氮稳定同位素示踪水体氮污染研究
- 格式:doc
- 大小:25.00 KB
- 文档页数:3
稳定同位素示踪技术在环境污染研究中的应用稳定同位素示踪技术是一种先进的环境污染研究手段,其基本原理是利用稳定同位素在生物和环境中的代谢、转化和迁移过程中的分馏现象来追踪化学物质的来源、迁移和去向。
本文将就该技术在环境污染研究中的应用进行探讨。
一、稳定同位素示踪技术的基本原理稳定同位素示踪技术主要是利用不同元素的重量相同而化学性质不同的同位素,在生物和环境中的代谢、转化和迁移过程中的分馏现象来追踪化学物质的来源、迁移和去向。
例如,氢同位素稳定示踪技术常用于研究地下水的来源和迁移路径,氮同位素稳定示踪技术常用于研究土壤和水体中氮素的来源和迁移途径,碳同位素稳定示踪技术则广泛应用于研究污染物的分布、迁移和去向等问题。
利用稳定同位素示踪技术,可以对环境中化学物质的迁移、归宿、生物转化和去向等过程进行研究,从而揭示化学物质在环境中的行为和影响。
二、稳定同位素示踪技术在土壤污染研究中的应用土壤是生态系统的底层基础,土壤污染则对人类健康和生态环境造成严重影响。
稳定同位素示踪技术在土壤污染研究中有着广泛应用。
一方面,它可以通过研究污染物在土壤-植物系统中的稳定同位素分馏现象,了解污染物的迁移途径和去向;另一方面,它可通过研究不同稳定同位素比值和组成变化来揭示污染物的生物降解和转化过程。
三、稳定同位素示踪技术在水环境研究中的应用水是人类生命和工业生产不可或缺的重要资源,但水环境的污染也给人类和生态环境带来了巨大的压力。
稳定同位素示踪技术在水环境研究中的应用主要包括追踪水体中有机和无机物的来源与污染物的迁移和去向,揭示生态系统中物质循环的实际过程。
例如,氧同位素示踪技术可用于研究水体和地下水中氧的迁移途径,分析氧的同位素组成变化来推断水体的年际变化和人类活动对水体的影响;氢同位素示踪技术可用于研究地下水的年际变化、河流水文过程和降雨循环等问题。
四、稳定同位素示踪技术在空气环境研究中的应用空气环境对于人类健康和生态系统的保护至关重要,空气污染则是现代城市所面临的主要环境问题之一。
氮同位素示踪贵州红枫湖河流季节性氮污染
肖化云;刘丛强
【期刊名称】《地球与环境》
【年(卷),期】2004(32)1
【摘要】利用氮同位素技术对贵州红枫湖各输入、输出河流氮污染状况和季节性变化规律进行了研究,并通过对输入河流和输出河流的氮对比,探讨红枫湖的氮负荷变化。
农业输入河流季节氮污染变化较小,以低硝酸盐、低铵盐含量为特征,其氮同位素组成较小,位于农业源范围之内(<+10‰)。
工业污染河流氮污染呈干季和雨季变化:干季(冬春季)以高硝酸盐、高铵盐含量和高氮同位素组成(>+10‰)为特征,雨季(夏季)则相似于农业输入河流。
因而利用氮同位素组成可以对不同类型河流氮污染源进行可靠识别。
【总页数】5页(P71-75)
【关键词】氮同位素;河流;季节性氮污染;红枫湖
【作者】肖化云;刘丛强
【作者单位】中国科学院地球化学研究所环境地球化学国家重点实验室
【正文语种】中文
【中图分类】P592;X52
【相关文献】
1.碳氮稳定同位素示踪鄱阳湖流域蚌湖丰水期的氮污染 [J], 粱越;肖化云;刘小真;胡倩倩;谢亚军;曹彦圣;丁新航
2.浐河流域水-土-植物硝酸盐和氮同位素组成及氮源示踪 [J], 王博;刘卫国
3.淡水环境中氮污染同位素示踪的研究进展 [J], 孙亚乔;王晓冬;校康;段磊;吕梓昊
4.基于氮氧同位素示踪的滨州市水体硝酸盐污染来源解析 [J], 魏守才;刘京涛;†夏江宝;马良
5.甘蔗集约化种植区施肥显著增加入河硝态氮污染:基于氮氧同位素的流域示踪 [J], 黎静宜;李勇;黄智刚;郭豪;陈婷婷;黄俣晴;戴谅;刘小梅;王旭
因版权原因,仅展示原文概要,查看原文内容请购买。
同位素示踪方法在地下水污染溯源中的应用研究地下水作为重要的水资源之一,被广泛应用于供水和灌溉等领域。
然而,由于人类活动和自然原因,地下水污染问题日益严重,给人们的生态环境和健康带来了严重威胁。
因此,地下水污染溯源研究具有重要的科学和应用价值。
其中,同位素示踪方法作为一种有效的技术手段,被广泛应用于地下水污染溯源的研究中。
同位素示踪法是利用元素同位素的特点来追踪和确定地下水中各种污染物的来源和流动路径。
同位素指的是同一个元素的原子个数相同但质量不同的不同原子,例如氢同位素有氢-1、氢-2、氢-3等等。
不同的同位素的比例在不同的物质来源中也不相同,这就成为追踪物质来源的一种指示。
首先,同位素示踪法可以通过分析地下水中污染物的同位素组成,确认污染物的来源。
不同地质环境中地下水的同位素特征有所差异,各种污染源也具有不同的同位素组成。
通过对地下水样品中的同位素进行测定分析,可以确定污染物来自哪个或哪些污染源。
例如,氮同位素在化肥和污水中的同位素组成有所不同,可以通过测定地下水中氮同位素组成的差异来追踪和识别化肥和污水对地下水的污染。
其次,同位素示踪法可以揭示地下水中污染物的迁移和转化过程。
污染物在地下水中的迁移过程中,会发生一系列的生物、物理和化学反应,导致同位素组成的变化。
通过对地下水样品中不同位置及不同时间的同位素进行测定,可以揭示污染物在地下水中的迁移路径和转化过程。
例如,硝酸盐是地下水中常见的污染物之一,硝酸盐在地下水中的转化过程中,氮同位素的比例会发生变化,通过测定地下水中硝酸盐氮同位素比例的变化,可以推断硝酸盐的转化过程和迁移路径。
此外,同位素示踪法还可以评估地下水的补给来源和补给速率。
地下水的补给来源和补给速率对地下水的质量和数量具有重要影响。
通过测定地下水中同位素的组成和比例,配合水文地质调查资料,可以评估地下水的补给来源和补给速率。
例如,氢氧同位素在降水中的比例与地下水中的比例具有明显的相关性,通过测定地下水中氢氧同位素的组成和比例,可以揭示地下水的补给来源和补给速率。
同位素示踪技术在环境污染源溯源中的应用研究同位素示踪技术是一种在环境污染源溯源中广泛应用的重要方法。
通过分析地球上存在的不同同位素的比例,可以准确地追踪物质的来源和流动路径。
在环境保护和污染治理中,同位素示踪技术具有独特的优势,可以提供定量的数据支持,为环境监测、源头追踪和污染治理提供科学依据。
首先,同位素示踪技术在环境污染源溯源中的应用不仅可以确定污染物的源头,还可以追踪其在环境中的迁移和转化过程。
通过分析不同同位素的比例,可以准确地判断污染物的起源。
例如,在地下水污染研究中,可以使用同位素示踪技术确定污染源是来自工业废水、农业活动还是其他渗漏源。
这对于科学地制定采取措施减少或消除污染具有重要意义。
其次,同位素示踪技术还可以帮助准确评估污染物在环境中的迁移和转化过程。
不同同位素具有不同的地球化学性质和迁移特征,通过分析污染物中同位素的比值变化,可以揭示其在环境中的迁移规律。
这对于优化环境治理方案具有重要意义。
例如,在土壤污染治理中,可以通过分析同位素比值的变化,了解污染物在土壤中的迁移途径和行为,从而制定相应的治理策略。
另外,同位素示踪技术还可以提供丰富的数据支持,为环境监测和评估提供科学依据。
通过分析环境样品中同位素的含量和比例,可以获得大量准确的定量数据。
这些数据可以用于评估污染物的浓度、迁移速率和传输路径,从而准确判断环境污染情况,并为科学决策提供依据。
此外,同位素示踪技术还可以用于评估环境治理效果,通过比较治理前后的同位素变化,可以客观地评估治理措施的有效性。
同位素示踪技术在环境污染源溯源中的应用已经取得了一系列的成果。
例如,在水体污染源溯源方面,研究人员使用碳同位素和氮同位素技术来追踪水体中污染物的来源和迁移路径,为水体污染防治提供了重要的科学依据。
在土壤污染研究中,同位素示踪技术被广泛应用于追踪有机和无机污染物的迁移过程,并为土壤污染防治策略的制定提供了有效的手段。
然而,同位素示踪技术在环境污染源溯源中也面临一些挑战。
利用稳定同位素识别广州李坑生活垃圾填埋场周边地下水
的氮污染源的开题报告
一、选题背景和意义:
城市生活垃圾处理是现代城市环境治理的重要内容,然而,填埋场的建设给周边环境带来了一定的污染风险,特别是地下水中的氮污染问题一直备受关注。
广州市李坑生活垃圾填埋场周边地下水水质长期受到影响,存在氮污染问题。
为深入了解该地下水中氮污染源的特征和来源,利用稳定同位素技术对地下水中氮的同位素组成和来源进行识别和分析。
二、研究内容和方法:
1、研究内容:
(1)掌握广州李坑生活垃圾填埋场周边地下水中氮污染物的类型和分布规律。
(2)利用稳定同位素技术分析地下水中氮的同位素组成,并比较不同氮源的同位素组成特征。
2、研究方法:
(1)采集填埋场周边地下水样品,测定其氮污染物含量。
(2)测定地下水中氮同位素的组成,分析不同氮污染来源的同位素组成特征。
三、预期成果和意义:
1、预期成果:
(1)掌握广州李坑生活垃圾填埋场周边地下水中氮污染物的类型和分布规律。
(2)利用稳定同位素技术分析地下水中氮的同位素组成,并比较不同氮源的同位素组成特征。
2、意义:
(1)深化对填埋场对周边环境的影响及其治理的认识,为规范填埋场的环境管理提供技术支撑。
(2)为城市地下水水质管理提供参考依据,促进城市环境治理的可持续发展。
氮同位素方法在地下水氮污染源识别中的应用金赞芳1 叶红玉2(1.浙江工业大学生物与环境工程学院,浙江杭州310014;2.浙江省环境保护科学设计研究院,浙江杭州310007) 摘要地下水硝酸盐来源复杂多样。
介绍了用15N/14N的方法(N同位素方法)分析辨明污染物来源。
氮污染源不同,氮同位素值(δ15N值)也就不同。
例如:雨水的δ15N值偏低,为-1.08%~0.21%;生活排水的δ15N值偏高,为1.0%~1.7%。
污染源不同,受污染的地下水的δ15N值也不同,据此能有效地判断地下水硝酸盐的来源。
