直线2ax -by +2=0过圆心(-1,2),故可得a +b =1,又因ab ≤⎝ ⎛⎭⎪⎫a +b 22=14(a =b 时取等号).故ab 的取值范围是⎝⎛⎦⎥⎤-∞,14.典例:(12分)已知a 、b 均为正实数,且a +b =1,求y =⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b 的最小值.易错分析 在求最值时两次使用基本不等式,其中的等号不能同时成立,导致最小值不能取到.审题视角 (1)求函数最值问题,可以考虑利用基本不等式,但是利用基本不等式,必须保证“正、定、等”,而且还要符合已知条件.(2)可以考虑利用函数的单调性,但要注意变量的取值范围. 规范解答解 方法一 y =⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b=⎝⎛⎭⎪⎫ab +1ab +⎝ ⎛⎭⎪⎫b a +a b ≥⎝ ⎛⎭⎪⎫ab +1ab +2=⎝ ⎛⎭⎪⎫ab +1ab 2=⎝ ⎛⎭⎪⎫4ab +1ab -3ab 2≥⎝ ⎛⎭⎪⎫24ab ·1ab -3×a +b 22=⎝⎛⎭⎪⎫4-322=254.[10分] 当且仅当a =b =12时,y =⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b 取最小值,最小值为254.[12分] 方法二 y =⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b =ab +1ab +a b +b a =ab +1ab +a 2+b 2ab =ab +1ab +a +b 2-2abab=2ab+ab -2.[8分]令t =ab ≤⎝⎛⎭⎪⎫a +b 22=14,即t ∈⎝ ⎛⎦⎥⎤0,14.又f (t )=2t +t 在⎝ ⎛⎦⎥⎤0,14上是单调递减的,[10分] ∴当t =14时,f (t )min =334,此时,a =b =12.∴当a =b =12时,y 有最小值254.[12分]温馨提醒 (1)这类题目考生总感到比较容易下手.但是解这类题目却又常常出错.(2)利用基本不等式求最值,一定要注意应用条件:即一正、二定、三相等.否则求解时会出现等号成立、条件不具备而出错.(3)本题出错的原因前面已分析,关键是忽略了等号成立的条件. 方法与技巧1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点. 2.恒等变形:为了利用基本不等式,有时对给定的代数式要进行适当变形.比如:(1)当x >2时,x +1x -2=(x -2)+1x -2+2≥2+2=4.(2)0<x <83,x (8-3x )=13(3x )(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163.失误与防范1.使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.2.在运用重要不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足重要不等式中“正”“定”“等”的条件.3.连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 题型四:利用基本不等式整体换元例2:若正数 a ,b 满足 ab =a +b +3,求 ab 及 a +b 的取值范围.思维突破:本题主要考查均值不等式在求最值时的运用,并体现了换元法、构造法等重要思想. 自主解答:方法一:由ab =a +b +3≥2ab +3, 即ab -2ab -3≥0. 即(ab -3)(ab +1)≥0. ∵ab ≥0,∴ab +1≥1. 故ab -3≥0,∴ab ≥9. 当且仅当a =b =3时取等号. 又∵ab ≤a +b2,∴ab =a +b +3≤⎝⎛⎭⎪⎫a +b 22.当且仅当a =b =3时取等号. 即(a +b )2-4()a +b -12≥0,(a +b -6)(a +b +2)≥0.∵a +b +2>0,有a +b -6≥0,即a +b ≥6. ∴a +b 的取值范围是[6,+∞). 方法二:由ab =a +b +3,则b =a +3a -1. ab =a +4a a -1=a +4+4a -1=a -1+4a -1+5≥2a -1·4a -1+5=9,当且仅当a =b =3时取等号. ∴ab 的取值范围是[9,+∞). 由ab =a +b +3,得b =a +3a -1, a +b =a +a +3a -1=a +1+4a -1=(a -1)+4a -1+2≥2()a -1·4a -1+2=6, 当且仅当a =b =3时取等号. ∴a +b 的取值范围是[6,+∞).技巧总结:整体思想是分析这类题目的突破口,即a +b 与ab 分别是统一的整体,把a +b 转换成ab 或把ab 转换成a +b .例3:已知正数a ,b 满足a +2b =1,则1a +1b的最小值是____.试解:1a +1b =a +2b a +a +2b b=3+2b a+ab≥3+22b a ·ab=3+2 2.易错点评:多次利用基本不等式解题,没有考虑等号能否同时成立。
