生物脱氮除磷原理及影响因素
- 格式:pptx
- 大小:434.49 KB
- 文档页数:40
A-A-O生物脱氮除磷工艺的原理、控制及异常分析一、A-A-O生物脱氮除磷的原理及过程A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。
在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。
以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。
污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。
在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。
在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。
在好氧段,由于聚磷菌的吸收,TP迅速降低。
在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。
在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。
在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。
二、A-A-O脱氮除磷系统的工艺参数及控制A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。
如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。
但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。
1.F/M和SRT。
完全生物硝化,是高效生物脱氮的前提。
因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。
脱氮效率越高,而生物除磷则要求高F/M低SRT。
A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。
生物脱氮除磷原理生物脱氮除磷原理生物脱氮和除磷是现代污水处理过程中的两个主要步骤。
这样做可以有效地降低污染物的排放,并促进水环境的恢复和保护。
这篇文章将介绍生物脱氮和除磷的原理,并分别进行详细的说明。
一、生物脱氮氮是生命所必需的元素之一,然而,过量的氮会导致水体富营养化,甚至造成水体死亡。
因此,在污水处理过程中,生物脱氮是一个重要的步骤,目的是减少氮的含量,保护水资源。
生物脱氮的原理是通过微生物代谢来降低污水中的氮含量。
具体来说,将含有氮化合物的污水引入生物反应器中,细菌依靠缺氧状态下的代谢产生能量来去除氮,将氨氮转化为氮气和硝酸盐。
这样可以有效地减少氮的含量,并且为其他生物链提供营养素。
二、除磷磷是植物生长所必需的元素之一,但是污水中过多的磷会导致水体富营养化,破坏水生态环境。
因此,除磷也是现代污水处理过程的一个重要步骤。
除磷的方法主要有化学沉淀方法和生物除磷方法。
其中,化学沉淀法是通过添加化学药剂,使磷离子与药剂中的金属离子反应,产生一种不溶性沉淀,在沉淀的过程中去除磷。
相对而言,生物除磷方法更为可持续。
生物除磷的原理是利用一些专门的微生物,按照一定的顺序和比例,对污水中的有机质和磷进行吸收和固定。
这些微生物可以根据磷的生物循环特点,利用有机质和磷的沉积结合,通过代谢来吸收和固定磷,使磷含量得到降低。
三、总结生物脱氮和除磷在现代污水处理中是必不可少的步骤。
通过生物反应器和微生物代谢的过程,这些步骤可以有效地降低含氮和含磷物质的含量。
这些污染物不仅会污染水体,还会间接影响人类健康和生态环境。
为了保护我们的水资源和生态环境,我们需要科学的污水处理方法,以消除污染物和保护我们的水体资源。
生物脱氮和生物除磷是水环境治理中常见的技术手段,其基本原理和过程对于水质净化具有重要意义。