关键词地下水硝酸盐氮同位素值Identif ication of the nitrate sources in the groundw ater by N isotope method J in Zanf ang1,Ye Hong y u2.(1.Col2 lege of B iology&Envi ronmental Engineering,Zhej iang Universit y of Technology,H angz hou Zhej iang310014;2.Envi ronmental Science Research&Desi gn I nstitute of Zhej iang Province,H angz hou Zhej i ang310007)Abstract: This paper reviews the state2of2the2fact of natural abundances of N isotope(14N/15N)in investigating the sources and mechanisms of the pollutants.Different nitrate sources have the differentδ15N values.The nitrate from the rainwater has the lowδ15N values(- 1.08%~0.21%)and that f rom the domestic wastewaters has the highδ15N values(1.0%~1.7%).Differentδ15N values of the groundwater is caused by different nitrate sources. Henceδ15N values can be used to identify the nitrate source in the groundwater effectively.K eyw ords: Groundwater Nitrate Nisotope value 水体和食物中过量的硝酸盐被视为一种污染物,早在20世纪40年代就曾报道饮用水中的硝酸盐可引起婴儿高铁血红蛋白症,俗称氰紫症[1],[2]3。
稳定同位素示踪技术评估氮素循环过程分析引言:氮素是生物体生长发育和维持生命活动所必需的关键元素之一。
然而,过量的氮素输入可以导致环境问题,如水体富营养化和土地退化。
为了准确评估氮素的循环过程,稳定同位素示踪技术成为了一种有效的工具。
1. 稳定同位素示踪技术的基本原理稳定同位素示踪技术是基于同位素的自然存在及其相对丰度的差异来分析和追踪化学元素的运动和转化过程。
在氮素循环中,氮的两个稳定同位素氮-14(14N)和氮-15(15N)被广泛应用。
通过测量样品中同一化学化合物的不同同位素的相对丰度,可以揭示氮素的来源、转化途径以及相应的过程。
2. 氮素循环过程分析方法2.1. 正交分析法正交分析法是一种常用的稳定同位素示踪技术,在氮素循环过程研究中得到广泛应用。
该方法将不同位置吸收的氮元素分离,通过测量不同部位氮同位素的相对丰度,可以确定氮素在不同环境中的来源和去向。
例如,通过比较土壤中的氮同位素丰度来判断氮素是否来自化肥或土壤有机质。
2.2. 随机分析法随机分析法是一种直接测量被示踪元素在土壤或其他环境中的迁移和转化过程的方法。
该方法通常通过标记同位素添加到实验样品中,然后测量其在时间和空间上的变化。
例如,在氮素循环过程中,通过添加同位素标记化肥,可以跟踪氮素在土壤中的迁移和转化过程,评估土壤中氮素的损失情况和植物对氮素的吸收利用能力。
3. 氮素循环过程分析的研究进展3.1. 氮素来源与转化稳定同位素示踪技术在氮素来源和转化的研究中起到了关键作用。
通过测量不同环境样品中氮同位素的丰度,可以确定氮素的来源,如大气沉降、土壤有机质和化肥。
此外,通过跟踪氮素同位素在不同环境中的转化过程,可以了解氮素的转化途径,如氮素硝化、还原和固氮过程。
3.2. 氮素损失与控制氮素损失是氮素循环过程中的重要环节,对减少农业环境污染和提高氮素利用效率具有重要意义。
稳定同位素示踪技术可以量化氮素在不同环境中的损失情况,并揭示氮素损失的主要途径和影响因素。
稳定同位素追踪水体中的氮来源的研究现状
张俊萍;宋晓梅
【期刊名称】《环境科技》
【年(卷),期】2014(000)006
【摘要】氮是水体中的主要污染物之一。
近几十年来,随着工农业的发展,使得
水体中氮的污染呈上升趋势,并在今后可能会持续,最根本的解决方法是找到源头,从根本上切断污染途径以达到消除氮源的污染。
在查阅相关文献的基础上,阐述了水中用同位素追踪研究氮的来源的研究进展和存在的问题,对于评价氮的污染现状、污染控制和环境管理具有十分重要的意义。
【总页数】5页(P71-75)
【作者】张俊萍;宋晓梅
【作者单位】安徽理工大学地球与环境学院,安徽淮南 232001;安徽理工大学地
球与环境学院,安徽淮南 232001
【正文语种】中文
【中图分类】X7
【相关文献】
1.水体中硝酸盐氮同位素分析预处理方法研究现状 [J], 王丽丽;吴俊森;王琦
2.多种同位素追踪水体硝酸盐污染来源 [J], 吴娜娜;钱虹;李亚峰;王宇思
3.利用稳定同位素技术研究广西桂江流域水体中碳的来源 [J], 王华;张春来;杨会;
曹建华;张强;唐伟;应启和;林宇
4.稳定同位素技术在环境水体氮的生物地球化学循环研究中的应用 [J], 李荣富;罗
跃辉;曾洪玉;阮晓红;刘丛强
5.氮氧稳定同位素技术用于水体中硝酸盐污染来源解析方面的研究进展 [J], 王诗绘;马玉坤;沈珍瑶
因版权原因,仅展示原文概要,查看原文内容请购买。
利用氮、氧稳定同位素识别水体硝酸盐污染源研究进展*毛巍梁志伟**李伟朱瑶杨木易贾超杰(浙江大学环境与资源学院,杭州310058)摘要水体硝酸盐污染已经成为一个相当普遍且重要的环境问题.为了保证人类的身体健康、水环境的良性演化,有效识别水体中硝酸盐污染的来源就显得尤为重要.水体中不同来源的硝酸盐具有不同的氮、氧稳定同位素组成,因此,可以利用氮、氧稳定同位素对水体中的硝酸盐污染进行源识别.本文介绍了氮、氧稳定同位素在氮循环主要过程中的分馏系数和主要硝酸盐来源的氮、氧稳定同位素组成,对比了5种硝酸盐氮、氧同位素分析预处理方法的优缺点,综述了国内外学者在该方向的研究进展并划分为3个阶段:单独使用氮稳定同位素;同时使用氮、氧稳定同位素;结合数学模型的应用.最后,对该领域今后的研究方向进行了展望.关键词硝酸盐源识别稳定同位素技术预处理方法文章编号1001-9332(2013)04-1146-07中图分类号X522文献标识码AResearch advances in identifying nitrate pollution sources of water environment by using ni-trogen and oxygen stable isotopes.MAO Wei ,LIANG Zhi-wei ,LI Wei ,ZHU Yao ,YANNGMu-yi ,JIA Chao-jie (College of Environment &Resource Science ,Zhejiang University ,Hangzhou310058,China ).-Chin.J.Appl.Ecol .,2013,24(4):1146-1152.Abstract :Water body ’s nitrate pollution has become a common and severe environmental problem.In order to ensure human health and water environment benign evolution ,it is of great importance to effectively identify the nitrate pollution sources of water body.Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body ,nitrogen and oxy-gen stable isotopes can be used to identify the nitrate pollution sources of water environment.This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main proces-ses of nitrogen cycling and the composition of these stable isotopes in main nitrate sources ,com-pared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen andoxygen isotopes in nitrate ,and summarized the research advances in this aspect into three stages ,i.e.,using nitrogen stable isotope alone ,using nitrogen and oxygen stable isotopes simultaneously ,and combining with mathematical models.The future research directions regarding the nitrate pollu-tion sources identification of water environment were also discussed.Key words :nitrate ;source identification ;stable isotope technique ;pre-treatment method.*国家水体污染控制重大专项(2008ZX07101-006)资助.**通讯作者.E-mail :zhiweiliang@163.com 2012-07-23收稿,2013-01-14接受.