基本不等式题型大全知识点:1.几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤ ②(基本不等式)2a b+≥()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号)⑦ban b n a m a m b a b <++<<++<1,其中(000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+2.几个著名不等式①平均不等式:1122a b a b --+≤≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++1122(,,,).x y x y R ∈④二维形式的柯西不等式: 22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.板块一 基本不等式及其变换一、“配、凑、拆”的技巧 ①基本不等式及变形1.函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x (x ∈R )值域为________;2.函数f (x )=x 2+1x 2+1的值域为________.2.若x >1,则x +4x -1的最小值为________. 解:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:53.已知x <0,则f (x )=2+4x +x 的最大值为________. 解:∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x+-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x+-x ≤2-4=-2,∴f (x )的最大值为-2..54124,45.1的最大值求函数已知-+-=<x x y x 答案:1.,)0(312)(.2的值并求取最值时的最值求x x x xx f ≠+=答案:略223.,,()().a b y x a x b =-+-(三星)为实常数求的最小值解:(1)方法一:方法二:(1)函数f (x )=x (1-x )(0<x <1)的值域为____________; (2)函数f (x )=x (1-2x )⎝ ⎛⎭⎪⎫0<x <12的值域为____________.解:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14, ∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0.x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.8.已知0<x <1,则x (3-3x )取得最大值时x 的值为________. 解:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.9.函数y =x 1-x 2的最大值为________.解:x 1-x 2=x 21-x 2≤x 2+1-x 22=12..)2)(12(,523.42222的最大值求已知++==+b a y b a答案:147162223.,1,1.2y x y R x x y +∈+=+(三星)设且求的最大值221y+≤2210.1,.x yx y xyx y+>=-(二星)若且求的最小值答案:23.设x,y∈R,且xy≠0,则⎝ ⎛⎭⎪⎫x2+1y2·⎝⎛⎭⎪⎫1x2+4y2的最小值为________.解:⎝⎛⎭⎪⎫x2+1y2⎝⎛⎭⎪⎫1x2+4y2=5+1x2y2+4x2y2≥5+21x2y2·4x2y2=9,当且仅当x2y2=12时“=”成立.14.在各项都为正数的等比数列{}n a中,若2018a=,则2017201912a a+的最小值为________.4 14.已知正数x y,满足2230x xy+-=,则2x y+的最小值是___________.3②二次分式有关12.已知t>0,则函数y=t2-4t+1t的最小值为________.答案-2解:∵t>0,∴y=t2-4t+1t=t+1t-4≥2-4=-2,且在t=1时取等号.13.当x>0时,则f(x)=2xx2+1的最大值为________.解:∵x>0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.14.(1)求函数f(x)=1x-3+x(x>3)的最小值;(2)求函数f(x)=x2-3x+1x-3(x>3)的最小值;解:(1)∵x>3,∴x-3>0.∴f(x)=1x-3+(x-3)+3≥21x-3·x-3+3=5.当且仅当1x-3=x-3,即x=4时取等号,∴f(x)的最小值是5.(2)令x-3=t,则x=t+3,且t>0.∴f(x)=t+32-3t+3+1t=t+1t+3≥2t·1t+3=5.当且仅当t=1t,即t=1时取等号,此时x=4,∴当x=4时,f(x)有最小值为5.15.设x>-1,求函数y=x+4x+1+6的最小值;解:∵x>-1,∴x+1>0.∴y=x+4x+1+6=x+1+4x+1+5≥2x+1·4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.∴当x=1时,函数y的最小值是9.4.当x>0时,则f(x)=2xx2+1的最大值为________.解:(1)∵x >0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.5.函数y=x2+2x-1(x>1)的最小值是________.解:∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2x-1+3x-1=x-12+2x-1+3x-1=x-1+3x-1+2≥2 x-13x-1+2=23+2.当且仅当x-1=3x-1,即x=1+3时,取等号.答案:23+2③平方平均数的应用228.,1,.x y R x y x y +∈+=+(一星)已知且求的最大值解:使用不等式变形2a b +≤.11.()0,0,1,.a b a b >>+=二星设答案:7.(三星)设,0,5,a b a b >+= _________. 解:因为,0,5,a b a b >+=所以()()139a b +++=由不等式2x y+≤2≤=,13.(四星)已知实数a b c ,,满足22201a b c a b c ++=++=,,则a 的最大值是 ____________. 