磁法勘探
- 格式:ppt
- 大小:2.84 MB
- 文档页数:22
磁法勘探的基本原理及应用磁法勘探的概述磁法勘探是一种非破坏性地球物理勘探方法,通过测量地球磁场的变化来获取地下结构信息。
它基于地球的地磁场以及地下的磁性物质的相互作用,可以在地下发现磁性物质的存在、分布和性质。
磁法勘探的基本原理磁法勘探利用地球磁场和地下磁性物质之间的相互作用来获取地下情况。
磁法勘探的基本原理如下:1.地球磁场:地球本身具有一个磁场,也称为地球磁场。
地球磁场是由地球内部液体外核的流动所产生的,它在地表形成一个相对稳定的磁场。
2.地下磁性物质:地下存在各种不同类型的磁性物质,如矿石、岩石、土壤、岩层或地下水。
3.磁场异常:地下磁性物质与地球磁场相互作用会导致磁场异常。
当地下磁性物质的磁性与地球磁场不同或存在不均匀分布时,就会产生磁场异常。
4.磁场测量:磁法勘探使用磁力仪器来测量地磁场的强度和方向变化。
测量点位于地表或以人工井筒方式进入地下。
5.数据处理和解释:通过对测量数据的处理和解释,可以获得地下磁性物质的位置、形状、大小、磁性强度等信息。
这些信息可用于地质勘探、矿产资源评估、地下水资源管理等领域。
磁法勘探的应用领域磁法勘探在地质和工程勘探中有广泛的应用。
以下是一些常见的应用领域:•矿产勘探:磁法勘探可以用于寻找矿藏、判断矿石的性质和储量。
根据地下磁性物质的反应,可以识别出具有磁性的矿石,如铁矿、钴矿等。
•水资源管理:磁法勘探可以用于寻找地下水的分布和储量。
地下水和地下磁性物质之间存在一定的关系,通过对磁场异常的测量和分析,可以确定地下水的位置和深度,从而实现对地下水资源的科学利用。
•地下工程:磁法勘探可以用于地下隧道、地铁、坑道等地下工程的勘察和地质状况评估。
通过磁法勘探,可以探测出地下磁性物质的存在,并评估其对工程建设的影响。
•环境地质:磁法勘探可以用于环境地质调查和污染物监测。
地下沉积物中的磁性物质与环境污染物之间存在一定的关系,通过对磁性物质的测量和分析,可以识别出地下污染物的位置和分布情况。
第三章磁法勘探前言磁法勘探是利用地壳内各种岩(矿)石间的磁性差异所引起的磁异常来寻找有用矿产或查明地下地质构造的一种地球物理勘探方法。
人类在公元前800年,便知晓了磁性的存在。
在许多希腊作者的各种论著中都记载了具有显著吸铁性能的“神石”。
它最初有“大力士石”,“吕底亚石”,“陨铁”或者简单称为“石”。
我们的祖先们亦留下了许多关于“磁”的记载。
地球的周围存在着磁场。
我们的祖先很早就发现了地磁场的存在,并有举世瞩目的四大发明之一—指南针(司南)。
司南大约出现在战国时期。
司南由青铜盘和天然磁体制成的磁勺组成,青铜盘上刻有二十国向,置磁勺于盘中心圆面上,可以保持平衡,且自由旋转。
当它静止的时候,勺柄就会指向南方,古人称它为“司南”。
指南车是我国古代的文化瑰宝之一,是中国古代科技成果的杰出代表。
春秋战国时期,人们就制作了指南车用来指挥作战。
明代《武经总要》描述“指南鱼”的制作,用薄铁叶剪裁成鱼形,鱼的腹部略下凹,磁化后浮在水面,就能指南北。
这是一种人工磁化的方法,它利用地球磁场使铁片磁化。
即把烧红的铁片放置在子午线的方向上。
烧红的铁片内部分子处于比较活动的状态,使铁分子顺着地球磁场方向排列,达到磁化的目的。
北宋的沈括在《梦溪笔谈》中提到另一种人工磁化的方法。
这种方法比地磁法简单,而且磁化效果比地磁法好,摩擦法的发明不但世界最早,而且为有实用价值的磁指向器的出现,创造了条件。