随着经济和人口的快速增长,密集的人为活动(如工业废水的排放、农业氮肥的使用、生活污水的排放和人畜粪便的排放等)导致水体中硝酸盐的浓度不断增加,这引起了全球学者的广泛关注.饮水和食品中过量的硝酸盐进入人体后,在肠胃中可还原成亚硝态氮,并迅速进入血液,将血红蛋白中的低价铁氧化成高价铁,使其形成无法运载氧气的高铁血红蛋白,造成人体缺铁,患高铁血红蛋白症[1].此外,形成的亚硝酸盐可以形成致癌物质亚硝胺,危害人畜的生命健康[2].为保证人类的健康生长、水环境的良性演化并治理被污染的水体,有效识别水体中硝酸盐污染的来源、解析硝酸盐在水体中的迁移转化过程显得尤为重要.传统方法通过调查污染区的土地利用类型并结合污染区的水化学特征来分析辨明硝酸盐污染源,得到的结果较为粗糙[3].理论上,不同来源的硝酸盐具有不同的氮、氧同位素组成,可以依据硝酸盐应用生态学报2013年4月第24卷第4期Chinese Journal of Applied Ecology ,Apr.2013,24(4):1146-1152氮、氧同位素区分不同的硝酸盐来源.因此,可以根据NO3-中的氮、氧稳定同位素的特征值更好地识别水体中硝酸盐污染的来源及其迁移转化过程.笔者在查阅了大量文献的基础上,就采用氮、氧稳定同位素识别水体硝酸盐污染源的国内外研究现状进行了综述,并对未来的发展趋势进行了展望.1氮、氧稳定同位素1.1稳定氮、氧同位素及其分馏作用自然界中的氮原子的稳定同位素有2种:14N 和15N.空气中14N和15N的相对丰度为99.6337%和0.3663%,且15N/14N比值在不同地区、不同高度恒为1/272[4].通常以大气氮(AIR)作为标准物.自然界中的氧原子的稳定同位素有3种:16O、17O和18O.16O、17O和18O的相对丰度分别为99.759%、0.037%和0.204%[5].一般采用维也纳标准海洋水(VSMOW)作为标准物.一般用千分偏差δ值来描述稳定同位素比率.δ值指样品中两种稳定同位素的比值相对于标准样品同位素比值的千分之偏差,其定义式如下:δ=Rsample-RstandardRstandardˑ1000(1)式(1)中,R为同位素比率,其定义式如下:R=稀有同位素的丰度/丰富同位素的丰度(2)两种物质之间往往会发生同位素分馏作用.同位素分馏作用包括热力学平衡分馏作用和动力学非平衡分馏作用.两种物质间同位素分馏的程度,通常以两种物质中同位素比率之商表示,称作同位素分馏系数,其定义式如下:αA-B=R(A)/R(B)(3)此外,也用富集系数ε来表示稀有同位素相对丰富同位素的富集度,ε的计算公式如下:ε=αA-B-1=R(A)/R(B)-()1ˑ1000(4)当ε>0,表示富集;当ε<0,表示贫化.ε是很小的数,一般写成ɢ(等于10-3)的形式.1.2硝酸盐氮、氧稳定同位素组成氮在自然界循环时参与了物理、化学、生物等过程,伴随着产生了矿化作用、同化作用、硝化作用、反硝化作用等,这些作用均会导致氮同位素发生分馏作用,使不同来源的硝酸盐δ15N值产生差异[6].氮循环中主要作用的氮同位素分馏系数见表1.据前人的试验统计,由土壤中有机氮矿化产生的硝酸盐δ15N值为+4ɢ +9ɢ;由无机化肥产生表1自然界主要氮循环作用的氮同位素分馏系数Table1Nitrogen isotope fractionation coefficients for the major processes occurring in nature反应Reaction物质变化Change insubstance分馏系数Fractionationcoefficient文献Reference固氮作用Nitrogen fixationN2→固定氮N2→Fixed nitrogen1.0001.004[7][8]硝化作用NitrificationNH4+→NO X- 1.0201.035[9][10]反硝化作用DenitrificationNO X-→N2 1.0201.01 1.03[9][11]氨蒸发作用Ammonia volatilizationNH4+→NH3(g)25ħ1.034[12]氨溶解作用Ammonia dissolveN2(s)→N2(g)0ħ 1.00085[13]的硝酸盐δ15N值为-4ɢ +4ɢ;由污水产生的硝酸盐δ15N值为+9ɢ +20ɢ[14];由动物粪便产生的硝酸盐δ15N值为+8.8ɢ +9ɢ[15].硝酸盐中氧元素的组成受其来源影响.经研究表明,来自于大气沉降的硝酸盐δ18O值为+(43.6ʃ14.6)ɢ,来自于大气降水的硝酸盐δ18O值为+20ɢ +70ɢ,来自于人工合成化肥的硝酸盐δ18 O值为+18ɢ +22ɢ[3];来自于土壤微生物硝化作用的硝酸盐,由于其硝酸根中的一个氧原子来自氧气,两个氧原子来自水[16],由氧气和水中氧原子的δ18O值计算得出其δ18O值范围为-10ɢ +10ɢ.Nestler等[17]总结了最常见的5种硝酸盐来源的硝酸盐δ15N和δ18O值范围,如图1所示.2样品预处理方法选择合适的预处理方法可以简化试验步骤、降低试验费用、提高测试精度.从20世纪70年代至今,硝酸盐氮、氧同位素的预处理方法主要有蒸馏图15种硝酸盐来源的硝酸盐δ15N值和δ18O值范围[17]Fig.1Range ofδ15N-NO3-andδ18O-NO3-values of five po-tential nitrate sources[17].74114期毛巍等:利用氮、氧稳定同位素识别水体硝酸盐污染源研究进展法、扩散法、离子交换法、细菌反硝化法和两步化学还原法这5种,其中前两种方法可以测定氮同位素,后3种方法可以同时测定氮、氧同位素.2.1蒸馏法蒸馏法[18-19]最初用于土壤中的全氮分析,后经不断改进以用于不同的研究.该方法主要包括3个步骤:硝氮的还原、蒸馏富集和铵氮的吸附.首先在水样中加入还原剂(戴氏合金)将硝态氮还原为铵态氮,然后通过凯氏法蒸馏,使用硫酸[18]、硼酸酸化的滤纸或沸石[19]吸附.该方法可以用于测定各种形态氮的同位素值,效率较高,比其他方法成熟、稳定.但是,该方法样品处理耗时较长,试验操作需要专门的设备和熟练的操作人员,容易引起交叉污染.2.2扩散法扩散法较早用于水样中NO3-、NH4+含量的测定,它可以用来分离同一个水样中的NO3-和NH4+,以便同时分析一个水样中NO3-和NH4+的δ15N值.据Brooks等[20]的研究,可以先加入MgO扩散6d后收集NH4+,再加入还原剂(戴氏合金)将水样中的NO3-还原成NH4+,扩散6d后收集NO3-还原成的NH4+.扩散完成后取出扩散液冷冻干燥,按照Kendall等[21]的方法,将冷冻干燥后的样品放入经850ħ燃烧的石英管内,加入铜丝、氧化钙、氧化铜,抽取真空后焊封,850ħ燃烧2h,缓慢冷却后送入同位素比值质谱仪测定同位素组成.该方法操作较为简便,可一次性处理大批样品.但该方法扩散周期长(一周甚至更长),且不完全扩散会引起同位素分馏,导致测试结果偏离实际值.2.3阴离子交换法阴离子交换法由Chang等[22]和Silva等[23]建立,是一种新型的可同步分析氮、氧同位素的预处理方法.该方法主要包括3个步骤:树脂的预处理,树脂对水样中NO3-的吸附及对已吸附NO3-的洗脱.洗脱液通过添加Ag2O、过滤、冷冻干燥转化为无水AgNO3,部分经高温催化生成N2,送入同位素比值质谱仪测定δ15N,部分与石墨、铂丝高温燃烧生成CO2,送入同位素比值质谱仪测定δ18O.该方法便于野外采样及运输,极少产生同位素分馏,分析精度高.但是,该方法预处理过程较繁琐(3 5d),预处理费用高(每个样品约600元),且会受水体中其他高浓度阴离子的干扰.2.4细菌反硝化法细菌反硝化法由Sigman等[24]和Casciotti等[25]建立,是另外一种新型的可同步分析氮、氧同位素的预处理方法.该方法在水样中加入缺乏N2O活性酶(该酶使得N2O转化为N2)的反硝化细菌———致金色假单胞菌(Pseudomonas aureofaciens)将水样中的硝酸盐全部转化为N2O,生成的N2O经分离纯化后进入同位素比值质谱仪测定δ15N和δ18O值.该方法预处理过程较简单(2 3d),预处理费用较低(每个样品50元),需要水样少,分析精度高.但是,该方法细菌培养周期长(10 12d),细菌培养可能会受样品毒性干扰,水样中存在的NO2-也会被转化为N2O,导致测试结果偏离实际值.2.5两步化学还原法两步化学还原法由Mcilvin等[26]建立,是最新的一种可同步分析氮、氧同位素的预处理方法.该方法先在水样中加入镉将NO3-还原成NO2-,再在水样中加入叠氮化物将NO2-还原成N2O.生成的N2O 经分离、富集和纯化后进入同位素比值质谱仪测定δ15N和δ18O值.该方法预处理过程简便(1d),预处理费用低,需要水样少,不受优度物质干扰,可实现大量样品自动进样.但是,该方法涉及试剂有毒、易爆,测试时有危险性,水样中存在的NO2-会使测得的δ15N和δ18O值发生偏移,需对结果进行校正.以上5种预处理方法适用对象、可测定同位素δ值、所需水氧量及测试精度的比较见表2.笔者建议,在对测试精度要求较高、经费充足的表2氮、氧同位素测定不同预处理方法对比表Table2Comparison of different pre-treatment methods for determination ofδ15N andδ18O预处理方法Pre-treatmentmethod适用对象Appliedwater可测定同位素Isotopestested所需水样量Samplevolumeneeded测试精度Measuringaccuracy(‰)蒸馏法Distillationmethod[18-19]淡水、海水N多δ15N:ʃ1.0扩散法Diffusionmethod[20-21]淡水、海水N多δ15N:ʃ1.0阴离子交换法Ani-on-exchange meth-od[22-23]淡水N&O多δ15N:ʃ0.05δ18O:ʃ0.08细菌反硝化法Bacterial denitrifica-tion method[24-25]淡水、海水N&O少δ15N:ʃ0.05δ18O:ʃ0.5两步化学还原法Two-step chemicalreduction[26]淡水、海水N&O少δ15N:ʃ0.2δ18O:ʃ0.38411应用生态学报24卷情况下,应选择阴离子交换法;在对测试精度要求较高、经费较充足且有微生物学基础的情况下,可以选择细菌反硝化法;在对测试精度要求不高、经费较为紧张且缺乏相关试验基础的情况下,可以选择蒸馏法.