下文将分别对生物脱氮和生物除磷的基本原理和过程进行简要阐述,以便更好地理解和应用这两种技术手段。
一、生物脱氮的基本原理和过程1. 基本原理:生物脱氮是指利用生物的作用将水体中的氮气态化合物转化为氮气排放出去的过程。
其主要包括硝化和反硝化两个过程。
2. 过程:1)硝化作用:首先是硝化细菌将水体中的氨氮转化为亚硝酸盐,然后再将亚硝酸盐转化为硝酸盐的过程。
这一过程主要发生在水中砷、锰等微生物和有机物贪婪性好氧微生物的作用下。
2)反硝化作用:反硝化细菌将水中的硝酸盐还原成氮气气体,从而实现氮的脱除。
这一过程主要发生在水中缺氧或厌氧条件下,反硝化细菌在有机物的作用下进行。
二、生物除磷的基本原理和过程1. 基本原理:生物除磷是指利用生物的作用将水体中的磷物质转化为无机磷沉积或有机磷的过程。
其主要包括磷的吸附和磷的沉淀两个过程。
2. 过程:1)磷的吸附:指微生物在生长过程中,通过细胞活性或胞外聚合物等结合机制,将水体中的磷物质吸附到微生物体表面或细胞内,从而减少水体中的磷含量。
这一过程主要发生在水中的底泥、生物膜等介质上。
2)磷的沉淀:指在适当的环境条件下,微生物可以促进水中磷物质的沉淀作用,将磷固定到底泥中,从而减少水体中的可溶性磷含量。
这一过程主要发生在水中的缺氧或厌氧条件下。
生物脱氮和生物除磷是通过利用微生物的作用,将水体中的氮和磷物质转化为氮气或无机磷沉积的技术手段。
其基本原理和过程涉及硝化、反硝化、微生物吸附和微生物沉淀等生物学过程,在水环境治理中具有重要的应用价值。
希望通过本文的介绍,读者对生物脱氮和生物除磷技术有更深入的了解,并能更好地应用于实际的水质净化工作中。
生物脱氮和生物除磷作为水环境治理的重要手段,对于改善水体质量、保护生态环境具有重要意义。
在实际应用中,为了更好地发挥生物脱氮和生物除磷技术的效果,需要结合具体的水体特点和环境条件,采取相应的措施和管理方式,以确保技术的有效运行和水体的稳定净化。
论述利用微生物脱氮除磷的原理引言:环境污染是当今世界面临的一个严重问题,其中水污染是其中之一。
氮和磷是水体中主要的营养盐,但过量的氮和磷会导致水体富营养化,引发一系列环境问题。
为了解决水体中氮和磷的过量问题,科学家们发现利用微生物进行脱氮除磷是一种有效的方法。
本文将详细论述利用微生物脱氮除磷的原理。
一、氮和磷的来源及危害水体中的氮和磷主要来自人类活动,如农业农药、化肥的使用、工业废水排放以及城市污水处理厂的排放等。
这些氮和磷的过量输入会导致水体富营养化,引发水华、藻类繁殖、鱼类大量死亡等问题,破坏水生态系统的平衡。
二、微生物脱氮除磷的原理微生物脱氮除磷是利用一些特定的微生物来将水体中的氮和磷转化为微生物体内的有机物或无机盐,从而达到降低水体中氮和磷浓度的目的。
1. 脱氮原理:微生物脱氮的主要机制有硝化和反硝化。
在水体中,氨氮首先通过氨氧化细菌(AOB)转化为亚硝酸盐,然后亚硝酸盐通过亚硝酸盐氧化细菌(NOB)进一步氧化为硝酸盐。
在反硝化过程中,硝酸盐还原为氮气,并释放到大气中。
通过这两个过程,微生物可以将水体中的氮气转化为氮气,从而实现脱氮。
2. 除磷原理:微生物除磷的主要机制是通过磷酸盐释放和磷酸盐吸附。
在水体中,某些微生物能够分泌酸性多糖物质,通过酸解磷酸盐结合物质,将磷酸盐从沉积物中释放出来,然后通过微生物体内的酸性多糖物质吸附住磷酸盐,从而实现除磷。
三、微生物脱氮除磷的优势与传统的化学方法相比,利用微生物脱氮除磷具有以下优势:1. 环境友好:微生物脱氮除磷不需要使用化学药剂,不会产生有害物质,对环境污染小。
2. 经济效益高:微生物脱氮除磷的建设和运行成本相对较低,适合大规模应用。
3. 高效稳定:微生物脱氮除磷的效率高,能够在较短时间内将水体中的氮和磷降低到安全浓度。
4. 可持续发展:微生物脱氮除磷是一种可持续发展的技术,微生物可以通过自我繁殖和生长来维持系统的稳定性。
四、微生物脱氮除磷的应用案例微生物脱氮除磷技术已经在实际应用中取得了一定的成果。