磁法勘探也是应用最早的地球物理方法。
1640年,瑞典人首次尝试用罗盘寻找磁铁矿,开辟了利用磁场变化来寻找矿产的新途径。
但是直到1870年,瑞典人泰朗(Thalen)和铁贝尔(Tiberg)制造了万能磁力仪后,磁法勘探才作为一种地球物理方法建立和发展起来。
就工作环境而言,磁法勘探可分为地面磁测、航空磁测、海洋磁测和井中磁测四类。
航空磁测是第二次世界大战后发展起来的方法。
它不受水域、森林、沙漠等自然条件的限制,测量速度快、效率高,已广泛应用于区域地质调查,储油气构造和含煤构造勘查、成矿远景预测,以及寻找大型磁铁矿床等方面。
磁法勘探设备的技术特点和优势分析磁法勘探是一种常用的地球物理勘探方法,通过测量地球表面上的磁场信息来推测地下的地质结构和矿产资源的分布情况。
磁法勘探设备是磁法勘探工作中的核心装备,具有独特的技术特点和明显的优势。
本文将详细介绍磁法勘探设备的技术特点和优势,帮助读者更好地了解和应用这一技术。
一、技术特点:1. 非接触性测量:磁法勘探设备通过测量地球表面的磁场信息来推测地下的地质结构和矿产资源的分布情况。
与地震勘探等需要使用探针接触地面的勘探方法相比,磁法勘探无需直接与地质介质接触,可以在较大范围内进行非接触性的测量,减少了对地质环境的干扰。
2. 高分辨率:磁法勘探设备可以实现较高的分辨率,能够探测到较细小的地质异常。
磁法勘探利用地下矿区的磁性异常信息,通过对磁场的精确测量和分析,可以识别出矿体、断层、岩性变化等地质结构,提供高分辨率的地下信息。
3. 无需破坏:磁法勘探设备无需在地质介质中进行钻孔或破坏性工作,可以在地表上进行勘探测量。
这意味着磁法勘探可以有选择地对特定区域进行勘探,减少了对环境和地质资源的破坏,更加经济环保。
4. 可广泛应用:磁法勘探设备适用于各种地质环境和矿产类型的勘探工作。
它可用于找矿、勘探地下水资源、地壳构造研究等领域,广泛应用于矿产勘探、城市规划、环境保护等领域。
二、优势分析:1. 经济高效:磁法勘探设备的运行成本相对较低,且能够通过较少的仪器设备实现较大范围的勘探工作。
与其他地球物理勘探技术相比,磁法勘探在勘探成本和时间上具有一定的优势,非常适合中小型矿山和地质勘探单位使用。
2. 无侵入性:磁法勘探设备无需进行地下钻孔或开挖工作,对地质环境没有破坏性影响,既可以快速进行勘探测量,又可以准确获取勘探结果。
这种无侵入性的特点使得磁法勘探成为环境保护和城市规划领域的重要工具。
3. 高空间分辨率:磁法勘探设备可实现高空间分辨率的测量,能够探测到较小的地质异常。
在矿产勘探中,可以帮助确定矿体的边界和规模;在工程勘探中,可以帮助确定地下管线和隧道的位置;在地壳构造研究中,可以揭示地壳构造的细节。
磁法勘探毕业论文摘要:磁法勘探作为一种重要的地球物理勘探方法,在地质调查、矿产勘查、工程勘察等领域发挥着关键作用。
本文详细阐述了磁法勘探的基本原理、工作方法、数据处理与解释,通过实际案例分析展示了其应用效果,并探讨了该方法的局限性和未来发展趋势。
关键词:磁法勘探;地球物理;磁场;数据处理一、引言地球内部蕴藏着丰富的矿产资源和地质信息,为了有效地探寻和开发这些资源,了解地球内部的结构和性质,各种地球物理勘探方法应运而生。
磁法勘探作为其中的一种重要手段,凭借其独特的优势在地质勘探领域占据着重要地位。
二、磁法勘探的基本原理磁法勘探的基础是地球磁场以及地质体的磁性差异。
地球本身存在着磁场,称为地磁场。