由于两步化学还原法涉及到有毒、易爆试剂,不建议没有相关试验基础的研究者选用.3氮、氧稳定同位素在水体硝酸盐污染源识别中的应用3.1国外研究概况国外利用硝酸盐氮、氧同位素进行硝酸盐污染源识别的研究有40余年的历史,技术手段的进步、数学模型的应用,也使它经历了一个从定性识别到定量识别的过程.在研究前期,由于技术手段的限制,学者们只能测定硝酸盐的δ15N值.当时的研究,一般测定几种潜在硝酸盐污染中硝酸盐的δ15N值和水体中硝酸盐的δ15N值,通过对比潜在污染源和水体中硝酸盐的δ15N值,定性判别水体中硝酸盐污染的主要来源[27-28].1975年Kreitler[27]测定了德克萨斯州兰纳尔斯郡南部和密苏里州马孔郡地下水硝酸盐的δ15N 值,发现前者的δ15N值与来自于土壤有机氮矿化的硝酸盐δ15N值(+2ɢ +8ɢ)相近,后者的δ15N值与来自于动物粪便降解的硝酸盐δ15N值(+10ɢ +22ɢ)相近,说明德克萨斯州兰纳尔斯郡南部地下水硝酸盐污染主要来自于土壤有机氮矿化,而密苏里州马孔郡地下水硝酸盐污染主要来自于动物粪便降解.1979年Gormly等[28]在内布拉斯加州采集了256个地下水水样,通过比较这些水样与潜在污染源的硝酸盐的δ15N值,发现大部分水样的硝酸盐污染来自于化肥使用,只有小部分水样的硝酸盐污染来自于动物粪便降解.随着研究的不断推进,学者们发现,某些硝酸盐污染源硝酸盐的δ15N值范围存在重叠,单独使用硝酸盐的δ15N值不能将这些污染源区分开来,于是,学者们开始将考虑同时测定硝酸盐中的δ15N和δ18O 值.1987年Amberger等[29]首次测定硝酸盐中的δ18O值后,学者们开始测定潜在的几种硝酸盐污染中硝酸盐的δ15N和δ18O值,并根据全球各地的学者们的研究绘制了常见硝酸盐污染中硝酸盐的δ15N 和δ18O值范围图(图1),使得以后的学者们只需测定水样中硝酸盐的δ15N和δ18O值,对比该范围图就可以定性判别水体中硝酸盐污染的主要来源[30-34].Wassenaar[30]在加拿大英属哥伦比亚省西南部弗雷泽低地开展研究时,测定了动物粪便、人工肥和地下水中硝酸盐的δ15N和δ18O值,结果表明,地下水中的硝酸盐污染主要来源于畜禽粪便降解,只有部分来自于人工肥.Pardo等[32]在新罕布夏州哈伯德布鲁克试验林对大气沉降和溪水进行了为期20个月的监测,结果表明,降水中的δ18O和δ15N值的平均值分别为+47ɢ +77ɢ和-5ɢ +1ɢ,降雪中的δ18O和δ15N值的平均值分别为+52ɢ +75ɢ和-3ɢ +2ɢ,溪水中的δ18O和δ15N值的平均值分别为+12ɢ +33ɢ和-3ɢ +6ɢ,而来自于硝化反应的硝酸盐δ18O值为-5ɢ +15ɢ,表明该地区溪水中的硝酸盐主要来自于生物硝化作用.2002年Phillips等[33]提出用基于质量平衡的模型用来评估不同来源对最终汇的贡献率.他们认为,在理论上,如果水体中的硝酸盐污染源不大于3个,就可以用基于质量平衡的混合模型来量化各个污染源对水体硝酸盐污染的贡献率.该模型可以表示为:δ15N=∑3i=1fiˑδ15Ni(5)δ18O=∑3i=1fiˑδ18Oi(6)1=∑3i=1fi(7)其中:i表示污染源1、2、3;δ15N和δ18O表示混合后水体中的硝酸盐δ15N和δ18O值;δ15N i和δ18O i表示污染源i中硝酸盐的δ15N和δ18O值;f i为不同污染源的贡献率,总和为1.Deutsch等[34]在对德国梅克伦堡某条河流的硝酸盐污染进行源识别时,同时测定了灌溉水、地下水、大气沉降和河水中硝酸盐的δ15N和δ18O值,并使用该模型量化了各个污染源的贡献率,结果表明灌溉水、地下水和大气沉降对河水硝酸盐污染的贡献率分别为86%、11%和3%.Voss等[35]也采用了该模型估算了12条入波罗的海河流3种硝酸盐污染源(污水、大气沉降和土壤)的贡献率,评价结果与释放模型的评价结果重合度很好,误差范围在-18% +18%.2008年Moore等[36]认为,Phillips等[33]提出的模型没有考虑到一些重要的不确定来源.第1个不确定性来源是硝酸盐δ15N和δ18O值的时空变异性,第2个不确定性来源是反硝化反应中同位素分馏作用,第3个不确定性来源是当最终的汇含有很多源时,该模型无解.针对Moore等[36]的观点,Parnell 等[37]开发了一个基于R统计软件的稳定同位素混94114期毛巍等:利用氮、氧稳定同位素识别水体硝酸盐污染源研究进展合模型SIAR.该模型基于狄利克雷分布,在贝叶斯框架下构建了一个逻辑先验分布,将上述的3个不确定性都考虑在内.SIAR模型可以表示为:Xij =∑Kk-1Pk(Sij+cij)+εij(8)S ij =N(μij,ω2jk)(9)c ij =N(λij,τ2jk)(10)εij=N(0,σ2j)(11)式中:X ij是混合物i同位素j的δ值,其中,i=1,2,3,…,N,j=1,2,3,…,J;Pk是来源k的比例;S ij是来源i同位素j的δ值,服从均值为μ方差为ω的正态分布;c ij是来源i同位素j的分馏系数,服从均值为λ方差为τ的正态分布;ε是残余误差,表示其他各个混合物间无法量化的方差,其均值和标准差通常情况下为0.2012年Xue等[38]成功运用SIAR模型评价了5个潜在污染源(降水、硝态氮肥、铵态氮肥、土壤氮、粪便和污水)的贡献率.结果表明,粪便和污水的贡献率最高,土壤氮、硝态氮肥和铵态氮肥的贡献率居中,降雨贡献率最低.3.2国内研究概况国内在使用稳定同位素技术进行水体硝酸盐污染源识别方面的研究起步较国外晚,且研究主要集中在使用氮稳定同位素解析地下水硝酸盐污染方面,主要研究见表3.邵益生等[39]在北京城近郊区地下水硝酸盐污染源识别的研究中运用了氮同位素技术,结果表明,北京城近郊区地下水中的硝酸盐污染源主要有两种类型,一类是通过粪坑入渗和管道渗漏的粪便,另一类是生活型污水灌溉,且污水灌溉能否造成地下水硝酸盐污染与灌溉区的土壤性质、污水类型、灌溉方式及人文地质结构特征等诸多因素有关.毕二平等[40]对石家庄市地下水中“三氮”污染状况进行分析时,测定了研究区地下水中硝酸盐的δ15N值,其范围在+6.1ɢ +8.4ɢ,表明土壤有机氮矿化行程的硝酸盐是地下水硝酸盐的主要来源.金赞芳等[41]在对杭州市地下水硝酸盐污染进行源识别时,测定了地下水硝酸盐中的δ15N值,结果表明,城市浅层地下水硝酸盐污染的主要来源是生活污水.周爱国等[42]在对林州市和安阳县山区地下水硝酸盐污染进行源识别时,同时测定了地下水硝酸盐的δ15 N和δ18O值,结果表明,林州市和安阳县山区地下水中的硝酸盐污染主要来源于农家肥和化肥.李思亮等[43]在对贵阳地下水硝酸盐污染进行源识别时,同时测定了地下水硝酸盐的δ15N和δ18O值,结果表明,贵阳郊区地下水夏季主要受硝态氮肥等影响,而市区地下水受人为排污影响严重.刘君等[44]在对石家庄地下水中的硝酸盐污染进行源识别时,同时测定了地下水硝酸盐的δ15N和δ18O值,结果表明当地地下水硝酸盐污染的主要来源是当地的化肥和动物粪便.王松等[45]在对桂林寨底地下河的硝酸盐进行源识别时,同时测定了地下水硝酸盐的δ15N和δ18O 值,结果表明当地地下水硝酸盐污染的主要来源是以动物粪便为主的农家肥.陈惟财等[46]在九龙江流域的研究表明,仙都小流域地表水中硝酸盐主要来自无机化肥与土壤有机氮,有机肥有一定的贡献;五川小流域地表水中硝酸盐的来源以无机化肥与土壤有机氮为主,有机肥的贡献很小;2个小流域地表水中硝酸盐的来源随时空变化而有差异,与当地农作物种类及农田时令密切相关.邢萌等[47]在对西安市东部补给水源(浐河、灞河)硝酸盐污染进行源识别时,测定了浐河和灞表3国内使用稳定同位素进行水体硝酸盐污染源识别主要研究汇总表Table3Summary table of domestic research on using stable isotopes for identification of nitrate pollution研究区域Research area 水体类型Water type同位素Isotopes主要污染源Major pollution sources文献Reference北京城近郊区Near suburb of Beijing地下水N粪便、污水灌溉[39]石家庄Shijiazhuang地下水N土壤有机氮[40]杭州Hangzhou地下水N生活污水[41]林州-安阳-范县Linzhou-Anyang-Fanxian地下水N&O农家肥、化肥[42]贵阳Guiyang地下水N&O硝态氮肥(夏季)[43]石家庄Shijiazhang地下水N&O化肥、动物粪便[44]桂林寨底Zhaidi,Guilin地下水N&O动物粪便[45]九龙江流域Reaches of Jiulong River地表水N 仙都小流域:无机肥、土壤有机氮、有机肥;五川小流域:无机肥、土壤有机氮[46]西安浐河、灞河Chanhe and Bahe rivers of Xi’an地表水N 源头:岩石、土壤有机氮;中游:化肥;下游:工业废水、生活污水和粪肥[47]滹沱河上游区Up-stream of Hutuo River地表水N粪便或污水[48]0511应用生态学报24卷河水样中硝酸盐的δ15N值,结果显示,在源头附近的δ15N值较低,是由岩石和天然土壤中的有机氮起主导影响;中游硝酸盐的δ15N值偏高,说明是由于农业活动施加化肥引起;下游的δ15N值达到最高,说明工业废水、生活污水和粪肥的影响占主导.