函数测试题
- 格式:doc
- 大小:48.50 KB
- 文档页数:10
•、选择题(12题每题5分,共60分)1.函数/(x) = -^L + lg(3x + l)的定义域是0 A/1 -X2.给出下列三个等式:f (xy) =f (x) +f (y), f (x+y) =f (x) f (y), f(x+y)二"]¥"叭1- fix) fly)不满足英中任何一个等式的是()A. f (x) =3XB. f (x) =sinxC. f (x) =log2xD. f (x) =tanx3.已知函数/(X)关于直线x = -2对称,周期为2,当xe[-3,-2]时,/(x) = (x + 2)2,则/(」)=()A. 0B. —C. —D. 14 164.函数f (x)二的图象大致是()5.已知函数f(x)的定义域为R.当x〈0时,/(%) = x3-l ;当—15x51时,/(-x) = -f(x):当x>^时,•则f⑹二()(A) -2 (B) -1 (C) 0 (D) 2a x,(x > 1)6.已知函数/(x) = \ a在R上为增函数,则a的取值范围是( )(4-紗+ 2,(Ml)A. [5,9)B. [5,9]C. [4,8)D. [4,8]7.已知定义在R上的函数/(兀)是奇函数,且于(兀)在(一也0)上是减函数,/(2)=05<?(X)=/(X+2),则不等式xg(x)< 0的解集是()A. (―oo, —2]U[2,+<xjB. [―4, —2]U[0,+oo)c. (―00,—4]U[—2,+co) D. (YO,-4]U[0,+ocj阶段性测试试卷A・(一亍+°°)D. (-co,-)下列函数中B(£)8.已知定义的R上的函数/(x)满足f(x + l) = /(1-x)且在[1,4-00)上是增函数,不等式/(or+2)< /(x-1)对任意xe[-;l]fH 成立,则实数d的取值范围是()A. [-3,-1]B. [―2,0]C. [-5,-1]D. [-2,1]9.已知函数/*(兀)=-x2 + ax(a G /?,/?G /?),对任意实数兀都有/(l-x) = /(l + x)成立,若存在xe[-l,l]时,使得/(兀)—b = 0有解,则实数b的取值范国是( )A. (-1,0)B. [-3,1]C. (-3,1)D.不能确定10.已知函数f(x) = lnx-ax2 + or恰冇两个零点,则实数a的取值范围为()A. (一8, 0)B. (0, +8)C. (0, 1) U (1, +8)D. (—8, 0) U {1}11.已知a=log2*, b=305 , c=0.53 ,则有()A. a>b>cB. b> c> aC. c>b> aD. c>a>b12.定义在/?上的徜函数/(x)满足/(x + 2)-/(x) = 0 , K在[-1,0]上单调递增,设= /(log32),19 一b = /(log j 2), <? = /(一),则a, b , c的人小关系是( )27 12A. a>b>cB. a>obC. b> c> aD. ob>a二、填空题(每题5分,共30分)13.已知y = f(x) + x2是奇函数,且/(I) = 1,若gd ⑴+ 2,贝ijg(-l)= ___________________14./(x) = 2若/(x0)>l则如的取值范围是.y]x,X> 015.已知函数y = f(x-2)定义域是[0,4],则y=/(E)的定义域是.X— 1X + /716.若函数f(x)=—;——w (-oo,b)U(b + 2,+oo)是奇函数,贝^ia + b = .2x -11 —Y 1 —兀?17.已知f(—) = —则/(兀)的解析式为f(x)= ___________________________1+ 兀1 + x18.已知/(兀)是R上的偶函数,对xwR都有/(x + 6) = f(x) + /(3)成立,若/(1) = 2,则/(2011)=_ 三、解答题(共5道题,)19. ( 12分)设f(x)是定义在实数集R上的函数H. y(-x) = -/(4 /(X)在[0, + oo)是减函数H f(m-1)+ /(m-3)<0,求实数m 的取值范围.20. (12分)定义在非零实数集上的函数/(力满足/(^) = /(x) + /(j),且/(朗是区间(0,+8)上的递增函数.求:(1) /(1),/(一1)的值;(2)求证:/(-X)= /(X); (3)解不等式/(2) + /(x--)<0.21.(12分)求f(x) = x2 -2ax-\在区间[0,2]上的最大值和最小值。
函数基础知识经典测试题附解析一、选择题1.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.2.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()A.B.C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.3.下列各曲线中表示y是x的函数的是()A.B.C.D.【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.4.已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.【详解】解:由题意得,12×2πR×l=8π,则R=8lπ,故选A.【点睛】本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.5.下列说法:①函数y=x的取值范围是6x>;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算2|-的结果为7:⑥相等的圆心角所对的弧相等;理数.