(完整版)水声学原理(第一章)
- 格式:ppt
- 大小:14.41 MB
- 文档页数:47
海洋声学基础——水声学原理绪论各种能量形式中,声传播性能最好。
在海水中,电磁波衰减极大,传播距离有限,无法满足海洋活动中的水下目标探测、通讯、导航等需要。
声传播性能最好,水声声道可以传播上千公里,使其在人类海洋活动中广泛应用,随海洋需求增大,应用会更广。
§0-1节水声学简史01490年,意大利达芬奇利用插入水中长管而听到航船声记载。
11827年,瑞士物理学家D.colladon法国数学家c.starm于日内瓦湖测声速为1435米每秒。
21840年焦耳发现磁致伸缩效应1880年居里发现压电效应31912年泰坦尼克号事件后,L.F.Richardson提出回声探测方案。
4第一次世界大战,郎之万等利用真空管放大,首次实现了回波探测,表示换能器和弱信号放大电子技术是水声学发展成为可能。
(200米外装甲板,1500米远潜艇)5第二次世界大战主被动声呐,水声制导鱼雷,音响水雷,扫描声呐等出现,对目标强度、辐射噪声级、混响级有初步认识。
(二战中被击沉潜艇,60%靠的是声呐设备)6二、三十年代——午后效应,强迫人们对声音在海洋中的传播规律进行了大量研究,并建立起相关理论。
对海中声传播机理的认识是二次大战间取得的最大成就。
7二战后随着信息科学发展,声呐设备向低频、大功率、大基阵及综合信号处理方向发展,同时逐步形成了声在海洋中传播规律研究的理论体系。
81、1945年,Ewing发现声道现象,使远程传播成为可能,建立了一些介质影响声传播的介质模型。
2、1946年,Bergman提出声场求解的射线理论。
3、1948年,Perkeris应用简正波理论解声波导传播问题。
4、50-60年代,完善了上述模型(利用计算技术)。
5、1966年,Tolstor 和Clay 提出声场计算中在确定性背景结构中应计入随机海洋介质的必要性。
§0-2 节 水声学的研究对象及任务1、 水声学:它是声学的一个重要分支,它基于四十年代反潜战争的需要,在经典声学的基础上吸收雷达技术及其它科学成就而发展起来的综合性尖端科学技术。
第一章绪论声波在水中的传播性能最好:在海水中,光波和无线电波的传播衰减都非常大,传播距离有限;声波在水中的传播性能好得多:利用深海声道效应,人们可以在5000公里以外,清晰地接收到几磅TNT炸药爆炸时所辐射的声信号(1公斤=2.2磅)。
1.1 水声学发展简史✧水声学的迅速发展:始于第二次世界大战初期✧声纳起源:1490年,意大利列昂纳多•芬奇在摘记中写道:“如果使船停航,将长管的一端插入水中,而将管的开口放在耳旁,则能听到远处的航船。
”——它是人类利用水声探测水下目标的最早记载,这种原始“声纳”一直到第一次世界大战还广为采用。
✧水声的第一次定量测量:1827年,瑞士物理学家D.Colladon和法国数学家C.Sturm合作,在日内瓦测量了声速,测得的声速值为1435米/秒,与现代测量值十分接近。
✧水声换能进展:1840年,焦耳发现了磁致伸缩效应,1880年皮埃尔•居里发现了压电效应;在此基础上,后人支撑和发展了水声压电换能器和磁滞伸缩换能器,实现水中电能和声能之间的转换。
✧水声第一个回声定位方案:1912年,英国“泰坦尼克号”和冰山相撞海难事件发生后不久,英国人L.F.Richardson提出水下回声定位方案,他本人未能实现这一方案。
✧军用声纳发展(第一次世界大战):第一次世界大战后期,反潜成为一个主要研究方向;法国物理学家ngeven和俄国电气工程师C.Chilowsky采用电容发射器和碳粒接收器作了水下目标的探测实验,1916年接收到海底回波和200米以外的一块装甲板的回波;1917年Langeven研究成功了石英-钢夹心换能器,并利用了真空管放大器,首次将电子学应用于水声技术;1918年,成功地探测到1500米以外的水下潜艇的反射声。
他首次实现了利用回声探测水下目标。
✧第一次世界大战后:水声技持续发展,1925年研制用于传播导航的水声设备——回声测深仪。
✧第二次世界大战:进一步推动水声技术的发展,取得很多成果:主、被动声纳,水声制导鱼雷,音响水雷和扫描声纳等。
海洋声学基础——水声学原理绪论各种能量形式中,声传播性能最好。
在海水中,电磁波衰减极大,传播距离有限,无法满足海洋活动中的水下目标探测、通讯、导航等需要。
声传播性能最好,水声声道可以传播上千公里,使其在人类海洋活动中广泛应用,随海洋需求增大,应用会更广。
§0-1节水声学简史01490年,意大利达芬奇利用插入水中长管而听到航船声记载。
11827年,瑞士物理学家D.colladon法国数学家c.starm于日内瓦湖测声速为1435米每秒。
21840年焦耳发现磁致伸缩效应1880年居里发现压电效应31912年泰坦尼克号事件后,L.F.Richardson提出回声探测方案。
4第一次世界大战,郎之万等利用真空管放大,首次实现了回波探测,表示换能器和弱信号放大电子技术是水声学发展成为可能。
(200米外装甲板,1500米远潜艇)5第二次世界大战主被动声呐,水声制导鱼雷,音响水雷,扫描声呐等出现,对目标强度、辐射噪声级、混响级有初步认识。
(二战中被击沉潜艇,60%靠的是声呐设备)6二、三十年代——午后效应,强迫人们对声音在海洋中的传播规律进行了大量研究,并建立起相关理论。
对海中声传播机理的认识是二次大战间取得的最大成就。
7二战后随着信息科学发展,声呐设备向低频、大功率、大基阵及综合信号处理方向发展,同时逐步形成了声在海洋中传播规律研究的理论体系。
81、1945年,Ewing发现声道现象,使远程传播成为可能,建立了一些介质影响声传播的介质模型。
2、1946年,Bergman提出声场求解的射线理论。
3、1948年,Perkeris应用简正波理论解声波导传播问题。
4、50-60年代,完善了上述模型(利用计算技术)。
5、1966年,Tolstor和Clay提出声场计算中在确定性背景结构中应计入随机海洋介质的必要性。
§0-2 节水声学的研究对象及任务1、水声学:它是声学的一个重要分支,它基于四十年代反潜战争的需要,在经典声学的基础上吸收雷达技术及其它科学成就而发展起来的综合性尖端科学技术。