张翠云等[48]在滹沱河上游区测定了河水、地下水、泉水、水库水水样硝酸盐的δ15N值,大部分水样的δ15N值大于8‰,指示水中硝酸盐主要来源于粪便或污水.回顾国内外近40年的研究概况,可以大致分为3个时期:研究前期,单独使用氮同位素可以作为定性解析地下水或地表水硝酸盐污染源的有效方法;研究中期,由于单独使用氮同位素无法解析某些δ15N值重叠的硝酸盐污染源(如降雨和化肥),学者们引入了硝酸盐氧同位素来解析这些硝酸盐污染源,可以更好地研究硝酸盐污染问题;研究后期,数学模型的引用,有力地推动了地下水或地表水硝酸盐污染源识别方面的研究,使得学者们可以对各硝酸盐污染源进行定量源识别.此外,也有一些学者同时测定其他稳定同位素以增加硝酸盐污染源识别的成功性,如结合测定水的氢、氧稳定同位素值[49]或者硼同位素[50-51].4研究展望利用氮、氧稳定同位素识别水体硝酸盐污染源弥补了传统方法无法定量化识别污染源的缺点,其应用前景十分广阔.针对目前的研究现状,今后可在以下几个方面开展深入研究.第一,现有的硝酸盐氮、氧同位素预处理方法仍存在预处理费用较高、操作步骤较复杂等不足.因此,需要在保证硝酸盐氮、氧稳定同位素值测定精确度的前提下,进一步优化现有方法并提出新方法,提高预处理效率、降低预处理费用.第二,由于水体环境的复杂性,在硝酸盐的迁移转换过程中,其氮、氧稳定同位素值也会发生一些变化.因此,需要定量化水体环境中氮循环各过程对硝酸盐氮、氧稳定同位素分馏作用的大小,进而提高定量化识别的精度.第三,利用稳定同位素技术对水体硝酸盐污染进行定量识别需要结合数学模型.因此,需要积极引进国外开发的各种模型,尤其是基于质量平衡的数学模型(如SIAR模型),以便进一步推进利用稳定同位素技术对水体硝酸盐污染定量源识别的研究.参考文献[1]Huang L(黄亮),Zhou Q-X(周启星),Zhang Q-R(张倩茹).Changes of NO3--N and NH4+-N concen-trationsin sewage sludge before and after heavy metalsremoval by organic acids.Chinese Journal of Applied E-cology(应用生态学报),2007,18(9):2085-2090(in Chinese)[2]Zhang Q-Z(张庆忠),Chen X(陈欣),Shen S-M (沈善敏).Advances in studies on accumulation andleaching of nitrate in farming soil.Chinese Journal ofApplied Ecology(应用生态学报),2002,13(2):233-238(in Chinese)[3]Zhou X(周迅),Jiang Y(姜月).Application of nitrogen and oxygen isotopes to the study of groundwaternitrate contamination.Acta Geoscientica Sinica(地球学报),2007,28(4):389-395(in Chinese)[4]Junk G,Svec HJ.The absolute abundance of the nitro-gen isotopes in the atmosphere and compressed gas fromvarious sources.Geochimica et Cosmochimica Acta,1958,14:234-243[5]Hampel CA.The Encyclopedia of the Chemical Ele-ments.New York:Reinhold Book Corporation,1968[6]Wang D-S(王东升).Basis for the use of nitrogen iso-topes to identify nitrogen contamination of groundwater.Acta Geoscientica Sinica(地球学报),1997,18(2):220-223(in Chinese)[7]Hoering TC,Ford HT.The isotope effect in the fixation of nitrogen by Azotobacter.Journal of the AmericanChemical Society,1960,82:376-378[8]Delwiche CC,Steyn PL.Nitrogen isotope fractionation in soils and microbial reactions.Environmental Science&Technology,1970,4:929-935[9]Miyake Y,Wada E.The isotope effect on the nitrogen in biochemical,oxidation-reduction reactions.Records ofOceanographic Works in Japan,1971,11:1-6[10]Mariotti A,Germon J,Hubert P,et al.Experimental determination of nitrogen kinetic isotope fractionation:Some principles;illustration for the denitrification andnitrification processes.Plant and Soil,1981,62:413-430[11]Mariotti A,Mariotti F,Champigny ML,et al.Nitrogen isotope fractionation associated with nitrate reductase ac-tivity and uptake of NO3-by pearl millet.Plant Physi-ology,1982,69:880-884[12]Frank DA,Evans RD,Tracy BF.The role of ammonia volatilization in controlling the natural15N abundance ofa grazed grassland.Biogeochemistry,2004,68:169-178[13]Klots CE,Benson BB.Isotope effect in the solution of oxygen and nitrogen in distilled water.The Journal ofChemical Physics,1963,38:890-899[14]Heaton T.Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:A review.Chemical Geolo-gy,1986,59:87-102[15]Freyer H.Seasonal variation of15N/14N ratios in atmos-pheric nitrate species.Tellus B,1991,43:30-44[16]Hollocher TC.Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidenceagainst a P-O-N anhydride mechanism in oxidative phos-phorylation.Archives of Biochemistry and Biophysics,1984,233:721-727[17]Nestler A,Berglund M,Accoe F,et al.Isotopes for improved management of nitrate pollution in aqueous re-sources:Review of surface water field studies.Environ-mental Science and Pollution Research,2011,18:519-533[18]Feast N,Hiscock K,Dennis P,et al.Nitrogen isotope hydrochemistry and denitrification within the Chalk aqui-fer system of north Norfolk,UK.Journal of Hydrology,1998,211:233-252[19]Diaconu C,Brion N,Elskens M,et al.Validation of a15114期毛巍等:利用氮、氧稳定同位素识别水体硝酸盐污染源研究进展dynamic ammonium extraction technique for the determi-nation of15N at enriched abundances.Analytica AhimicaActa,2005,554:113-122[20]Brooks P,Stark J,Mcinteer B,et al.Diffusion method to prepare soil extracts for automated nitrogen-15analy-sis.Soil Science Society of America Journal,1989,53:1707-1711[21]Kendall C,Grim E.Combustion tube method for meas-urement of nitrogen isotope ratios using calcium oxide fortotal