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数y=x的取值范围是6x≥;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;==是无理数;故正确.故选:B.【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.6.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1234v0.01 2.98.0315.1A.v=2m﹣2 B.v=m2﹣1 C.v=3m﹣3 D.v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.故选B.7.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为()A.3 B3C.3D.3【答案】C【解析】【分析】将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF3;直线l向右平移直到点F过点B时,y3;当直线l过点C时,x=a+2,y=0∴菱形的边长为a+2﹣a=2∴当点E 与点D 重合时,由勾股定理得a 2+2(3)=4∴a =1 ∴菱形的高为3∴菱形的面积为23.故选:C .【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,8.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.9.如图,矩形ABCD 中,6cm AB =,3cm BC =,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C →→B →的方向在边AD ,DC ,CB 上运动,设运动时间为x (秒),那么APQ ∆的面积()2cm y 随着时间x (秒)变化的函数图象大致为( )A .B .C .D .【答案】A【解析】【分析】根据题意分三种情况讨论△APQ 面积的变化,进而得出△APQ 的面积y (cm 2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP =x ,Q 点运动路程为2x ,①当点Q 在AD 上运动时,y =12AP•AQ =12x•2x =x 2,图象为开口向上的二次函数; ②当点Q 在DC 上运动时, y =12AP•DA =12x×3=32x ,是一次函数; ③当点Q 在BC 上运动时, y =12AP•BQ =12x•(12−2x )=−x 2+6x ,为开口向下的二次函数, 结合图象可知A 选项函数关系图正确,故选:A .【点睛】 本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ 的面积变化.10.在函数3y x =-中,自变量x 的取值范围是( ) A .3x <B .3x >C .3x ≥D .8,5OA OB ==u u u v u u u v【答案】C【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-3≥0,解得x≥3.故选C .【点睛】本题考查了二次根式的性质:二次根式的被开方数是非负数.11.若12x y x -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠,解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.如图,正方形ABCD 的边长为2,动点P 从点D 出发,沿折线D →C →B 作匀速运动,则△APD 的面积S 与点P 运动的路程x 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】【分析】分类讨论:当点D在DC上运动时,DP=x,根据三角形面积公式得到S△APD=x,自变量x的取值范围为0<x≤2;当点P在CB上运动时,S△APD为定值2,自变量x的取值范围为2<x≤4,然后根据两个解析式对各选项中的图象进行判断即可.【详解】解:当点D在DC上运动时,DP=x,所以S△APD=12AD•DP=12•2•x=x(0<x≤2);当点P在CB上运动时,如图,PC=x﹣4,所以S△APD=12AD•DC=12•2•2=2(2<x≤4).故选:D.【点睛】此题考查动点问题的函数图象,解题关键在于掌握分类讨论的思想、函数的知识、正方形的性质和三角形的面积公式.注意自变量的取值范围.13.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x 之间的函数关系的图象如图乙所示,则线段AB长为()A.2B.3C.5D.6【答案】C【解析】【分析】根据三角形中位线定理,得到S△PEF=14S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.【详解】解:∵E、F分别为AP、BP的中点,∴EF∥AB,EF=12 AB,∴S△PEF=14S△ABP,根据图像可以看出x的最大值为4,∴CD=4,∵当P在D点时,△PEF的面积为2,∴S△ABP=2×4=8,即S△ABD=8,∴AD=24ABDSV=284⨯=4,当点P在C点时,S△PEF=3,∴S△ABP=3×4=12,即S△ABC=12,∴BC=24ABCSV=2124⨯=6,过点A作AG⊥BC于点G,∴∠AGC=90°,∵AD∥BC,∴∠ADC+∠BCD=180°,∵∠BCD=90°,∴∠ADC=180°-90°=90°,∴四边形AGCD是矩形,∴CG=AD=4,AG=CD=4,∴BG=BC-CG=6-4=2,∴2242+5故选C.【点睛】本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.14.