幂函数练习(含答案详解)
- 格式:docx
- 大小:335.57 KB
- 文档页数:6
高中数学必修一《幂函数》精选习题(含详细解析)一、选择题1.下列函数中,是幂函数的是( )A.y=2xB.y=2x3C.y=D.y=2x22.若幂函数y=(m2-3m+3)x m-2的图象不过原点,则m的取值范围为( )A.1≤m≤2B.m=1或m=2C.m=2D.m=13.函数y=x-2在区间上的最大值是( )A. B. C.4 D.-44若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?5.在下列函数中,定义域为R的是( )A.y=B.y=C.y=2xD.y=x-16函数y=|x(n∈N,n>9)的图象可能是( )7下列幂函数在(-∞,0)上为减函数的是( )A.y=B.y=x2C.y=x3D.y=8下列幂函数中过点(0,0),(1,1)且为偶函数的是( )A.y=B.y=x4C.y=x-2D.y=9.在同一坐标系内,函数y=x a(a≠0)和y=ax-的图象可能是( )二、填空题10幂函数f(x)=xα过点,则f(x)的定义域是.11若y=a是幂函数,则该函数的值域是.12若函数f(x)是幂函数,且满足=3,则f的值等于.13.设a=,b=,c=,则a,b,c的大小关系是.14已知幂函数f=(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f的解析式是.三、解答题15.比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.16.已知幂函数y=x3-p(p∈N*)的图象关于y轴对称,且在(0,+∞)上为增函数,求满足条件(a+1<(3-2a的实数a的取值范围.17幂函数f的图象经过点(,2),点在幂函数g的图象上,(1)求f,g的解析式.(2)x为何值时f>g,x为何值时f<g?18已知幂函数f(x)=(m2-m-1)·x-5m-3在(0,+∞)上是增函数,又g(x)=lo(a>1).(1)求函数g(x)的解析式.(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.参考答案与解析1【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.2【解析】选D.由题意得解得m=1.3【解析】选C.y=x-2在区间上单调递减,所以x=时,取得最大值为4.4【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.5【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).6【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.7【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数. 8【解析】选B.函数y=x4是过点(0,0),(1,1)的偶函数,故B正确;函数y=x-2不过点(0,0),故C 不正确;函数y=,y=是奇函数,故A,D不正确.9【解析】选C.当a<0时,函数y=ax-在R上是减函数,此时y=x a在(0,+∞)上也是减函数,同时为减的只有D选项,而函数y=ax-与y轴相交于点,此点在y轴的正半轴上,故D选项不适合.当a>0时,函数y=ax-在R上是增函数,与y轴相交于点,此点在y轴的负半轴上,只有A,C适合,此时函数y=x a在(0,+∞)上是增函数,进一步判断只有C适合.10【解析】因为幂函数f(x)过点,所以=2α,所以α=-1,所以f(x)=x-1=,所以函数f(x)的定义域是(-∞,0)∪(0,+∞).答案:(-∞,0)∪(0,+∞)11【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).答案:[0,+∞)3,12【解析】依题意设f(x)=xα,则有=3,得α=log2则f(x)=,于是f====.答案:13【解析】因为y=在x∈(0,+∞)上递增,所以>,即a>c,因为y=在x∈(-∞,+∞)上递减,所以>,即c>b,所以a>c>b.答案:a>c>b14【解析】因为函数的图象与x轴,y轴都无交点,所以m2-1<0,解得-1<m<1;因为图象关于原点对称,且m∈Z,所以m=0,所以f=x-1.答案:f=x-115【解析】(1)由于函数y=x0.1在第一象限内单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.16【解析】因为幂函数y=x3-p(p∈N*)的图象关于y轴对称,所以函数y=x3-p是偶函数.又y=x3-p在(0,+∞)上为增函数,所以3-p是偶数且3-p>0.因为p∈N*,所以p=1,所以不等式(a+1<(3-2a化为:(a+1<(3-2a.因为函数y=是[0,+∞)上的增函数,所以⇒⇒-1≤a<,故实数a的取值范围为.17【解析】(1)设f=xα,则()α=2,所以α=2,所以f=x2.设g=xβ,则(-2)β=,所以β=-2,所以g=x-2(x≠0).(2)从图象可知,当x>1或x<-1时,f>g;当-1<x<0或0<x<1时,f<g.18【解析】(1)因为f(x)是幂函数,且在(0,+∞)上是增函数,所以解得m=-1,所以g(x)=loga.(2)由>0可解得x<-1或x>1,所以g(x)的定义域是(-∞,-1)∪(1,+∞).又a>1,x∈(t,a),可得t≥1,设x1,x2∈(1,+∞),且x1<x2,于是x2-x1>0,x1-1>0,x2-1>0,所以-=>0, 所以>.由a>1,有loga >loga,即g(x)在(1,+∞)上是减函数.又g(x)的值域是(1,+∞),所以得g(a)=loga=1,可化为=a, 解得a=1±,因为a>1,所以a=1+,综上,a=1+,t=1.。