removal of carbon dioxide and water.AnalyticalChemistry,1990,62:526-529[22]Chang CCY,Langston J,Riggs M,et al.A method for nitrate collection forδ15N andδ18O analysis from waterswith low nitrate concentrations.Canadian Journal ofFisheries and Aquatic Sciences,1999,56:1856-1864[23]Silva S,Kendall C,Wilkison D,et al.A new method for collection of nitrate from fresh water and the analysisof nitrogen and oxygen isotope ratios.Journal of Hydrol-ogy,2000,228:22-36[24]Sigman DM,Casciotti KL,Andreani M,et al.A bacte-rial method for the nitrogen isotopic analysis of nitrate inseawater and freshwater.Analytical Chemistry,2001,73:4145-4153[25]Casciotti KL,Sigman DM,Hastings MG,et al.Meas-urement of the oxygen isotopic composition of nitrate inseawater and freshwater using the denitrifier method.Analytical Chemistry,2002,74:4905-4912[26]Mcilvin MR,Altabet MA.Chemical conversion of ni-trate and nitrite to nitrous oxide for nitrogen and oxygenisotopic analysis in freshwater and seawater.AnalyticalChemistry,2005,77:5589-5595[27]Kreitler CW.Determining the source of nitrate in ground water by nitrogen isotope studies.Report of Investiga-tions,1975,83:1-57[28]Gormly J,Spalding R.Sources and concentrations of ni-trate-nitrogen in ground water of the central Platte re-gion,Nebraskaa.Ground Water,1979,17:291-301[29]Amberger A,Schmidt H.The natural isotope content of nitrate as an indicator of its origin.Geochimica et Cos-mochimica Acta,1987,51:2699-2705[30]Wassenaar LI.Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of15N and18O in NO3-.Applied Geochemistry,1995,10:391-405[31]Mayer B,Boyer EW,Goodale C,et al.Sources of ni-trate in rivers draining sixteen watersheds in the north-eastern US:Isotopic constraints.Biogeochemistry,2002,57:171-197[32]Pardo LH,Kendall C,Pettridge J,et al.Evaluating the source of streamwater nitrate usingδ15N andδ18O in ni-trate in two watersheds in New Hampshire,USA.Hydrological Processes,2004,18:2699-2712[33]Phillips DL,Koch PL.Incorporating concentration de-pendence in stable isotope mixing models.Oecologia,2002,130:114-125[34]Deutsch B,Mewes M,Liskow I,et al.Quantification of diffuse nitrate inputs into a small river system using sta-ble isotopes of oxygen and nitrogen in nitrate.OrganicGeochemistry,2006,37:1333-1342[35]Voss M,Deutsch B,Elmgren R,et al.Source identifi-cation of nitrate by means of isotopic tracers in the BalticSea catchments.Biogeosciences,2006,32:663-676[36]Moore JW,Semmens BX.Incorporating uncertainty and prior information into stable isotope mixing models.Ecology Letters,2008,11:470-480[37]Parnell AC,Inger R,Bearhop S,et al.Source partitio-ning using stable isotopes:Coping with too much varia-tion.PLoS ONE,2010,5(3):e9672.doi:10.1371/journal.pone.0009672[38]Xue DM,De Baets B,Van Cleemput O,et al.Use of a Bayesian isotope mixing model to estimate proportionalcontributions of multiple nitrate sources in surface water.Environmental Pollution,2012,161:43-49[39]Shao Y-S(邵益生),Ji S(纪杉).Application of nitrogen isotope method to study the impact of wastewaterirrigation on groundwater nitrogen pollution.Geotechni-cal Investigation&Surveying(工程勘察),1992(4):37-41(in Chinese)[40]Bi E-P(毕二平),Li Z-H(李政红).Nitrogen pollu-tion of groundwater in Shijiazhuang City.Hydrogeologyand Engineering Geology(水文地质工程地质),2001,28(2):31-34(in Chinese)[41]Jin Z-F(金赞芳),Wang F-E(王飞儿),Chen Y-X (陈英旭),et al.Nitrate pollution of groundwater in ur-ban area.Acta Pedologica Sinica(土壤学报),2004,41(2):252-258(in Chinese)[42]Zhou A-G(周爱国),Chen Y-Z(陈银琢),Cai H-S(蔡鹤生),et al.New way in NO3--N contamination study of water environment:Correlative method of15N&18O.Earth Science(地球科学),2003,28(2):219-224(in Chinese)[43]Li S-L(李思亮),Liu C-Q(刘丛强).The characterand application of18O-NO3-in the groundwater of Guiy-ang.Carsologica Sinica(中国岩溶),2006,25(2):108-111(in Chinese)[44]Liu J(刘君),Chen Z-Y(陈宗宇).Using stable isotope to trace the sources of nitrate in groundwater inShijiazhuang.Environmental Science(环境科学),2009,30(6):1602-1607(in Chinese)[45]Wang S(王松),Pei J-G(裴建国),Liang J-H(梁建宏).Using nitrogen and oxygen isotope techniques toidentify the sources of nitrate in subterranean stream ofZhaidi,Guilin.Journal of Geological Hazards and Envi-ronment Preservation(地质灾害与环境保护),2010,21(4):54-56,81(in Chinese)[46]Chen