如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S (cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.15.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.16.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A.34B3C.2 D3【答案】A 【解析】【分析】本题根据图2判断△EFG的面积y最小时和最大时分别对应的x值,从而确定AB,EG的长度,求出等边三角形EFG的最小面积.【详解】由图2可知,x=2时△EFG的面积y最大,此时E与B重合,所以AB=2,∴等边三角形ABC的高为3,∴等边三角形ABC的面积为3,由图2可知,x=1时△EFG的面积y最小,此时AE=AG=CG=CF=BG=BE,显然△EGF是等边三角形且边长为1,所以△EGF的面积为3,故选A.【点睛】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.17.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.【答案】C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
函数零点一、单选题(共10道,每道10分)1.已知函数的图象是连续不断的曲线,且有如下的对应值表则函数在区间上的零点至少有( )A.2个B.3个C.4个D.5个答案:B解题思路:试题难度:三颗星知识点:函数零点的存在性2.函数的零点个数为( )A.0B.1C.2D.3答案:C解题思路:试题难度:三颗星知识点:函数零点的存在性3.已知函数,在下列区间中,包含零点的区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数零点的存在性4.已知是函数的零点,若,则的值满足( )A. B.C. D.的符号不确定答案:C解题思路:试题难度:三颗星知识点:函数的零点5.已知是函数的一个零点,若,则( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数的零点6.已知函数,.若函数有两个零点,则实数的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数的零点7.对实数,定义运算“*”:,设函数,若函数有两个零点,则实数的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数零点的存在性8.已知函数,,若存在,则实数的取值范围为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数的零点9.方程的解所在的区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数零点的存在性10.定义在上的奇函数,当时,,则关于的函数的所有零点之和为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数的零点。
函数测试题及答案一、选择题1. 函数y = f(x) = 3x + 2的值域是:A. (-∞, +∞)B. [2, +∞)C. [0, +∞)D. (2, +∞)2. 如果函数f(x) = x^2 + 1在x = 2处的导数为4,则在x = -2处的导数为:A. -4B. 4C. 0D. 13. 下列哪个函数不是奇函数?A. f(x) = x^3B. f(x) = sin(x)C. f(x) = cos(x)D. f(x) = x^2二、填空题4. 函数f(x) = 2x - 1的反函数是_________。
5. 如果函数f(x) = x^3 - 6x^2 + 11x - 6的极值点是x = 2,则该函数在x = 2处的值为_________。
三、简答题6. 请说明函数f(x) = x^2 - 4x + 4的单调性,并求出其最小值。
四、计算题7. 求函数f(x) = 2x^3 - 3x^2 + 1在区间[-1, 2]上的最大值和最小值。
五、证明题8. 证明函数f(x) = x^3在R上是严格递增的。
答案:一、选择题1. A2. B3. D二、填空题4. f^(-1)(x) = (x + 1) / 25. 2三、简答题6. 函数f(x) = x^2 - 4x + 4可以写成f(x) = (x - 2)^2,因此其开口向上,对称轴为x = 2。
由于二次项系数为正,函数在(-∞, 2]上单调递减,在[2, +∞)上单调递增。
最小值为f(2) = 0。
四、计算题7. 函数f(x) = 2x^3 - 3x^2 + 1的导数为f'(x) = 6x^2 - 6x。
令f'(x) = 0,得x = 0或x = 1。
计算f(-1) = -4,f(0) = 1,f(1) = -2,f(2) = 5。
因此,最大值为5,最小值为-4。
五、证明题8. 对于任意的x1 < x2,我们有:f(x2) - f(x1) = x2^3 - x1^3 = (x2 - x1)(x2^2 + x2x1 + x1^2)由于x2 - x1 > 0,且x2^2 + x2x1 + x1^2 > 0(因为x1和x2的平方都是非负的,它们的和也是非负的),所以f(x2) - f(x1) > 0,即f(x2) > f(x1)。
正弦函数测试题及答案1. 试求以下函数的周期和最大值、最小值:- $y = \sin(x)$- $y = 2\sin(3x)$- $y = \sin\left(\dfrac{x}{2}\right)$答案:- 函数$y = \sin(x)$的周期为$2\pi$,最大值为$1$,最小值为$-1$。