高中数学幂函数的定义练习及答案题型一:幂函数的定义【例1】 下列所给出的函数中,是幂函数的是( )A .3x y -=B .3-=x yC .32x y =D .13-=x y【考点】幂函数的定义 【难度】1星【题型】选择【关键词】无【解析】 形如(01)x y a a a =>≠且的函数叫做幂函数,答案为B .【答案】B【例2】 11.函数的定义域是 .【考点】幂函数的定义 【难度】1星【题型】填空【关键词】无 【解析】【答案】【例3】 如果幂函数()f x x α=的图象经过点,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 12【考点】幂函数的定义 【难度】1星 【题型】选择 【关键词】无 【解析】 【答案】D【例4】 幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .【考点】幂函数的定义 【难度】1星 【题型】填空 【关键词】无 【解析】典例分析【例5】 下列幂函数中过点(0,0),(1,1)的偶函数是( ).A.12y x = B. 4y x = C. 2y x -= D.13y x =【考点】幂函数的定义 【难度】1星【题型】选择【关键词】无 【解析】 【答案】B【例6】 下列命题中正确的是( )A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限【考点】幂函数的定义 【难度】2星 【题型】选择【关键词】无【解析】 A 错,当0α=时函数y x α=的图象是一条直线(去掉点(0,1));B 错,如幂函数1y x -=的图象不过点(0,0);C 错,如幂函数1y x -=在定义域上不是增函数;D 正确,当0x >时,0x α>.【答案】D【例7】 函数2221(1)mm y m m x --=--是幂函数,求m 的值.【考点】幂函数的定义 【难度】2星 【题型】解答【关键词】无 【解析】 幂函数需要保证系数为1,同时指数为有理数,从此两个条件入手,可以得到关于m 的等式和不等式,从而解出m 的值. ∵2221(1)mm y m m x --=--是幂函数,∴函数可以写成如下形式a y x =(a 是有理数) ∴211m m --=,解得121,2m m =-= 当11m =-时,211212m m Q --=∈22m =时,222211m m Q --=-∈∴m 的值域为-1或2.【点评】本题为幂函数的基本题目,注意不要忘了检验a 是有理数. 【答案】-1或2【例8】 求函数1302(3)y x x x -=+--的定义域.【考点】幂函数的定义 【难度】2星 【题型】解答 【关键词】无 【解析】 这是几个幂函数的复合函数,求复合函数的定义域需要保证每一个函数都有意义,即分母不为0、被开方数大于等于0.使函数有意义,则x 必须满足0030x x x ≥⎧⎪≠⎨⎪-≠⎩,解得:0x >且3x ≠即函数的定义域为{|0,3}x x x >≠且.【答案】{|0,3}x x x >≠且【例9】 函数1224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,则实数m 的取值范围是( ).A.12),B.1)+,∞ C.(22)-,D.(11--+ 【考点】幂函数的定义【难度】2星【题型】选择【关键词】无【解析】 要使函数1224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,可转化为2420mx x m +++>对一切实数都成立,即0m >且244(2)0m m ∆=-+<.解得1m >.故选(B) 【答案】B【例10】 讨论幂函数a y x =(a 为有理数)的定义域. 【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 (1)若*a N ∈,则x ∈R ,这是函数的定义域为R .(2)若a ∈{负整数} {0}U ,则(,0)(0,)x ∈-∞+∞U ,这时函数的定义域是(,0)(0,)-∞+∞U (3)若na m=*(,,,)m n N m n ∈且互质,则: ①m 是偶数,x R -∈,这是函数的定义域是R -; ②m 是奇数,x R ∈,这时函数的定义域为R(4)若na m=-*(,,,)m n N m n ∈且互质,则:①m 是偶数,x R +∈,这是函数的定义域是R +;②m 是奇数,(,0)(0,)x ∈-∞⋃+∞,这时函数的定义域是(,0)(0,)-∞⋃+∞.【答案】(1)若*a N ∈,则x ∈R ,这是函数的定义域为R .(2)若a ∈{负整数} {0}U ,则(,0)(0,)x ∈-∞+∞U ,这时函数的定义域是(,0)(0,)-∞+∞U(3)若na m=*(,,,)m n N m n ∈且互质,则: ①m 是偶数,x R -∈,这是函数的定义域是R -; ②m 是奇数,x R ∈,这时函数的定义域为R(4)若na m=-*(,,,)m n N m n ∈且互质,则:①m 是偶数,x R +∈,这是函数的定义域是R +;②m 是奇数,(,0)(0,)x ∈-∞⋃+∞,这时函数的定义域是(,0)(0,)-∞⋃+∞.【例11】 已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.【考点】幂函数的定义 【难度】2星 【题型】解答【关键词】无【解析】 ∵ 幂函数图象与x 、y 轴都没有公共点,∴ 6020m m -<⎧⎨-<⎩,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =.【答案】4m =【例12】 幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 ∵ ()f x 是幂函数, ∴ 311t t -+=,解得1,10t =-或.当0t =时,75()f x x =是奇函数,不合题意;当1t =-时;25()f x x =是偶函数,在(0,)+∞上为增函数; 当1t =时;85()f x x =是偶函数,在(0,)+∞上为增函数. 所以,25()f x x =或85()f x x =.【答案】25()f x x =或85()f x x =.【例13】 已知幂函数223()()mm f x x m Z --=∈ 的图形与x 轴对称,y 轴无交点,且关于y 轴对称,试确定的解析式.【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 由()22230232m m m m n n N m Z ⎧--≤⎪--∈∈⎨⎪∈⎩得113m =-,, 1m =-和3时解析式为()0f x x =,1m =是解析式为()4f x x -=【答案】()4f x x -=题型二:幂函数的性质与应用【例14】 下列函数在区间(0,3)上是增函数的是( ).A. 1y x =B. 12y x = C. 1()3x y = D. 2215y x x =--【考点】幂函数的性质与应用 【难度】1星 【题型】选择【关键词】无 【解析】 【答案】B【例15】 下列函数中既是偶函数又是(,0)-∞上是增函数的是( )A .43y x = B .32y x = C .2y x -= D .14y x-=【考点】幂函数的性质与应用 【难度】1星 【题型】选择 【关键词】无 【解析】 A 、D 中的函数为偶函数,但A 中函数在(,0)-∞为减函数.