W-C(陈惟财),Chen W-Q(陈伟琪),Zhang L-P(张珞平),et al.Identifying sources of nitrate in sur-face water of Jiulong River watershed.EnvironmentalScience(环境科学),2008,29(6):1484-1487(inChinese)[47]Xing M(邢萌),Liu W-G(刘卫国).Nitrogen iso-topic characteristics of nitrate and contamination sourcetracing of the Chanhe River and the Bahe River inXi’an.Acta Geoscientica Sinica(地球学报),2008,29(6):783-789(in Chinese)[48]Zhang C-Y(张翠云),Zhang S(张胜),Li Z-H(李政红),et al.Isotopic characteristics of surface water andgroundwater in the up-stream of Hutuo River.Journal ofArid Land Resources and Environment(干旱区资源与环境),2008,22(5):160-166(in Chinese)[49]Showers WJ,Genna B,Mcdade T,et al.Nitrate con-tamination in groundwater on an urbanized dairy farm.Environmental Science&Technology,2008,42:4683-4688[50]Widory D,Petelet-Giraud E,N Grel P,et al.Tracking the sources of nitrate in groundwater using coupled nitro-gen and boron isotopes:A synthesis.Environmental Sci-ence&Technology,2005,39:539-548[51]Seiler RL.Combined use of15N and18O of nitrate and 11B to evaluate nitrate contamination in groundwater.Applied Geochemistry,2005,20:1626-1636作者简介毛巍,男,1988年生,硕士研究生.主要从事稳定同位素技术源识别研究.E-mail:mw@zju.edu.cn责任编辑肖红2511应用生态学报24卷。
260地球与环境E A R T H A N D E N V I R O N M E N T2021年第49卷第3期Vol.49. No. 3,2021城市河流水生植物氮含量和氮同位素记录及其对水体氮污染的响应吴云1,刘学炎胡朝臣|(1.天津大学表层地球系统科学研究院,天津300072;2.中国科学院地球化学研究所环境地球化学国家重点实验室,贵阳550081 )摘要:城市生产和生活活动排放大量含氮污染物到城市河流中,造成水质下降、水体富营养化。
河流水生植物已被广泛用于水体氮污染的评价和去除,但目前水生植物氮利用的过程机制并不十分清楚,这阻碍了利用水生植物的氮素地球化学指标去评价河流水体氮污染状态。
本研究采集西南地区流经贵阳市区的南明河河水和水生植物样本,通过分析氮浓度和同位素组成,探讨在不同水体氮浓度条件下水生植物的氮利用机制。
在受城市污染的河段,水体铵根(N H4+)、硝酸根(NO;)、溶解有 机氮(D O N)浓度均显著升高(n= 13, P<0. 05),其水生植物的总氮含量随河水无机氮含量升高而升高。
但是,受域市污染河段的水生植物总氮的S I5N值却无显著变化,说明除了水体氮源的V5N特征,水生植物的氪利用策略是影响其8I5N记录的重要因素。
在河流低氮浓度下植物主要利用水中的N O;,在下游高氮浓度下植物氮利用机制较复杂,过程中会发生分馏,但具 体的利用形态还无法确定。
本研究揭示了水生植物氮利用策略对河流氮污染状态的响应机制和对塑造其地球化学记录的重要性,为城市河流废水氮污染评价及其植物修复措施提供基础科学依据。
关键词:水生植物;氮同位素;河流;城市废水;氮偏好中图分类号:X143文献标识码:A文章编号:1672-9250(2021)03-0260-10doi: 10. 14050/ki. 1672-9250.2021.49.062城市人口的生产和生活活动使大量含氮污染物通过污水或路面径流输人城市河流,造成河流水 质下降、水体富营养化[1<]。
中国水体硝酸盐氮氧双稳定同位素溯源研究进展中国水体硝酸盐氮氧双稳定同位素溯源研究进展摘要:随着科学技术的不断进步,环境污染问题日益突出。
水体硝酸盐污染是造成水资源短缺和水生生物灭绝的重要原因之一。
水体硝酸盐的溯源研究对于准确判断污染源并采取相应治理措施具有重要意义。
本文综述了近年来中国在水体硝酸盐氮氧双稳定同位素溯源研究方面的进展,介绍了氮氧同位素在水体硝酸盐溯源中的应用,分析了目前的研究方法和技术,以及存在的问题和展望。
1. 引言水是生命之源,而水体硝酸盐污染被认为是导致水资源短缺和水生生物灭绝的主要原因之一。
当硝酸盐污染超过环境容量时,就会引起许多环境问题,如水体富营养化、藻华暴发和地下水污染等。
因此,准确判断硝酸盐的污染源至关重要,可以为治理和保护水资源提供科学依据。
2. 氮氧同位素在水体硝酸盐溯源中的应用氮氧同位素是对硝酸盐起源进行溯源的有效工具。
氮氧同位素组成不同的污染源具有不同的特征,可以通过分析水体中硝酸盐的同位素组成来确定硝酸盐来源。
氮氧同位素比值通常用δ15N和δ18O表示,其值反映了硝酸盐的形成机制和来源。
以氮氧同位素为指示的硝酸盐溯源已被广泛应用于水体中硝酸盐来源的研究。
3. 研究方法和技术目前,常用的水体硝酸盐氮氧同位素分析方法主要包括微生物气体法和仪器分析法。
微生物气体法主要是通过微生物代谢产生的气体来分析硝酸盐的同位素组成,该方法操作简单、试剂成本低,但分析结果在高盐度水体中容易受到干扰。
仪器分析法则是通过质谱仪等仪器设备对硝酸盐的同位素组成进行分析,具有高灵敏度和准确性的优点,但设备价格较高、操作复杂。
根据不同的研究需求和实际情况,可以选择适合的方法来进行硝酸盐溯源研究。
4. 存在的问题和展望尽管水体硝酸盐氮氧同位素溯源在水污染研究中具有巨大潜力,但在实际应用过程中仍存在一些问题。
首先,不同地区、不同环境中硝酸盐的同位素组成会受到多种因素的影响,如降雨、温度等,这对水体硝酸盐溯源的准确性和可靠性提出了挑战。
氮稳定同位素示踪水体氮污染研究氮输入超标会引起发水体富营养化、水生生物死亡等一系列环境问题,通过研究水体氮浓度、氮同位素值的时空分布特点和成因,能定性的判别水体氮污染的来源及其转化机制。
本文结合该学科领域的研究成果,对氮同位素示踪技术运用到水体氮异常的研究中作出综述,有以下成果:论述了两种常用的氮稳定同位素示踪技术的(15N自然丰度法、15N同位素稀释法)的机理及运用;氮的来源及转化过程中的分馏效应;对有机氮同位素的研究中,颗粒有机氮(PON)的δ15N 值再结合13C、C/N比值可以综合判断有机颗粒物的来源,并可作为生态系统中氮的生物地球化学反应及转化过程的识别标志。
标签:氮稳定同位素;水环境;颗粒态有机氮随着工农业生产的发展,氮污染已成为水环境问题研究的热点,世界许多地方水环境中的氮含量都超过了相关机构规定的饮用水中N03一含量的上限值,这也给人们的身体健康带来极大隐患。
迄今,许多学者已将氮稳定同位素应用到判别水中氮污染来源以及水循环过程中氮的转化机制之中.对水体中氮稳定同位素也进行了广泛的探索。
通过对氮稳定同位素的研究,可以有效的判别水体中氮异常的来源,了解氮的转化机制和沿途的变化,从而有效地防范和控制水体氮污染一、氮稳定同位素示踪技术(一)15N自然丰度法氮有14N和15N两种稳定同位素,其中14N豐度为99.64‰,15N丰度为0.36‰[1]。
不同物质中有着不同的14N和15N的同位素比值(δ15N),并且,δ15N 在不同的地质背景和含水介质中也有所相异,所以研究水体中的自然氮同位素值对判断区域地质环境有着重要的现实意义的。
通过研究地表水氮浓度、氮同位素值的时空分布特点和成因,能定性判别水体氮污染的来源及其转化机制。
(二)15N同位素稀释法氮循环过程中在沿途的变化会引起氮同位素的分馏效应,通过加入15N标记体,经过相关的生物化学过程测定15N标记体原子百分比变化可以示踪物质转化迁移途径与程度。
氮同位素标记技术在环境污染监测中的应用近年来,随着人们对环境保护意识的逐步增强和环境污染问题的日益严峻,环境监测行业也迎来了新的技术革命。
其中,氮同位素标记技术成为环境污染监测领域的一种重要手段,其在水环境、大气环境、土壤环境等方面的应用得到了广泛关注。
本文将从氮同位素标记技术的应用原理、环境污染监测中的应用场景以及未来发展方向三个方面分析探讨氮同位素标记技术在环境污染监测中的应用。
一、应用原理氮同位素标记技术是指利用氮同位素标记剂对污染源进行追踪识别的一种技术手段。
其中,氮元素有两种同位素:一种是质子数为7的氮-14(14N),另一种是质子数为7的氮-15(15N)。
一般情况下,自然界中的氮元素以14N为主,因此采用氮同位素标记技术时,向环境中添加一定量的15N标记剂,使得环境中的氮元素以15N为主,从而能够追踪到被标记的污染源。
二、应用场景在环境污染监测中,氮同位素标记技术的应用场景十分广泛。
下面分别从水环境、大气环境、土壤环境三个方面进行介绍。
1. 水环境水环境中的污染源非常复杂,包括废水排放、农业面源污染、城市雨水、工业废水等。
其中,氮是水体中的主要污染物之一,如果无法对其进行有效的追踪和识别,将会给环境带来巨大的损害。