- 函数$y = 2\sin(3x)$的周期为$\dfrac{2\pi}{3}$,最大值为$2$,最小值为$-2$。
- 函数$y = \sin\left(\dfrac{x}{2}\right)$的周期为$4\pi$,最大值为$1$,最小值为$-1$。
2. 判断下列函数的图像与正弦函数的图像是否一致:- $y = -\sin(x)$- $y = \sin(x + \pi)$- $y = \sin(x - \pi)$答案:- 函数$y = -\sin(x)$的图像与正弦函数的图像一致,只是整体上下翻转。
- 函数$y = \sin(x + \pi)$的图像与正弦函数的图像一致,只是整体向左平移$\pi$个单位。
- 函数$y = \sin(x - \pi)$的图像与正弦函数的图像一致,只是整体向右平移$\pi$个单位。
3. 求以下函数的特征点:- $y = \sin(x)$- $y = \sin\left(\dfrac{x}{2}\right)$- $y = 2\sin(3x + \dfrac{\pi}{4})$答案:- 函数$y = \sin(x)$的特征点为最大值点$(\dfrac{\pi}{2}, 1)$,最小值点$(\dfrac{3\pi}{2}, -1)$,零点$(n\pi, 0)$。
- 函数$y = \sin\left(\dfrac{x}{2}\right)$的特征点为最大值点$(\pi, 1)$,最小值点$(2\pi, -1)$,零点$(2n\pi, 0)$。
- 函数$y = 2\sin(3x + \dfrac{\pi}{4})$的特征点为最大值点$\left(\dfrac{\pi}{6}, \sqrt{2}\right)$,最小值点$\left(\dfrac{7\pi}{6}, -\sqrt{2}\right)$,零点$\left(\dfrac{\pi}{6} + \dfrac{\pi}{3}n, 0\right)$。
二次函数单元测试题及答案一、选择题1. 二次函数y = ax^2 + bx + c中,当a的值变为原来的2倍时,函数图像如何变化?A. 向上平移B. 向下平移C. 向左平移D. 向右平移答案:B2. 下列哪个选项是二次函数的标准形式?A. y = x^2 + 2x + 1B. y = 2x^2 - 3x + 4C. y = 3x + 4D. y = x - 2答案:B3. 若二次函数y = -2x^2 + 3x + 1的顶点坐标为(1, 2),则下列哪个选项是正确的?A. a = -2, b = 3, c = 1B. a = 2, b = -3, c = -1C. a = -2, b = -3, c = -1D. a = 2, b = 3, c = 1答案:A4. 二次函数y = 3x^2 - 6x + 9的最小值是多少?A. 0B. 3C. 9D. 无法确定答案:C5. 如果二次函数y = x^2 + 4x + 4的图像与x轴相交于两点A和B,那么线段AB的长度是多少?A. 2B. 4C. 6D. 8答案:C二、填空题6. 已知二次函数y = 2x^2 - 5x + 3,其顶点坐标为__________。
答案:(1, -1)7. 函数y = -x^2 + 4x - 3的最大值是__________。
答案:18. 若二次函数y = 3x^2 - 2x - 5的图像关于y轴对称,则新的函数表达式为y = __________。
答案:y = 3x^2 + 2x - 5三、解答题9. 已知二次函数y = -2x^2 + 6x + 3,求该函数在x = -1时的函数值。
答案:当x = -1时,y = -2*(-1)^2 + 6*(-1) + 3 = -2 - 6 + 3 =-5。
10. 给定二次函数y = x^2 - 6x + 9,求该函数的对称轴方程。
答案:对称轴为x = -b/(2a) = -(-6)/(2*1) = 3。
函数的单调性及奇偶性一、单选题(共10道,每道10分)1.已知函数是上的增函数,若,则下列不一定正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数单调性的定义2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若,则实数a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数单调性的定义3.已知定义在上的函数满足:对任意不同的x1,x2,都有.若,则实数a的取值范围是( ) A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数单调性的定义4.函数的单调递减区间是( )A. B.C. D.无减区间答案:A解题思路:试题难度:三颗星知识点:含绝对值函数的单调性5.函数的单调递减区间是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:函数的单调性及单调区间6.函数的单调递增区间是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:含绝对值函数的单调性7.若是奇函数,则实数a的值为( )A.1B.-1C.0D.±1答案:A解题思路:试题难度:三颗星知识点:函数奇偶性的性质8.若是定义在上的偶函数,则a的值为( )A.±1B.1C.-1D.-3答案:C解题思路:试题难度:三颗星知识点:函数奇偶性的性质9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( )A.["-1,2"]B.C.(0,1)D.答案:B解题思路:试题难度:三颗星知识点:奇偶性与单调性的综合10.已知是定义在上的奇函数,且在上单调递增,若,则不等式的解集为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:奇偶函数图象的对称性。