【答案】C【例16】 942--=a ax y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .【考点】幂函数的性质与应用 【难度】1星【题型】填空【关键词】无 【解析】【答案】5;【例17】 比较下列各组中两个值大小(1)6110.6与6110.7(2)5533(0.88)(0.89).--与【考点】幂函数的性质与应用 【难度】1星 【题型】解答【关键词】无【解析】 (1)∵函数611y x =在(0,)+∞上是增函数且00.60.7<<<+∞∴6611110.60.7<(2)函数53y x =在(0,)+∞上增函数且89.088.00<< ∵55330.880.89<∴55330.880.89->-,即5533(0.88)(0.89).-<-【答案】(1)6611110.60.7<(2)5533(0.88)(0.89).-<-【例18】 幂函数(1)knmy x-=(,,*,,m n k N m n ∈互质)图象在一、二象限,不过原点,则n m k ,,的奇偶性为 .【考点】幂函数的性质与应用 【难度】2星 【题型】填空【关键词】无 【解析】【答案】k m ,为奇数,n 是偶数;【例19】 求证:函数3x y =在R 上为奇函数且为增函数. 【考点】幂函数的性质与应用 【难度】2星【题型】解答【关键词】无 【解析】【答案】显然)()()(33x f x x x f -=-=-=-,奇函数;令21x x <,则))(()()(22212121323121x x x x x x x x x f x f ++-=-=-, 其中,显然021<-x x ,222121x x x x ++=2222143)21(x x x ++,由于0)21(221≥+x x ,04322≥x ,且不能同时为0,否则021==x x ,故043)21(22221>++x x x .从而0)()(21<-x f x f . 所以该函数为增函数.【例20】 设120.7a =,120.8b =,c 3log 0.7=,则( ).A. c <b <aB. c <a <bC. a <b <cD. b <a <c 【考点】幂函数的性质与应用 【难度】2星 【题型】选择 【关键词】无 【解析】 【答案】B【例21】 比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.【考点】幂函数的性质与应用 【难度】2星 【题型】填空【关键词】无 【解析】【答案】>,≤, <,【例22】 (1)若0a <,比较12,(),0.22aa a 的大小;(2)若10a -<<,比较1333,,a a a 的大小.【考点】幂函数的性质与应用 【难度】2星 【题型】解答 【关键词】无 【解析】 (1)当0a <时,幂函数a y x =在(0,)+∞上单调减,∵10.222<<,∴12()0.22a a a <<. (2)当10a -<<时,13330,0,0aa a ><<, 指数函数()x y a =-在(0,)+∞上单调减,∵133>,∴1330()()a a <-<-,∴ 1330a a >>, ∴ 1333a a a >>【答案】(1)12()0.22aa a <<(2)1333a a a >>【例23】 函数2-=x y 在区间]2,21[上的最大值是( )A .41 B .1- C .4D .4-【考点】幂函数的性质与应用 【难度】1星 【题型】选择 【关键词】无【解析】 函数2y x -=在区间1[,2]2上单调减,当12x =时,max 4y =.【答案】C【例24】 函数2422-+=x x y 的单调递减区间是【考点】幂函数的性质与应用 【难度】2星【题型】填空【关键词】无【解析】 由22240x x +-≥得:46x x ≥≤-或,∵ 函数12y t =在[0,)+∞上为增函数,函数2224t x x =+-在(,6]-∞上为减函数,故所给函数的单调减区间为(,6]-∞-.【答案】(,6]-∞-【例25】 函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数【考点】幂函数的性质与应用 【难度】2星【题型】选择【关键词】无 【解析】【答案】C【例26】 已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 【考点】幂函数的性质与应用 【难度】2星【题型】解答【关键词】无【解析】 设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【答案】R 上单调递增【例27】 对于幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( ) A .)2(21x x f +>2)()(21x f x f + B . )2(21x x f +<2)()(21x f x f + C . )2(21x x f +=2)()(21x f x f + D . 无法确定 【考点】幂函数的性质与应用【难度】2星【题型】选择【关键词】无 【解析】【答案】A【例28】 已知0<a <1,试比较()(),,aa a a a a a a 的大小.【考点】幂函数的性质与应用 【难度】2星 【题型】解答 【关键词】无 【解析】 本题考查的是幂函数的单调性知识,这里三个表达式的底数和幂都分别不同,所以需要转化看待,将它们化成同类幂函数进行比较.为比较a a 与()a a a 的大小,将它们看成指数相同的两个幂,由于幂函数()()01a f x x a =<<在区间[0,]+∞上是增函数,因此只须比较底数a 与a a 的大小,由于指数函数x y a = (0<a <1)为减函数,且1>a ,所以a a a <,从而()a a a a a <.比较a a 与()aa a 的大小,也可以将它们看成底数相同(都是a α)的两个幂,于是可以利用指数函数 (),01x a yb b a a ==<<是减函数,由于1>a ,得到a a a <.由于a a a <,函数x y a = (0<a <1)是减函数,因此()aa a a a >.综上,()()aa a a a a a a >>【点评】解答本题的关键都在于适当地选取一个函数,函数选得恰当,问题可以顺利地获得解决..