地质体如岩石、矿石等,由于其成分、结构和形成过程的不同,往往具有不同的磁性。
有些地质体具有较强的磁性,能够引起局部磁场的变化;而有些则磁性较弱或无磁性。
通过测量地球表面磁场的强度和分布,可以发现这些由于地质体磁性差异引起的磁场异常。
根据磁场异常的特征和规律,结合地质资料和其他地球物理方法的成果,可以推断地质体的分布、形态、埋深等信息。
三、磁法勘探的工作方法(一)野外测量在野外进行磁法测量时,通常使用磁力仪来测量磁场的强度。
常见的磁力仪有质子磁力仪、光泵磁力仪等。
测量点的布置需要根据勘探目标和地质条件进行合理规划,一般采用规则的测网或沿特定的剖面进行测量。
(二)数据采集在数据采集过程中,要严格按照操作规程进行,确保测量数据的准确性和可靠性。
同时,要记录测量的时间、地点、环境等相关信息,以便后续的数据处理和解释。
(三)质量控制为了保证数据质量,需要进行质量控制。
这包括在测量前对磁力仪进行校准和检查,在测量过程中进行重复观测和对比观测,以及在测量后对数据进行初步的整理和分析,剔除异常和错误的数据。
四、磁法勘探的数据处理(一)日变改正由于地磁场会随着时间发生变化,因此需要对测量数据进行日变改正,以消除这种时间因素的影响。
磁法勘探一、基础知识1.磁法勘探利用磁力仅观测由岩石的磁性差异引起的磁场变化的一种物探方法,称为磁法勘探,也称为磁力测量或磁测。
按其观测的空间位置不同,可分为地面磁测、航空磁测及海洋磁测。
2.磁极、磁偶及磁矩在磁性体的两端,带有符号相反的两种磁荷,即正磁荷和负磁荷,称之为磁极。
磁极所含磁荷的多少,用磁量m 表示。
由磁库仑定律可知,真空中Q (ξ,η,ζ)点处的点磁荷m Q 对P (x ,y ,z )点上的正点磁荷0m Q 的作用力为γγπμ3m0m 0Q Q 41f ⋅=(6—24)式中 γ——m Q 指向0m Q 的失径,即由源点Q (ξ,η,ζ)到场点P (x ,y ,z )的失径。
其值为()()()[]21222ζηζγ-+-+-=z y x式中 0μ——真空磁导率。
在SI 单位制中,270/104A N -⨯=πμ(或H/m ,亨利/米),磁荷的SI 单位为m ·N/A 或Wb 。
磁场强度是单位正磁荷所受的力,即γγπμ30041mm Q Q f H ==(6—25) 磁场强度的SI 单位为A /m 。
真空中,磁感应强度的定义式为H B 0μ= (6—26)磁感应强度的SI 单位是Wb/㎡或N/(A ·m),称特斯拉。
不管是条形磁铁或是磁针,都具有正负磁荷的两个磁极,宦们是磁量相等而符号相反的两个点磁极,总是成对共同出现,将其作为一个整体,通常称之为磁偶极子。
如图6—30所示,磁偶极子的极矩为mL P = (6—27)式中 m ——磁量;L ——两极之间距离。
磁偶极子的磁矩μPM =(6—28)磁偶所产生磁场如图6—31所示,任一点P 处的磁场强度可表示为图6—30 磁偶极子示意图 图6—31 磁偶产生磁场示意图Q MH 23cos 31+=γ (6—29)式中 M ——磁矩;γ——S ,N 之间中点到P 点距离; Q ——S ,N 连线与r 之间夹角。
由物理学可知,磁化强度的定义是单位体积(V )的磁矩。
磁法勘探,什么是磁法勘探?磁法勘探(magnetic prospecting)磁法勘探是地球物理勘探方法之一。
自然界的岩石和矿石具有不同磁性,可以产生各不相同的磁场,它使地球磁场在局部地区发生变化,出现地磁异常。