.《函数》测试题一、选择题 ( 共 50 分) :1.已知函数 y f ( x 1) 的图象过点( 3, 2),则函数 f ( x) 的图象对于 x 轴的对称图形必定过点( )A. (2, -2 )B. ( 2,2)C. ( -4 ,2)D. (4, -2 )2.假如奇函数f x 在区间 a, b ba 0 上是增函数,且最小值为m ,那么 f x 在区间b, a 上是()A. 增函数且最小值为 m C. 减函数且最小值为 mB. 增函数且最大值为 mD.减函数且最大值为mlg 2x 13. 与函数 y 0.1的图象同样的函数分析式是( )A . y 2x 1 ( x1)2 1( x1C . y1)2x21 B . y 2x 11 D. y2x 14.对一确实数 x ,不等式 x 2 a | x | 1 ≥ 0 恒建立,则实数 a 的取值围是()A . (,- 2]B .[- 2, 2]C .[- 2, )D .[ 0,)5.已知函数 y f (2x 1) 是定义在R 上的奇函数,函数y g(x) 的图象与函数 yf (x) 的图象对于直线yx 对称,则 g( x) g ( x) 的值为()A . 2B . 0C . 1D .不可以确立6.把函数y f ( x) 的图像沿 x 轴向右平移 2 个单位,所得的图像为 , 对于 x 轴对称的图像C C为 y2 x 的图像,则 yf ( x) 的函数表达式为()A. y 2 x 2B.y2x 2C. y2x2D.y log 2 ( x 2)7. 当0a b1时,以下不等式中正确的选项是( )1A. (1 a) b(1 a) bB.(1a) a(1 b) bbC. (1 a) b(1 a) 2D.(1a) a (1 b)b8.当 x0,2 时,函数 f ( x) ax 2 4(a1) x 3 在 x 2 时获得最大值, 则 a 的取值围是( )A. [ 1 ,)B.0,C.1,D. [2,)239.已知 f (x)(3a 1)x 4a, x 1, ) 上的减函数,那么 a 的取值围是(log a x,x是 ()1A. (0,1)B.(0, 1)C. [1,1)D.[1,1)377 310.某种电热水器的水箱盛满水是200 升,加热到必定温度,即可用来沐浴。
中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。
函数章节测试卷(时间120,满分150)一.选择题1. 函数f (x )=)12(log 13-12++x x的定义域为( )A .(-21,0) B .(-21,+∞) C .(-21,0)∪(0,+∞) D .(-21,2) 2. 已知函数f (x )= ⎪⎩⎪⎨⎧≤>0,30,log 21x x x x ,则f (f (4))=( )A .-91B .-9C .91 D .93. 设a =log 54-log 52,b=3ln 32ln +,c=5lg 2110,则a ,b,c 的大小关系为( )A .a<b<cB .b <c<aC .c<a<bD .b <a <c4. 函数y=21x -1的图像关于x 轴对称的图像大致为( )5. 已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A .(2,+∞)B .(0,21)∪ (2,+∞) C .(0,22)∪ (2,+∞)D . (2,+∞)6. 设函数f (x )满足f (x+π)=f (x )+sin x ,当0≤x <π时,f (x )=0,则f (623π)=( ) A .21B .23C .0D .-217. 函数y=)106(log 231+-x x 在区间[1,2]上的最大值为( )A .0B .5log 31 C .2log 31D .18. 设函数f (x )=))((22b ax x x x +++,若对任意的x ,都有f (x )=f (2-x ),则f (x )的零点个数为( )A .5B .4C .3D .29. 已知函数f (x )= ⎩⎨⎧<≥+-0,0,3x a x a x x,是R 上的减函数,则实数a 的取值范围为( ) A .(0,1) B .(0,31] C .[31,1) D .[31,+∞) 10. 函数f (x )的图像与函数g (x )=x)21(的图像关于直线y=x 对称,则f (2x -x 2)的单调递减区间为( )A .(-∞,1)B .[1,+∞)C .(0,1)D .[1,2]11. 在如图所示的锐角三角形空地(底边长为40m ,高为40m )中,欲建一个面积不小于300m 2的内接矩形花园,则其边长x 的取值范围为( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]12. 已知函数f (x )= ⎪⎩⎪⎨⎧≥+--<-1,2)2(1,)1(log 25x x x x ,则方程f (x+x 1-2)=a 的实根的个数不可能为( )A .5B .6C .7D .8二. 填空题13. 已知函数f (x )= ⎩⎨⎧<≥+0),(0,22x x g x x x 为奇函数,则f (g (-1))= . 14. 已知函数f (x )=x 2+mx -1,若对于任意的x ∈[m ,m+1]都有f (x )<0,则m 取值范围为 .15. 已知函数f (x )= ⎪⎩⎪⎨⎧∈-∈]3,1(,2329]1,0[,3x x x x ,当t ∈[0,1]时,f (f (t))∈[0,1],则t 取值范围为 . 16. 函数f (x )= ⎩⎨⎧≤+>+-0,140,2ln 2x x x x x x 的零点个数为 . 三.解答题17. 函数f (x )=ax)21(,a 为常数,且函数图像过点(-1,2). (1)求a 的值(2)若g (x )=x-4-2, 且g (x )=f (x ),求满足条件的x 的值。