【答案】()()aa a a a a a a >>【例29】 已知1133(1)(32)a a --+<-,求a 的取值范围.【考点】幂函数的性质与应用 【难度】2星 【题型】解答【关键词】无【解析】 13()f x x -=在(,0)-∞、(0,)+∞上是减函数,对于不同的a +1和3-2a 进行讨论,将它们等价转化到同一个单调区间..∵13(1)a -+和13(32)a --是幂函数13()f x x -=的两个函数值, 且13()f x x -=在(,0)-∞、(0,)+∞上是减函数当10,320a a +>->时,有1320a a +>->,解得2332a <<; 当10,320a a +<-<时,有3210a a -<+<,此时无解当(1)(32)0a a +-<时,有10a +<且320a ->,解得1a <-综上可知a的取值范围为23 (,1)(,)32 -∞-⋃.【答案】23(,1)(,)32-∞-⋃.【例30】若11(1)(32)m m--+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】(分类讨论):(1)10320132mmm m+>⎧⎪->⎨⎪+>-⎩,,,解得2332dm<<;(2)10320132mmm m+<⎧⎪-<⎨⎪+>-⎩,,,此时无解;(3)10320mm+<⎧⎨->⎩,,,解得1m<-.综上可得23(1)32m⎛⎫∈-- ⎪⎝⎭U,,∞.【答案】23(1)32m⎛⎫∈-- ⎪⎝⎭U,,∞【例31】若33(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】(利用单调性):由于函数3y x=在()-+,∞∞上单调递增,所以132m m+<-,解得23m<.【答案】23m<【例32】若1122(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】由图3,10320321mmm m+⎧⎪->⎨⎪->+⎩,,,,解得213m-<≤.【答案】213m-<≤【例33】若44(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】作出幂函数4y x=的图象如图4.由图象知此函数在(0)(0)-+U,,∞∞上不具有单调性,若分类讨论步骤较繁,把问题转化到一个单调区间上是关键.考虑4α=时,44x x=.于是有44(1)(32)m m+<-,即44132m m+<-..又∵幂函数4y x=在(0)+,∞上单调递增,∴132m m+<-,解得23m<,或m>4.【答案】23m<,或m>4【例34】已知函数2()f x x=,设函数()[()](21)()1g x qf f x q f x=-+-+,问是否存在实数(0)q q<,使得()g x在区间(]4--,∞是减函数,且在区间(40)-,上是增函数?若存在,请求出来;若不存在,请说明理由.【考点】幂函数的性质与应用【难度】3星【题型】解答【关键词】无【解析】∵2()f x x=,则42()(21)1g x qx q x=-+-+.假设存在实数(0)q q<,使得()g x满足题设条件,设12x x<,则4242121122()()(21)(21)g x g x qx q x qx q x-=-+-+--22122112()()[()(21)]x x x x q x x q =+-+--.若(]124x x ∈--,,∞,易知120x x +<,210x x ->,要使()g x 在(]4--,∞上是减函数,则应有2212()(21)0q x x q +--<恒成立.∵14x <-,24x -≤,∴221232x x +>.而0q <, ∴2212()32q x x q +<.. 从而要使2212()21q x x q +<-恒成立,则有2132q q -≥,即130q -≤. 若12(40)x x ∈-,,,易知1221()()0x x x x +-<,要使()f x 在(40)-,上是增函数,则应有2212()(21)0q x x q +-->恒成立.∵140x -<<,240x -<<,∴221232x x +<,而0q <,∴2212()32q x x q +>. 要使2212()21q x x q +>-恒成立,则必有2132q q -≤,即130q -≥. 综上可知,存在实数130q =-,使得()g x 在(]4-∞-,上是减函数,且在(40)-,上是增函数.【答案】存在,130q =-【例35】 由于对某种商品开始收税,使其定价比原定价上涨x 成(即上涨率为10x),涨价后,商品卖出个数减少bx 成,税率是新定价的a 成,这里a,b 均为正常数,且a <10,设售货款扣除税款后,剩余y 元,要使y 最大,求x 的值.【考点】幂函数的性质与应用 【难度】3星【题型】解答【关键词】无【解析】 设原定价A 元,卖出B 个,则现在定价为A (110x+), 现在卖出个数为110bx B ⎛⎫- ⎪⎝⎭,现在售货金额为111110101010x bx x bx A B AB ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,应交税款为11101010x bx a AB ⎛⎫⎛⎫+-⋅ ⎪⎪⎝⎭⎝⎭,剩余款为21111111010101010010x bx a a b b y AB AB x x -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-⋅-=--++ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以5(1)b x b -=时y 最大 要使y 最大,x 的值为5(1)b x b-=.【答案】5(1)b x b-=题型三:幂函数的图像【例36】 函数3x y =和31x y =图象满足( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称【考点】幂函数的图像 【难度】1星【题型】选择【关键词】无 【解析】【答案】D【例37】 函数43y x =的图象是( )【考点】幂函数的图像 【难度】1星【题型】选择【关键词】无 【解析】 【答案】A【例38】 幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ).A .101n m -<<<<B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <-> 【考点】幂函数的图像 【难度】2星 【题型】选择 【关键词】无 【解析】 由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【答案】B.【例39】 【答案】如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<【考点】幂函数的图像 【难度】2星【题型】选择【关键词】无 【解析】 【答案】D【例40】 下图为幂函数y x α=在第一象限的图象,则1234,,,αααα按由小到大的顺序排列为 。