氮同位素标记技术可以通过向水体中添加氮同位素标记剂,对不同来源的氮进行追踪,通过比对样品中不同的氮同位素比值,可以有效识别出不同的污染源,从而能够指导污染物的排放控制和治理。
2. 大气环境大气环境中的污染源主要来自于交通尾气、燃煤等化石燃料的燃烧、农业等,其中主要的氮污染物包括氮氧化物、氨等。
通过将氮同位素标记剂添加到大气中,可以追踪不同来源的氮气体污染物,通过对不同样品的氮同位素比值进行分析,可以有效地识别出大气污染物的来源和扩散过程,指导大气污染治理工作的开展。
3. 土壤环境土壤环境中的氮污染主要来自于化肥、畜禽养殖、城市垃圾等,其中化肥是土壤中氮污染的主要来源之一。
稳定同位素示踪技术揭示微生物地下水移动路径与污染来源解析地下水是地球上重要的水资源之一,也是许多人饮用水的主要来源。
然而,地下水受到了各种因素的污染威胁,包括工业废水、农业活动以及城市化进程中产生的污染物。
了解地下水中微生物的移动路径以及污染物的来源成为保护地下水资源和确保水质安全的关键。
为了揭示微生物地下水移动路径与污染来源,科学家们广泛运用稳定同位素示踪技术。
稳定同位素是指具有相同原子数的同位素,在化学过程中不易发生变化。
地下水中的稳定同位素可以提供微生物活动、物质迁移和水动力等信息,从而帮助我们分析微生物地下水移动路径并解析污染来源。
首先,通过分析微生物的稳定同位素组成,科学家可以了解微生物的来源和生长环境。
微生物在不同环境中存在特定的同位素组合,如氢氧同位素、氮同位素和碳同位素。
研究人员可以通过测量地下水中微生物的同位素组成,确定微生物所处的环境类型,比如农田、巷道还是工业区。
其次,稳定同位素示踪技术可以帮助科学家们追踪微生物在地下水中的移动路径。
微生物在地下水中的迁移通常受到许多因素的影响,包括水动力条件、土壤孔隙结构以及微生物自身特性。
通过分析地下水中微生物的稳定同位素组成,科学家们能够确定微生物的移动方向和速度,进而揭示微生物在地下水中的迁移路径。
这种技术对于评估微生物的迁移风险以及防治地下水污染具有重要意义。
此外,稳定同位素示踪技术还可以用来定量分析地下水中不同污染来源的贡献程度。
地下水中的污染物可能来自不同的源头,如工业废水、农业液肥以及城市排放物。
通过测量地下水中污染物的同位素组成,科学家们可以计算出不同污染源所占的比例,并判断污染物的主要来源。
这种信息对于制定有效的污染物减排策略非常重要。
稳定同位素示踪技术在微生物地下水移动路径与污染来源解析中发挥着重要的作用。
它可以帮助我们了解微生物的来源、移动路径以及污染物的贡献程度。
通过这些信息,我们可以更好地保护地下水资源,预防地下水污染,并制定相应的管理措施。
基于氮氧同位素技术的大明湖总氮来源研究基于氮氧同位素技术的大明湖总氮来源研究摘要:大明湖是济南市的一座重要城市湖泊,对于湖泊水质的研究具有重要意义。
本研究基于氮氧同位素技术,探究大明湖总氮的来源及其影响因素。
通过采集大明湖的水样,并在实验室中进行同位素分析,得出了一系列结果。
研究结果表明,大明湖总氮的主要来源为周边土地径流和污水排放,其中农业的肥料使用是主要的非点源污染来源。
引言:大明湖是济南市的一片宝地,其水质状况直接关系到城市的可持续发展。
然而,随着城市的不断扩张和经济的发展,大明湖的水质面临着严重的挑战。
而总氮是衡量水体污染的关键参数之一,其来源研究对于制定合理的水环境管理政策至关重要。
因此,本研究采用氮氧同位素技术,探究大明湖总氮的主要来源及其影响因素。
材料与方法:1. 采集水样:本研究于2019年10月至2020年3月期间,每月在大明湖各个站点采集表层水样(0.5m深),共采集了6个月的水样。
2. 样品分析:实验室采用同位素比值质谱仪对水样中的氮氧同位素进行测定,测定结果以δ15N和δ18O值表示。
结果与讨论:1. 总体水质变化:研究期间,大明湖的总氮浓度呈现一定的波动,平均浓度约为2.5mg/L。
2. 同位素分布:分析结果显示,大明湖水样的δ15N值分布范围为+5.5‰至+10.2‰,δ18O值分布范围为+2.1‰至+4.8‰。
3. 总氮来源:通过同位素分析,结合周边地区的土地利用情况,可以初步判断大明湖总氮的主要来源为周边土地径流和污水排放。
其中,农业的肥料使用是最主要的非点源污染来源,占总氮输入的50%以上。
结论:本研究通过氮氧同位素技术探究了大明湖总氮的来源及其影响因素。
研究结果表明,大明湖总氮的主要来源为周边土地径流和污水排放,其中农业的肥料使用是主要的非点源污染来源。
这些研究结果对于制定科学合理的水环境管理策略具有一定的指导意义,为大明湖水质改善提供了参考依据。
展望:虽然本研究初步分析了大明湖总氮的来源,但仍存在一些未解决的问题。
氮稳定同位素示踪水体氮污染研究
氮输入超标会引起发水体富营养化、水生生物死亡等一系列环境问题,通过研究水体氮浓度、氮同位素值的时空分布特点和成因,能定性的判别水体氮污染的来源及其转化机制。
本文结合该学科领域的研究成果,对氮同位素示踪技术运用到水体氮异常的研究中作出综述,有以下成果:论述了两种常用的氮稳定同位素示踪技术的(15N自然丰度法、15N同位素稀释法)的机理及运用;氮的来源及转化过程中的分馏效应;对有机氮同位素的研究中,颗粒有机氮(PON)的δ15N 值再结合13C、C/N比值可以综合判断有机颗粒物的来源,并可作为生态系统中氮的生物地球化学反应及转化过程的识别标志。
标签:氮稳定同位素;水环境;颗粒态有机氮
随着工农业生产的发展,氮污染已成为水环境问题研究的热点,世界许多地方水环境中的氮含量都超过了相关机构规定的饮用水中N03一含量的上限值,这也给人们的身体健康带来极大隐患。
迄今,许多学者已将氮稳定同位素应用到判别水中氮污染来源以及水循环过程中氮的转化机制之中.对水体中氮稳定同位素也进行了广泛的探索。
通过对氮稳定同位素的研究,可以有效的判别水体中氮异常的来源,了解氮的转化机制和沿途的变化,从而有效地防范和控制水体氮污染
一、氮稳定同位素示踪技术
(一)15N自然丰度法
氮有14N和15N两种稳定同位素,其中14N豐度为99.64‰,15N丰度为0.36‰[1]。
不同物质中有着不同的14N和15N的同位素比值(δ15N),并且,δ15N 在不同的地质背景和含水介质中也有所相异,所以研究水体中的自然氮同位素值对判断区域地质环境有着重要的现实意义的。
通过研究地表水氮浓度、氮同位素值的时空分布特点和成因,能定性判别水体氮污染的来源及其转化机制。
(二)15N同位素稀释法
氮循环过程中在沿途的变化会引起氮同位素的分馏效应,通过加入15N标记体,经过相关的生物化学过程测定15N标记体原子百分比变化可以示踪物质转化迁移途径与程度。
目前,己有大量研究应用该技术测定湿地土壤中各种生物化学反应(如矿化作用、硝化作用、反硝化过程、异化还原作用)的氮转化速率并计算不同生化反应机制的贡献率。
二、氮的来源及转化机制
氮的来源十分广泛,根据产源位置将来源可分为内源和外源[2],内源通常是湖泊等水体内部的水生生物碎屑等;外源则有大气干湿沉降、动物粪便、河流
径流带来的土壤有机质、生活污物和工业排污等。
在生态系统中,氮素通过固氮作用、矿化作用、同化吸收作用、硝化作用、反硝化作用、异化还原作用等复杂的生物化学作用引起氮同位素的分馏效应,并发生一系列的转化作用,在一定程度上改变了氮同位素的组成。
动物可通过排出尿素等代谢过程产生有机氮,植物残体经过搬运、沉积作用也可形成悬浮颗粒态有机氮PON或土壤有机质氮。
水体中有机氮与无机氮的相互转化过程贯穿于整个氮素循环的子过程。
三、有机氮同位素特征及其环境意义
(一)δ15NPON污染源示踪
不同来源以及不同的水类型的有机δ15N有所不同,水体悬浮物质、土壤沉积物、典型植物等物质的有机氮同位素的组成及差异包含着流域重要的环境变化信息。
水体中有机氮分为悬浮颗粒态有机氮PON和溶解有机氮DON,对颗粒有机氮(PON)的δ15N值研究具有重要意义,δ15NPON可以有效的作为河流生态系统氮的生物地球化学反应及转化过程的识别标志,还可以在一定程度反映出外源输入和内源颗粒的相对比例,成为判断物源的重要依据。
Kendall等通过研究通过美国圣华金河主河道中颗粒有机氮(PON)的δ15N值的时空变化,来反映出有机颗粒物主要来源于藻类,且在夏季时由于上游支流藻类生长繁盛,水中生产力提高,PON含量升高,冬季时反之。
颗粒有机氮(PON)的δ15N值体现了流域内环境现状与变化趋势,是河流生态系统中氮素循环的综合体现。
但与氮相关的循环过程及生物化学反应比较复杂,尽管不同来源的有机颗粒物具有不同的δ15N特征值,具备有效识别意义,但δ15NPON不仅受氮循环各种转化过程中产生的分馏作用影响,还与环境中无机氮同位素特征值产生共同作用,所以仅仅使用PON的氮同位素变化追踪氮元素来源精确度不高,还需要通过测定有机颗粒物的δ15N值、13C结合C/N比值来推测有机颗粒物的来源。
梁越[3]等对鄱阳湖流域的蚌湖、赣江和修河的丰水期氮污染研究中,结合悬浮颗粒物的δ13C、δ15N、C/N比值示踪湖泊和河流的有机质的来源,表明蚌湖的悬浮颗粒物主要来源于土壤有机质和水生植物的混合.赣江和修河的悬浮颗粒物主要来源于土壤有机质和陆地植物碎屑,并且废水有机质有一定贡献。
四、结论
随着工农业生产的发展,大量的生活污物、工业污水、合成化肥、动物粪便等外源污染物质输入进水体,引发了水体氮元素超标、富营养化、水生生物死亡等一系列水环境问题。
氮污染已成为水环境问题研究的热点,利用氮稳定同位素示踪技术来研究水体氮污染的源和汇,了解氮的沿程变化转化机制,对有效地预防和控制水体氮污染具有重要意义。
参考文献:
[1]邢光熹,施书莲,杜丽娟等.苏州地区水体氮污染状况[J].土壤学报,2001,
85-91.
[2]张翠云,郭秀红.氮同位素技术的应用:土壤有机氮作为地下水硝酸盐污染源的条件分析[J].地球化学,2005,119-126.
[3]梁越,肖化云,刘小真等.碳氮稳定同位素示踪鄱阳湖流域蚌湖丰水期的氮污[J].湖泊科学,2018,30(04):957-966。