利用仪器发现和研究这些磁异常,进而寻找磁性矿体和研究地质构造的方法称为磁法勘探。
磁法勘探是常用的地球物理勘探方法之一。
它包括地面、航空、海洋磁法勘探及井中磁测等。
磁法勘探主要用来寻找和勘探有关矿产(如铁矿、铅锌矿、铜锦矿等);进行地质填图;研究与油气有关的地质构造及大地构造等问题。
我国建国以来大多数铁矿区、多金属矿区及油气田等都进行了大量的磁法勘探工作,取得了良好的地质效果。
磁法勘探也是基本地球物理手段,国家已纳入在全国范围内进行系统测量的计划,并已基本覆盖了全国重要地区。
磁法勘探的发展历史磁法勘探是物探方法中最古老的一种。
17世纪中叶瑞典人利用磁罗盘直接找磁铁矿。
1879年塔伦(R.Thaln)制造了简单的磁力仪,磁法才正式用于生产。
1915年,施密特(A.Schmidt)发明了石英刃口磁力仪,磁法开始大规模用于找矿,以及在小面积上研究地质构造。
第二次世界大战後,航空磁法推广使用,人们可以快速而经济地测出大面积的磁场分布。
磁法开始用于研究大地构造,及解决地质填图中的一些问题。
中国于1936年在攀枝花﹑易门﹑水城等地开始了试验性的磁法勘探, 1950年後才大规模开展起来。
磁法勘探的发展历史应用范围磁法勘探可用于地质调查的各个阶段。
在地质填图时,磁法勘探可以划分沉积岩﹑喷出岩﹑基性岩﹑超基性岩及变质岩的分布范围;可以研究沉积岩下面的基底构造 ;查明各种控制成矿的构造,如深大断裂和火山口等。
在普查找矿时,磁法勘探可用来直接寻找磁铁矿床,并可与其他物探方法配合,间接寻找或预测石油﹑天然气﹑煤﹑铜﹑铝﹑镍和其他金属﹑金刚石等。
在勘探磁铁矿床时,结合钻探资料,可以推定矿体的形状,指导正确布置钻孔和寻找钻孔旁侧及深部的盲矿体。
磁法勘探的基本原理
磁法勘探(Magnetic Exploration)它是一种常用地质探测技术,既利用
磁性物质和磁场进行调查,又利用物体内在磁场互动来获取信息。
磁法勘探的基本原理是:大部分的物体都有层状的内磁场,靠近地核的特
殊物质则有外部磁场,如磁铁、铁矿石等,而地球拥有一个巨大的磁场,该磁场能够施加到地表及地下物质中,而且存在着比较明显的差异,因此利用集成磁针、罗盘、地磁变和测距观测仪这些磁法仪器来测量磁场的强弱、照射强度和有效强度,从而可以获取探测的相关资料,从而建立出一个三维的地质构造模型。
内磁场是由物体内部分子的磁性元素而产生的,外磁场是受测物体内部磁
场的影响而反过来施加于测量物体的,因此内外磁场的综合变化被称为“磁波”,当磁波即测量物体附近的磁场发生变化时,就可以捕获到它产生的信号,从而使测量物体的磁场变化得以精确调查。
磁法勘探法不仅可以实现对地球形态的探测,也可以用于探测岩石的结构,由于岩石的结构在磁场变化的影响下会有所不同,因此,磁法勘测法可以准确调查岩石的结构与构造情况。
磁法勘探是一种实用性很强、成本低廉、安全性高的现代地质调查技术,
它已经成为现代地质勘探技术的主要手段,用于探测地表和地下特殊矿藏体及控制构造运动。
如今,在互联网的时代,提出了更为先进的磁法勘探方法和技术,例如远程测量和计算机辅助分析系统,这使得磁法勘探的应用更加广泛,从而成为地质勘探的重要工具。
磁法在矿产资源勘探中的应用矿业工程是勘探、开发、利用地下矿产资源的学科。
在矿业工程的实践中,使用各种手段和技术来寻找矿产资源是非常重要的。
磁法是一种常用的地球物理勘探技术,可广泛应用于矿产资源勘探中。
本文将介绍磁法在矿产资源勘探中的应用以及其原理和实施。