幂函数练习题及答案、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,填在题后的括号内(每小题 5 分,共50 分).B.幂函数的图象都经过(0 ,0)和(1,1 )点C .若幂函数y x 是奇函数,则y x 是定义域上的增函数D.幂函数的图象不可能出现在第四象限1 6.函数y x3和y x3图象满足请把正确答案的代号1.下列函数中既是偶函数又是( ,0)上是增函数的是4x32.函数3B.y x 221y x 2在区间[ ,2] 上的最大值是2C.D.1A.4 B.1C.D.3.下列所给出的函数中,是幂函数的是A.y x3 3B.y x C.2x3D.5.下列命题中正确的是A.当0 时函数y x的图象是一条直线yy14 4A.关于原点对称B.关于x 轴对称7. 函数 y x|x|,x R ,满足A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数28.函数 y x 2 2x 24 的单调递减区间是 ( )A . ( , 6]B .[ 6, )C .( , 1]D .[ 1, )9. 如图 1— 9所示,幂函数 y x 在第一象限的图象,比较x 1 x 2 f (x 1)f (x 2 )f(x 12x2),f(x 1)2f(x 2)大小关系是( )奇偶性为 . 三、解答题:解答应写出文字说明.证明过程或演算步骤 (共 76 分) .15 .( 12 分)比较下列各组中两个值大小6 6 5 5C .关于 y 轴对称D .关于直线 y x 对称0, 1, 2, 3 , 4 ,1的大小(A.1 34 21 B . 012 3 41C.2 4 0 31 1D.3 24 11410 . 对于幂函数 f (x) x , 若 0 x 1 x 2 ,则A . f(x 1x 2 2f (x 1) f (x 2)2 B . f(x 1x2)f (x 1) f(x 2)2C .x 1f( 1x 22f (x 1) f (x 2 )2D . 无法确定、填空题:请把答案填在题中横线上(每小题6 分,共 24 分)k n( 1)k14 .幂函数 yxm(m,n,kN*, m,n 互质 ) 图象在一、二象限,不过原点,则 k,m,n 的34(1 )0.611与0.7 11;(2)( 0.88)1与( 0.89)3 .16.(12分)已知幂函数2f(x) x m 2m 3(m Z)的图象与x轴,y轴都无交点,且关于y 轴对称,试确f (x)的解析式.117 .(12 分)求证:函数y x3在R上为奇函数且为增函数18 .(12 分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系3 1 21)y x2;(2)y x3;(3)y x3;14)y x 2;(5)y x 3;(6)y x 219.(14分)由于对某种商品开始收税,使其定价比原定价上涨后,商品卖出个数减少bx 成,税率是新定价的a成,这里a,b 均为正常数,且a<10 ,设售货款扣除税款后,剩余y 元,要使y 最大,求x的值.20 .(14 分)利用幂函数图象,画出下列函数的图象(写清步骤)x2 2x 22x2 2x 152)y (x 2)3 1.xx成(即上涨率为10),涨价A)(B)(C)(D )(E)(F)参考答案、CCBADDCADA二、11 .(0, );12.f (x)4x3 (x 0);13.5;14.m, k为奇数,n是偶数;三、15 .解:( 1 ) 函数y6x11在(0, )上是增函数且0 0.6 0.76 0.61160.711(2 )5函数y x3在(0, ) 上增函数且0.88 0.895 0.88350.89350.88350.893 ,即5( 0.88)350.89) 3 .16 .解:2 m 由m22m2mZ303是偶数得m 1,1,3.m 1和3时解析式为 f (x) 0 x ,m 1时解析式为f (x) x17 .解:显然 f ( x) x)3 f (x) ,奇函数;令x1 x2 ,则 f (x1) f (x2 ) 3x13x2 (x1 2x2 )(x12x1x2 x2 ) ,其中,显然x1x2 0,2x1 x1x2 x2 1= (x1 2x2)3x2422,由于且不能同时为0 ,否则x1x2 0 ,故(x11(x1 x2 )1221 2 3 2x2 ) x222420,3x22420,0.从而f(x1) f (x2) 0. 所以该函数为增函数18 .解:六个幂函数的定义域,奇偶性,单调性如下:3(1) y x2x3定义域[0,) ,既不是奇函数也不是偶函数,在[0,) 是增函数;12)y x 3 3 x 定义域为 R ,是奇函数,在 [0, )是增函数;23)y x 3 3 x 2 定义域为 R ,是偶函数,在 [0, )是增函数; 21 4)y x 2 12 定义域 R UR 是偶函数,在 (0, )是减函数;x 315)y x 3 13定义域 R UR 是奇函数,在 (0, )是减函数;x16)y x 2 1定义域为 R 既不是奇函数也不是偶 函数,在 (0, ) x 上减函数 .通过上面分析,可以得出( 1) (A ),( 2) (F ),( 3) (5 ) (D ),( 6 ) (B ) .x19.解:设原定价 A 元,卖出 B 个,则现在定价为 A (1+ 1x 0),20 .解:E ),( 4) ( C ),现在卖出个数为 B (1 - bx ),现在售货金额为 A (1+ x ) B(110 10bx )=AB(1+10x1x 0)(1bx-10),x应交税款为 AB(1+ )(110bx a-10 ) ·10 ,x剩余款为 y = AB(1+)(1 105(1 b) 时y 最大b所以 x-b 1x 0)(1 1a 0)= AB (1要使 y 最大, x 的值为a )( 10 100 5(1 b) xb 1b x 101),向上平移 x 2 2x 2x 2 2x 11 x2 2x(x1 1)21把函数 ,y12的图象向左平移x 21 个单位,再1 个单位可以得到函数2x 2 x2x 2的图象 .2x 1 5(x 2) 31的图象可以由5x 3 图象向右平移 2 个单位,再向下平移。
