过程控制大作业

  • 格式:doc
  • 大小:483.00 KB
  • 文档页数:8

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水塔温度过程控制系统

学号:B********

姓名:***

1. 系统设计方案概述

本次设计采用串级控制系统对水塔温度进行控制。

过程控制系统由过程检测、变送和控制仪表、执行装置等组成,通过各种类型的仪表完成对过程变量的检测、变送和控制,并经执行装置作用于生产过程。

串级控制系统是两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。此系统改善了过程的动态特性,提高了系统控制质量,能迅速克服进入副回路的二次扰动,提高了系统的工作频率,对负荷变化的适应性较强。

串级控制系统工程应用场合如下:

(1)应用于容量滞后较大的过程。

(2)应用于纯时延较大的过程。

(3)应用于扰动变化激烈而且幅度大的过程。

(4)应用于参数互相关联的过程。

(5)应用于非线性过程。

采用单片机作为主控制器,水塔温度为主被控对象,上水的流量为副被控对象,电磁阀为执行器,利用AD590传感器检测水塔温度,利用流量传感器检测上水流量。水塔温度串级控制系统框图如图1.1所示,系统原理图如图1.2所示。

图1.1水塔温度串级控制系统框图

图1.2 水塔温度串级控制系统原理图

2. 水塔温度串级控制系统仿真

水塔温度串级控制系统仿真,积分环节 Initial=0,两个检测变送环节参数设定时

间常数T=0.01s,扰动通道传函为时间常数T=2s。输入信号和扰动信号皆为单位阶跃信号。扰动作用时间F1为step time=50s,

仿真波形如图1.2所示。

图1.2 串级控制系统仿真波形

3.系统对象特性设计

水塔温度串级控制系统选择水塔温度为主被控对象,副被控对象为上水流量。当水塔温度变化的时候,通过控制上水流量改变水塔温度,并最终使其恒定。

主被控对象:水塔温度

=(2—1)副被控对象:上水流量

=(2—2)主控、副控回路检测环节传感器选择

主控对象检测元件选择为温度传感器AD590。

AD590是美国模拟器件公司生产的单片集成两端感温电流源。它的主要特性如下:

1、流过器件的电流(mA)等于器件所处环境的热力学温度(开尔文)度数,即: mA/K 式中:—流过器件(AD590)的电流,单位为mA; T—热力学温度,单位为K。

2、AD590的测温范围为-55℃~+150℃。

3、AD590的电源电压范围为4V~30V。电源电压可在4V~6V范围变化,电流变化1mA,相当于温度变化1K。AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会被损坏。

4、输出电阻为710MW。

5、精度高。

副控回路检测元件选择电磁式流量传感器。

导电性的液体在流动时切割磁力线,也会产生感生电动势。因此可应用电磁感应定律来测定流速,电磁流量传感器就是根据这一原理制成的。虽然电磁流量传感器的使用条件是要求流体是导电的,但它还是有许多优点。

由于电极的距离正好为导管的内径,因此没有妨碍流体流动的障碍,压力损失极小。能够得到与容积流量成正比的输出信号。测量结果不受流体粘度的影响。由于电动势是在包含电极的导管的断面处作为平均流速测得的,因此受流速分布影响较小。测量范围

宽,测量精度高。

为了达到测量高精度的要求,选用温度传感器AD590,AD590具有较高精度和重复性,超低温漂移高精度运算放大器0P07将温度一电压信号进行放大,便于A/D进行转换,以提高温度采集电路的可靠性。采样检测电路如图2.1示。

图2.1采样检测电路

A/D转换电路采用ADC0809转换器。将采集来的模拟信号转换成数字信号输出转换完成的信号EOC经反相器接单片机的P3.2口,A/D转换电路如图2.2所示。

图2.2 A/D转换电路

4.控制器设计

选用单片机作为控制器,对水塔温度进行控制。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,称为自动化和各个测控领域中广泛应用的器件,在工业生产中称为必不可少的器件,尤其是在日常生活中发挥的作用也越来越大。

在温度控制系统中,单片机更是起到了不可替代的核心作用。

2.3.1 CPU选择

单片机接受A/D 转换电路输入的数字信号,并将输入的信号进行处理和运算,以控制控制电流或者控制电压的形式输出给被控制的电路,完成控电磁阀的任务。本设计的单片机选用Atmel 公司的AT89C51 单片机,采用双列直插封装(DIP),有40个引脚与MCS—51 系列单片机的指令和引脚设置兼容。

AT89C51引脚图,如图2.3所示。

图2.3 AT89C51引脚图

由10V 交流电供电,经过桥式整流,电容滤波,得到12V 的直流电压,12V 的直流电压与MC7805T 芯片,以及电容相接,产生+5V 电压,给系统供电。

图 2.6 电源电路

5.参数整定

PID 控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定

PID 控制器的比例系数、

积分时间和微分时间的大小。因为本设计中主控制器采用PI 控制规律,故仅对PI 控制器的参数进行整定。

参数整定的一般步骤: (1)确定比例系数P

确定比例系数P 时,首先去掉PI 的积分项,首先令0 i T ,使PI 为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例系数P ,直至系统出现振荡;再反过来,从此时的比例系数P 逐渐减小,直至系统振荡消失,记录此时的比例系数P ,设定PI 的比例系数P 为当前值的60%~70%。比例系数P 调试完成。

(2)确定积分时间常数

比例系数P 确定后,设定一个较大的积分时间常数Ti 的初值,然后逐渐减小Ti ,直至系统出现振荡,之后再反过来,逐渐加大Ti ,直至系统振荡消失。记录此时的Ti ,设定PI 的积分时间常数Ti 为当前值的150%~180%。积分时间常数Ti 调试完成。

(3)再对PI 参数进行微调,直至满足要求。

执行器选择气开型电磁阀,通过控制阀的开度来实现流量控制。气开型是当膜头上