解:∵222b c bc +≥,即()()2222222b c b c bc b c +++=+≥,∴()2222b c b c++≥,由0a b c ++=,得b c a +=-,由2221a b c ++=,得()22222122b c a a b c +-=+=≥,∴223a ≤,∴a ,故a .9.(三星)已知R k ∈,点(),P a b 是直线2x y k +=与圆22223x y k k +=-+的公共点,则ab 的最大值为( )BA .15B .9C .1D .53-1.(二星)若0,0x y >>的最小值为_________.2.)510)(51(.52的最值求函数≤≤-=x x x y答案:4675.cos sin ,.62的最大值求为锐角设θθθ=y答案:9二、附条件求最值:“1”的代换5:已知正数a ,b 满足a +2b =1,则1a +1b 的最小值是____. 解:1a +1b =a +2b a +a +2b b =3+2b a +ab ≥3+22b a ·ab =3+2 2.36.已知x >0,y >0,且2x +y =1,则1x +2y 的最小值是_________. 解 因为1x +2y =(2x +y )⎝ ⎛⎭⎪⎫1x +2y=4+y x +4x y ≥4+2y x ·4x y =8,等号当且仅当y =12,x =14时成立.37.已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; 解 ∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y=3+y x +2xy ≥3+2 2.当且仅当y x =2xy 时,取等号.38.已知x >0,y >0,且9x +1y =1,求x +y 的最小值. 解:∵9x +1y =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫9x +1y =10+9y x +x y ≥10+29y x ·xy =16.当且仅当9y x =x y 且9x +1y =1,即x =12,y =4时取等号. ∴当x =12,y =4时,x +y 有最小值为16.39.已知x ,y 为正实数,且1x +16y =1,求x +y 的最小值. 解:∵1x +16y =1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +16y =17+16x y +y x ≥17+216x y ·yx =25.当且仅当16x y =y x 且1x +16y =1时,等号成立. ∴x =5,y =20时,x +y 有最小值25.1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是________. 解: ∵a +b =2,∴a +b2=1.∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝⎛⎭⎪⎫a +b 2 =52+⎝ ⎛⎭⎪⎫2a b +b 2a≥52+22a b ·b 2a=92⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立. 故y =1a +4b 的最小值为92.40.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285 C .5 D .6解 ∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x=15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx =5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.41.正数x ,y 满足1x +9y =1. (1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y ≥2 1x ·9y 得xy ≥36,当且仅当1x =9y ,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+22y x ·9xy =19+62,当且仅当2y x =9xy ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.9.,,280,.x y R x y xy x y +∈+-=+(二星)已知且求的最小值答案:18227.()01,,,().1a b x a b f x x x<<=+-三星设为常数求的最小值答案:2()a b +2.(二星)若直线()10,0x ya b a b+=>>过点(1,1),则a b +的最小值等于( )A.2B.3C.4D.5解:因为直线过点(1,1),所以111=+b a ,所以ba ab b a a b b a b a b a ++=+++=++=+211)11)((,因为0,0>>b a ,所以4222=⨯+≥++baa b b a a b ,当且仅当“a=b=2”时等号成立.14.(二星)若()42log 34log a b +=则a b +的最小值是( )DA .6+B .7+C .6+D .7+112511.0,0,1,:.4a b a b a b a b ⎛⎫⎛⎫>>+=++≥ ⎪⎪⎝⎭⎝⎭(三星)设求证1.(四星)已知20x y >>,且满足181022x y x y++=-,求实数x 的最大值. 答案:[]2,181.已知,x y 都是正数,且1x y +=,则4121x y +++的最小值为__________.941.(三星)设,x y 是正实数,且1x y +=,则2221x y x y +++的最小值是___________.141.(三星)已知1,,(0,1)4ab a b =∈,则1211a b+--的最小值是__________.20.(四星)函数()22log 1log 1x f x x -=+,若()()1221f x f x +=(其中1x 、2x 均大于2),则()12f x x 的最小值为_______。