高三数学幂函数试题答案及解析1.若,则满足的取值范围是 .【答案】【解析】根据幂函数的性质,由于,所以当时,当时,,因此的解集为.【考点】幂函数的性质.2.对于函数f(x)若存在x0∈R,f(x)=x成立,则称x为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.【答案】(1)-1和3.(2)(0,1)(3)-【解析】解:(1)∵a=1,b=-2时,f(x)=x2-x-3,f(x)=x⇒x2-2x-3=0⇒x=-1,x=3,∴函数f(x)的不动点为-1和3.(2)即f(x)=ax2+(b+1)x+b-1=x有两个不等实根,转化为ax2+bx+b-1=0有两个不等实根,需有判别式大于0恒成立,即Δ=b2-4a(b-1)>0⇒Δ1=(-4a)2-4×4a<0⇒0<a<1,∴a的取值范围为(0,1).(3)设A(x1,x1),B(x2,x2),则x1+x2=-,则A,B中点M的坐标为(,),即M(-,-).∵A,B两点关于直线y=kx+对称,且A,B在直线y=x上,∴k=-1,A,B的中点M在直线y=kx+上.∴-=+⇒b=-=-,利用基本不等式可得当且仅当a=时,b的最小值为-.3.若幂函数y=f(x)的图象经过点,则f(25)=________.【答案】【解析】设f(x)=xα,则=9α,∴α=-,即f(x)=x-,f(25)=4.设α∈{-1,1,,3},则使函数y=xα的定义域为R且为奇函数的所有α值为() A.1,3B.-1,1C.-1,3D.-1,1,3【答案】A【解析】当α=-1时函数定义域为{x|x≠0}.当α=时,定义域是[0,+∞),都不符合条件.当α=1,3时,幂函数定义域为R且为奇函数.故选A.5.幂函数y=f(x)的图像经过点(4,),则f()的值为()A.1B.2C.3D.4【答案】B【解析】设幂函数,由,得.【考点】幂函数6.已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.【答案】(1);(2).【解析】(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用得,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.试题解析:(1)在区间上是单调增函数,即又 4分而时,不是偶函数,时,是偶函数,. 6分(2)显然不是方程的根.为使仅在处有极值,必须恒成立, 8分即有,解不等式,得. 11分这时,是唯一极值. . 12分【考点】1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.7.已知幂函数为偶函数,且在区间上是单调增函数(1)求函数的解析式;(2)设函数,其中.若函数仅在处有极值,求的取值范围.【答案】(1);(2).【解析】(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用得,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.试题解析:(1)在区间上是单调增函数,即又 4分而时,不是偶函数,时,是偶函数,. 6分(2)显然不是方程的根.为使仅在处有极值,必须恒成立, 8分即有,解不等式,得. 11分这时,是唯一极值. . 12分【考点】1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.8.函数是幂函数,且在上为增函数,则实数的值是()A.B.C.D.或【答案】【解析】是幂函数或 . 又上是增函数,所以.【考点】幂函数的概念及性质.9.函数由确定,则方程的实数解有( )A.0个B.1个C.2个D.3个【答案】D【解析】因为,所以.方程为:,化简得,其根有3个,且1不是方程的根.【考点】幂的运算,分式方程的求解.10.下列对函数的性质描述正确的是()A.偶函数,先减后增B.偶函数,先增后减C.奇函数,减函数D.偶函数,减函数【答案】B【解析】是偶函数,图象关于y轴对称,而在(0,+∞)是减函数,所以,在(-∞.0)是增函数,故选B。
幂函数经典例题(答案)A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R.错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3. 点评 幂函数y =x α (α∈R),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎪⎨⎪⎧m =-3n =32, 所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z)的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3,当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意.当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝ ⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x-12,∴f (8)=8-12=24. 8.下列函数中,值域为[0,+∞)的函数是( ) A .y =2x B .y =x 2 C .y =x -2 D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________. 答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α (α∈R)的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x(x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则 ⎩⎨⎧ m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则 ⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。