污水脱氮除磷原理与影响因素详解一、污水脱氮原理污水中的氮主要以氨氮的形式存在,主要有氨氮、硝酸盐氮和亚硝酸盐氮三种形式。
污水脱氮的主要原理有生物法和化学法两种。
1.生物法的原理:生物法主要利用一种叫做硝化反应和反硝化反应的生物作用来去除污水中的氮。
硝化是将氨氮转化为硝酸盐氮的过程,由硝化细菌完成。
而反硝化是将硝酸盐氮还原为氮气的过程,由反硝化细菌完成。
通过控制生物反应条件和组织好各种微生物的生态系统,可以提高氮的去除效果。
2.化学法的原理:化学法主要通过添加化学药剂来实现氮的去除。
常用的化学药剂包括硝酸盐还原剂和硫酸盐沉淀剂等。
硝酸盐还原剂可以将硝酸盐氮还原为氮气,从而去除氮,硫酸盐沉淀剂则可以将磷酸盐沉淀下来。
二、污水除磷原理污水中的磷主要以磷酸盐的形式存在,主要有无机磷和有机磷两种形式。
污水除磷的主要原理有生物法和化学法两种。
1.生物法的原理:生物法主要通过利用一种叫做磷酸盐的有机物来去除污水中的磷。
在生物法中,磷酸盐会与微生物共生,微生物能够分解磷酸盐结合的有机物,将磷酸盐释放出来,然后通过沉淀或吸附等方式去除污水中的磷。
2.化学法的原理:化学法主要通过添加化学药剂来实现磷的去除。
常用的化学药剂包括铁盐和铝盐等。
这些药剂可以与磷酸盐结合形成沉淀,然后通过沉淀去除污水中的磷。
三、影响污水脱氮除磷的因素1.初始浓度:初始浓度是指污水中氮、磷含量的高低,初始浓度越高,去除难度越大。
2.温度:温度对生物反应有着很大的影响,温度过低会降低微生物的活性从而影响脱除氮和磷的效果。
3.溶解氧:溶解氧水平也对生物反应起着重要作用,足够的溶解氧能提供微生物的活性能,从而促进氮的转化和磷的去除。
4.pH值:酸碱度也会对污水脱氮除磷产生影响。
过高或过低的pH值会抑制或破坏微生物的生长。
5.水质变化:水质中不同物质的含量和比例的改变,如COD、BOD、SS等,也会影响污水脱氮除磷效果。
6.反应时间:污水中的氮、磷物质的转化需要一定的反应时间,反应时间越长,去除效果越好。
污水处理技术之生物除磷的原理及6大影响因素废水中磷的存在形态取决于废水的类型,最常见的是磷酸盐、聚磷酸盐和有机磷。
生活废水的含磷量一般在10~15mg/L左右,其中70%是可溶性的。
常规二级生物处理的出水中90%左右的磷以磷酸盐的形式存在。
在传统的活性污泥法中,磷作为微生物正常生长所必需的元素用于微生物菌体的合成,并以生物污泥的形式排出,从而引起磷的去除,能够获得10%~30%的除磷效果。
在某些情况下,微生物吸收的磷量超过了微生物正常生长所需要的磷量,这就是活性污泥的生物超量除磷现象,废水生物除磷技术正是利用生物超量除磷的原理而发展起来的。
(一)生物除磷的原理根据霍尔米(Holmers)提出的化学式,活性污泥的组成是C118H170O51N17P,由此可知,C:N:P=46:8:1。
如果废水中N、P的含量低于此值,则需另行从外部投加;如等于此值,则在理论上应当是能够全部摄取而加以去除的。
生物除磷的基本原理是利用一种被称为聚磷菌(也称为除磷菌、磷细菌等)的细菌在厌氧条件下能充分释放其细胞体内的聚合磷酸盐(该过程称为厌氧释磷);而在好氧条件下又能超过其生理需要从水中吸收磷(该过程称为好氧吸磷),并将其转化为细胞体内的聚合磷酸盐,从而形成富含磷的生物污泥,通过沉淀从系统中排出这种富磷污泥,达到从废水中除磷的效果。
1.在厌氧区内的释磷过程。
在没有溶解氧和硝态氮存在的厌氧条件下,兼性细菌通过发酵作用将溶解性BOD转化为挥发性有机酸(VFA),聚磷菌吸收VFA并进入细胞内,同化合成为胞内碳源的储存物—聚-β-羟基丁酸盐(PHB),所需的能量来源于聚磷菌将其细胞内的有机态磷转化为无机态磷的反应,并导致磷酸盐的释放。
2.在好氧区内的吸磷过程。
聚磷菌的活力得到恢复并以聚磷的形态储存超出生长需要的磷量,通过对PHB的氧化代谢产生能量用于磷的吸收和聚磷的合成,能量以聚磷酸高能键的形式储存起来,磷酸盐从液相去除。
产生的高磷污泥通过剩余污泥的形式得到排放,从而将磷从系统中去除。