一、磁法原理磁法是通过测量地球磁场的变化来判断地下岩石结构、矿体、地质构造等信息的物理勘探方法。
地球本身具有磁场,矿体的存在会对地球磁场产生扰动。
利用磁法测量设备可以检测到这种磁场的变化,并通过数据处理和分析获得地下矿体和地质构造信息。
二、磁法在矿产资源勘探中的应用1. 矿产类型识别磁法可以用于识别不同类型的矿产资源,例如铁矿、铜矿和锰矿等。
不同矿石具有不同的磁性,通过测量磁场变化可以判断地下是否存在特定类型的矿体。
2. 矿体探测磁法可以用于定位矿体的位置、形状和大小。
矿体对地球磁场的影响会导致磁场异常,在磁法测量中可以通过探测磁场异常来确定矿体的存在和相关参数。
3. 地质构造分析磁法可以帮助分析地质构造,如断层、褶皱和岩浆岩体等。
这些地质构造对地球磁场的影响表现在磁场异常上,通过磁法测量可以获得地下地质构造的信息,为后续的勘探工作提供指导。
4. 地下水资源探测磁法不仅可以用于矿产资源的勘探,还可以应用于地下水资源的探测。
地下水含有溶解的矿物质,会对地球磁场产生影响。
利用磁法可以检测到这些磁场异常,从而确定地下水的存在和储量。
三、磁法勘探实施磁法勘探实施通常需要以下步骤:1. 设计勘探方案根据目标矿产类型和勘探区域的地质条件,确定磁法勘探的参数和设备选择。
包括测量仪器的类型、检测线网的布置方式和测量参数等。
2. 数据采集根据设计方案,使用磁法测量仪器进行数据采集。
测量仪器会记录磁场变化的数据,通过移动测量仪器的位置和测量方向,获得覆盖整个勘探区域的数据。
3. 数据处理与分析将采集到的数据进行处理与分析,包括数据拟合、异常提取和数据解释等。
通过与地质模型和现场观测的对比,得出合理的解释和结论。
磁法勘探设备的工作原理及原理解析磁法勘探是地球物理勘探中常用的一种方法,它利用地壳内部岩石矿物的磁性差异,通过测量地磁场的变化来推断藏矿构造及其地下分布情况。
磁法勘探设备的工作原理是基于磁场感应和磁矩与磁场的相互作用原理。
1. 磁场感应原理:根据法拉第电磁感应定律,当磁场的磁通量发生变化时,会在导体中产生感应电动势。
磁法勘探设备利用这一原理,在地表放置一组磁场源,通过电流激发产生一个人工磁场。
当人工磁场通过地下的岩石矿物时,磁场的磁通量就会发生变化,从而在地下产生感应电流和感应磁场。
2. 磁矩与磁场的相互作用:岩石矿物在磁场中会产生磁矩,即磁化强度的矢量表示。
不同种类的岩石矿物具有不同的磁性特性,包括磁化强度、磁化方向等。
通过测量磁矩与磁场之间的相互作用,可以推断出地下岩石矿物的类型和分布情况。
磁法勘探设备通常由以下几个主要部分组成:磁场源、磁场传感器以及数据采集和处理系统。
这些部分共同协作,以获得地下岩石矿物的相关信息。
1. 磁场源:磁场源是产生人工磁场的装置,通常使用直流电源来供电。
磁场源可以采用不同的形式,如磁滚轮、磁体或线圈。
其目的是在地下岩石矿物中产生足够强度和稳定的磁场,以便对地下结构进行磁化。
2. 磁场传感器:磁场传感器是测量地磁场变化的装置,常用的传感器有磁强计、磁力仪和磁敏电阻等。
它们可以测量地磁场的三个分量:X轴、Y轴和Z轴。
通过对这些分量的测量,可以确定地下岩石矿物的磁场特征,进而得到地下的构造信息。
3. 数据采集和处理系统:数据采集和处理系统是磁法勘探设备中重要的组成部分,主要用于获取、记录和处理测量得到的数据。
通常,磁场传感器的输出信号会通过模数转换器转换为数字信号,然后被存储在数据采集设备中。