高一幂函数的试题及答案一、选择题1. 下列哪个函数是幂函数?- A. \( y = x^2 + 1 \)- B. \( y = \sqrt{x} \)- C. D. \( y = \frac{1}{x} \)2. 幂函数 \( y = x^3 \) 的图像通过哪个点?- A. (0, 1)- B. (1, 1)- C. (-1, 1)- D. (0, 0)3. 如果幂函数 \( y = x^n \) 的图像关于y轴对称,那么 \( n \) 的值是多少?- A. 1- B. 2- C. -1- D. 任意实数二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个_________。
5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而_________。
三、解答题6. 已知幂函数 \( y = x^n \) 通过点 (3, 27),请确定 \( n \) 的值。
7. 讨论幂函数 \( y = x^n \) 图像的变化趋势,并说明 \( n \) 的不同取值对图像的影响。
四、计算题8. 计算幂函数 \( y = x^{-2} \) 在 \( x = 2 \) 处的导数。
9. 假设幂函数 \( y = x^n \) 的图像经过点 (2, 8),求 \( n \)的值,并描述其图像的特点。
答案一、选择题1. 正确答案:B. \( y = \sqrt{x} \)(因为 \( \sqrt{x} = x^{1/2} \))2. 正确答案:C. (-1, 1)3. 正确答案:B. 2二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个抛物线。
5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而增加。
三、解答题6. 由于 \( y = x^n \) 通过点 (3, 27),我们有 \( 27 = 3^n \)。
幂函数练习题及答案一、选择题1. 下列函数中,属于幂函数的是:A. y = 3x^2B. y = 5x + 2C. y = 2^xD. y = √x答案:C2. 对于幂函数y = ax^n,若n > 0,则函数图像为:A. 上升曲线B. 下降曲线C. 横坐标轴D. 常数函数y = a答案:A3. 若幂函数y = 3^x在点(0, a)处的函数值为12,则a的值为:A. 9B. 8C. 4D. 2答案:C二、填空题1. 当幂函数图像关于点(1, b)对称时,函数的底数a为_________。
答案:12. 若幂函数y = a^x的图像过点(2, 4),则底数a的值为_________。
答案:23. 幂函数y = 3^x图像的对称轴方程为_________。
答案:x = 0三、计算题1. 求解以下幂函数方程:1) 8^x = 2解:8^x = 2取对数得:xlog8 = log2x = log2 / log8 ≈ 0.3332) (1/2)^x = 4解:(1/2)^x = 4取对数得:xlog(1/2) = log4x = log4 / log(1/2) ≈ -22. 求以下幂函数的极限:1) lim(x→∞) 3^x解:当x趋于正无穷时,幂函数3^x趋于无穷大,因此极限为正无穷。
2) lim(x→-∞) 2^x解:当x趋于负无穷时,幂函数2^x趋于零,因此极限为零。
四、证明题证明:幂函数y = a^x和指数函数y = e^x都是定义域为实数集合R 的递增函数。
证明过程略。
综上所述,幂函数是具有底数a和自变量x的数学函数,根据底数的不同,幂函数的特性也会有所不同。
通过练习题的训练,我们可以更好地理解和掌握幂函数的概念、性质以及解题方法,提升数学应用能力和解决问题的能力。
自主梳理1.幂函数的概念形如________的函数叫做幂函数,其中____是自变量,____是常数. 2.幂函数的性质(1)五种常见幂函数的性质,列表如下: 定义域 值域 奇偶性 单调性 过定点y =x R R 奇 Z (1,1)y =x 2 R [0,+∞)偶 [0,+∞)Z (-∞,0][y =x 3R R 奇 ZY =x 12[0,+∞) [0,+∞) 非奇 非偶 [0,+∞)Z Y =x -1(-∞,0) ∪(0,+∞)(-∞,0) ∪(0,+∞)奇(-∞,0)[(0,+∞)[(2)所有幂函数在________上都有定义,并且图象都过点(1,1),且在第____象限无图象. (3)α>0时,幂函数的图象通过点____________,并且在区间(0,+∞)上是________,α<0时,幂函数在(0,+∞)上是减函数,图象______原点.1.已知幂函数y =f (x )的图像经过点⎝⎛⎭⎫4,12,则f (2)=( ) A.14 B .4C.22D. 2 2.下列函数中,其定义域与值域不同的函数是( ) A .y =x 12B .y =x -1 C .y =x 13D .y =x 23.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b )4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)5.(2013·蚌埠二中调研)设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)=( )A .-b2aB .-baC .c D.4ac -b 24a6.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值( ) A .正数 B .负数 C .非负数D .与m 有关 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图像关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图像都是抛物线型. 其中正确的有________.8.(2012·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.9.(2012·无锡联考)设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________.10.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数.且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.11.