生物除磷的原理和工艺城市污水所含的磷主要来源于人类活动的排泄物及废弃物、工矿企业、合成洗涤剂和家用清洗剂等,所存在的含磷物质基本上都是不同形式的磷酸盐。
那么它的原理是什么呢?工艺又有哪些呢?一起来了解一下!1、生物除磷的基本原理在废水生物除磷过程中,活性污泥在好氧、厌氧交替条件下时,在活性污泥中可产生所谓的“聚磷菌”,聚磷菌在好氧条件下可超出其生理需要而从废水中过量摄取磷,形成多聚磷酸盐作为贮藏物质。
在生物除磷污水处理厂中,都能观察到聚磷菌对磷的转化过程,即厌氧释放磷酸盐——好氧吸收磷,也就是说,厌氧释放磷是好氧吸收磷和最终除磷的前提条件。
2、生物除磷的影响因素⑴有机物负荷及其性质⑵温度温度对除磷效果的影响不如对生物脱氮过程的影响那么明显,在一定温度范围内,温度变化不是十分大时,生物除磷都能成功运行。
试验表明,生物除磷的温度宜大于10℃,因为聚磷菌在低温时生长速度会减慢。
⑶溶解氧由于磷是在厌氧条件下被释放、好氧条件下被吸收而被去除,因此,溶解氧对磷的去除速率和去除量影响很大。
溶解氧的影响体现在厌氧区和好氧区两个方面。
⑷厌氧区的硝态氮在生物除磷工艺中,硝酸盐的去除是除磷的先决条件。
进入生物除磷系统厌氧区的硝态氮会降低除磷能力。
⑸泥龄由于生物脱磷系统主要是通过排除剩余污泥去除磷的,因此,处理系统中泥龄的长短对污泥摄磷作用及剩余污泥的排放量有直接的影响,从而决定系统的脱磷效果,以除磷为目的的污水处理系统的污泥龄一般控制在3、5~7d。
⑹pH值生物除磷系统合适的pH值范围与常规生物处理相同,为中性和弱碱性。
较高的pH值会导致磷酸钙的沉积,堵塞管道,影响污水厂的正常运行。
3、生物除磷的典型工艺典型工艺为A/O除磷工艺,由活性污泥反应池和二沉池构成。
活性污泥反应池分为厌氧区和好氧区,污水和污泥顺次经厌氧和好氧交替循环流动。
回流污泥进入厌氧池,微生物在厌氧条件下吸收去除一部分有机物,并释放出大量的磷,然后进入好氧池并在好氧条件下摄取比在厌氧条件下所释放的更多的磷,同时废水中有机物得到好氧降解,部分富磷污泥以剩余污泥的'形式排出处理系统,实现磷的去除。
节能环保污水处理生物脱氮除磷主要是通过微生物的生命活动实现,其脱氮除磷效率受微生物生命活动的影响很大。
因此,运行和维持高效的生物脱氮除磷系统,必须对其影响因素有比较深入的了解。
影响脱氮除磷效果的因素很多,其中比较关键的因素有温度、pH值、溶解氧(DO)、C/N及C/P比以及有毒物质等。
一、温度温度是影响污水处理微生物活性的最重要因素之一,它影响着酶催化反应速率及基质扩散进入细胞内的速率。
微生物的生长是一个非常复杂的生化反应过程,这种反应需要在一定的温度范围内进行。
温度过低细菌的新陈代谢极弱,甚至处于休眠状态,过高则使之体内的酶变性失活而导致其死亡。
(1)硝化反应的最适温度范围为30~35℃,温度不仅影响硝化细菌的增长繁殖,还影响硝化细菌的代谢活性。
尤其在低温条件下,对硝化细菌的抑制作用极为强烈,当温度很低(<5℃)时,其新陈代谢极弱,甚至处于休眠状态。
当温度大于5℃时,硝化反应速率随温度的升高而增大,且超过30℃后硝化速率随温度的升高增幅减缓。
对去除有机物的同时进行硝化反应的反应器来说,当温度低于15℃时硝化速率急剧降低。
进行反硝化反应的最适温度范围为35~45℃,而温度对硝化菌的影响大于反硝化菌。
活性污泥的活性在20℃左右时较高,而当水温低于10℃时,活性污泥的活性就会大幅度降低。
有研究表明,活性污泥的沉降性能与温度也有一定的关系,不同温度下活性污泥的沉降性能以及脱水性能也存在差异;(2)温度在5℃~24℃范围内,较低温度下的除磷效率比较高温度时的效率要好。
对聚磷菌(Polyphosphate-accumulating microorganisms,PAOs))而言,降低温度会降低其生化转换过程(磷的吸收/释放速率、VFA的吸收速率、PHAs的氧化以及生物量的增长速率等),但在较低的温度条件下(5℃)长期驯化的强化生物除磷(Enhanced Biological Phosphate Removal, EBPR)系统表现出较高的除磷效率。