后续的数据处理包括对数据的滤波、校正、插值等步骤,以获得更精确的地下结构信息。
磁法勘探设备的原理解析主要体现在以下两个方面:1. 磁性差异的探测:地壳中的岩石矿物具有不同的磁性特性,包括磁化强度、磁化方向等。
磁法勘探的基本原理与应用1. 什么是磁法勘探磁法勘探是一种地球物理勘探方法,通过测量地球表面或地下特定区域的磁场变化来了解地下的构造和物质分布。
它基于地球的磁场与地下物质的相互作用关系,可以用于矿产勘探、工程地质勘察、环境地质调查等领域。
2. 磁法勘探的基本原理磁法勘探的基本原理是通过测量地表或近地表磁场的强度和方向变化来推断地下物质的性质和分布。
地球的磁场是由地球内部的磁场产生的,地下的物质对磁场有吸引或排斥的作用,从而影响地表磁场的分布。
磁法勘探利用这种地下物质对磁场的作用来研究地下构造和物质分布。
2.1 磁场强度的测量磁法勘探的关键是测量地表或近地表的磁场强度。
可以使用磁感应计或磁场强度计等仪器进行测量。
通过在勘探区域的多个测点上进行磁场强度的测量,并绘制磁场强度分布图来了解磁场的变化规律。
2.2 磁场方向的测量除了测量磁场强度,磁法勘探还需要测量磁场的方向。
磁场的方向可以通过磁航向仪等仪器进行测量。
通过在勘探区域的多个测点上进行磁场方向的测量,并绘制磁场方向图来了解磁场的变化趋势。
3. 磁法勘探的应用磁法勘探具有非常广泛的应用领域,以下是一些常见的应用场景:3.1 矿产勘探磁法勘探在矿产勘探中有着重要的应用。
不同矿床的磁性特征各不相同,利用磁法勘探可以寻找矿床的位置、形态和规模,对于矿产资源的开发具有重要的指导意义。
3.2 工程地质勘察在工程建设中,需要对地下的地质情况进行勘察。
磁法勘探可以用于识别地下断层、隐患等地质结构,并提供关于地层、地质构造和地下水等信息,为工程设计和施工提供重要参考。
3.3 环境地质调查磁法勘探还可以用于环境地质调查。
通过对地下岩石、土壤和地下水等的磁性特征进行测量和分析,可以了解地下的地质环境特征,对环境评价和环境污染监测具有重要意义。
3.4 地质灾害预测磁法勘探可以应用于地质灾害的预测和监测。
地质灾害往往与地下的地质构造和物质分布有密切关系。
通过测量磁场的变化,可以提供关于地下构造和物质分布的信息,为地质灾害的预测和防范提供依据。
磁法勘探名词解释
磁法勘探是一种地球物理勘探方法,利用地球磁场和磁性物质的物理特性探测地下矿产、水源、岩层结构等信息。
以下是磁法勘探中常见的名词解释:
1. 磁场:指地球磁场,是由地球内部磁性物质运动产生的磁力线,具有方向和大小。
2. 磁异常:指地下物质对磁场的反应引起的磁场变化,可用于勘探矿产、岩层结构等信息。
3. 磁性物质:指具有磁性的物质,如铁、镍、钴等,其存在会影响地球磁场,形成磁异常。
4. 磁性异常:指地下磁性物质对磁场的影响所引起的磁异常。
5. 磁滞回线:磁性物质在外加磁场作用下,磁化强度随磁场的变化关系。
在磁场强度逐渐降低时,磁化强度不会立即回到其未受磁作用时的状态,而是在磁场降至一定值后才开始回复,形成了磁滞回线。
6. 磁化率:磁性物质受磁场作用下的磁化程度,可用于勘探矿产、岩层结构等信息。
7. 磁性分层:指地下磁性物质分布形成的不同磁性特征的地层。
8. 磁化角度:磁场方向与地表的夹角,勘探时需测定地表上磁场的方向和大小。
9. 磁化方向:磁性物质的磁化方向,可用于判断地下物质的性质和构成。
以上是磁法勘探中常见的名词解释,了解这些名词的含义有助于更好地理解和应用磁法勘探技术。