已知二次函数f(x)的图像过点A(-1,0)、B(3,0)、C(1,-8).(1)求f(x)的解析式;(2)求f(x)在x∈[0,3]上的最值;(3)求不等式f(x)≥0的解集.12.设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图像是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.(1)求函数f(x)在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f(x)的草图;(3)写出函数f (x )的值域.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12 C.34D .12.(2013·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.3.(2012·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.答 案 课时跟踪检测(九)A 级1.选C 设f (x )=x α,因为图像过点⎝⎛⎭⎫4,12,代入解析式得:α=-12, ∴f (2)=2-12=22.2.选D 对A ,定义域、值域均为[0,+∞);对B ,定义域、值域均为(-∞,0)∪(0,+∞);对C ,定义域值域均为R ;对D ,定义域为R ,值域为[0,+∞).3.选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a . 4.选D 由已知可得二次函数图像关于直线x =1对称,又f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.选C 由题意得:a ≠0,x 1+x 22=-b 2a ,x 1+x 2=-b a .得f (x 1+x 2)=f ⎝⎛⎭⎫-b a =a ·b 2a 2-b 2a +c =c .6.选B 法一:∵f (x )=x 2-x +a 的对称轴为x =12,而-m ,m +1关于12对称,∴f (m +1)=f (-m )<0.法二:∵f (-m )<0,∴m 2+m +a <0,∴f (m +1)=(m +1)2-(m +1)+a =m 2+m +a <0. 7.①②⑤⑥8.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.解析:若m =0,显然-1<0恒成立, 若m ≠0,则⎩⎨⎧m <0,Δ<0.∴-4<m <0.故所求范围为:-4<m≤0.答案:(-4,0]10.解:∵f(x)在(0,+∞)上是增函数,∴-12+p+32>0,2p即p2-2p-3<0.∴-1<p<3.又∵f(x)是偶函数且p∈Z,∴p=1,故f(x)=x2.11.解:(1)由题意可设f(x)=a(x+1)(x-3),将C(1,-8)代入得-8=a(1+1)(1-3),得a=2.即f(x)=2(x+1)(x-3)=2x2-4x-6.(2)f(x)=2(x-1)2-8,当x∈[0,3]时,由二次函数图像知,f(x)min=f(1)=-8,f(x)max=f(3)=0.(3)f(x)≥0的解集为{x|x≤-1,或x≥3}.12.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图像如图,(3)由图像可知,函数f (x )的值域为(-∞,4].B 级1.选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像如图所示,结合图像可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像有两个交点.答案:⎝⎛⎦⎤-94,-2 3.解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.。
幂函数练习题及答案解析1.下列幂函数中为偶函数的是 y = x^2.解析:定义域为实数集,f(-x) = (-x)^2 = x^2,因此是偶函数。
2.若 a < 1,则 5a < 0.5a < 5-a。
解析:因为 a < 1,所以 y = x 是单调递减函数且 0.5 < 5 < 5-a,因此 5a < 0.5a < 5-a。
3.α 可能的取值为 1 和 3,使得函数y = x^α 的定义域为实数集且为奇函数。
解析:只有函数 y = x 和 y = x^3 的定义域是实数集且为奇函数,因此α 可能的取值为 1 和 3.4.当 n = -1 或 n = 2 时,满足 (-2)^n。
(-3)^n。
解析:因为 (-2)^n。
0 且 (-3)^n < 0,所以 y = x^n 在 (-∞。
+∞) 上为减函数。
因此 n = -1 或 n = 2.1.函数 y = (x+4)^2 的递减区间是 (-∞。
-4)。
解析:函数的开口向上,关于 x = -4 对称,因此在 (-∞。
-4) 上递减。
2.幂函数的图像过点(2.4),则其单调递增区间是(-∞。
0)。
解析:因为 y = x^2 的图像是开口向上的抛物线,过点(2.4),因此其单调递增区间为 (-∞。
0)。
3.正确的说法有 2 个。
解析:①错误;②中 y = x^-1 的图像不过点 (1.1);③正确;④正确,因此有 2 个正确的说法。
4.使f(x) = x^α 为奇函数且在(0.+∞) 上单调递减的α 的值的个数是 1.解析:因为f(x) = x^α 为奇函数,所以α 为奇数,因此α可能的取值为 -3.-1.1.3.因为在(0.+∞) 上单调递减,所以只有α = -1 满足条件。
因此个数为 1.1.α=-1,1,3.由于f(x)在(,+∞)上为减函数,所以α=-1.2.使(3-2x-x^2)/4有意义的x的取值范围是(-3<x<1)。
3.3 幂函数一、选择题1.(2017·全国高一课时练习)如图是幂函数y =x m 和y =x n 在第一象限内的图象,则( )A.-1<n<0,0<m<1B.n<-1,0<m<1C.-1<n<0,m>1D.n<-1,m>1【答案】B【解析】由题图知,my x =在[)0,+∞上是增函数,n y x =在()0,∞+上为减函数, 0,0m n ∴><,又当1x >时,my x =的图象在y x =的下方,n y x = 的图象在1y x -=的下方, 1,1m n ∴<<-,从而01,1m n <<<-,故选B.2.(2018·全国高一课时练习)若幂函数的图象过点124⎛⎫ ⎪⎝⎭,,则它的单调递增区间是( ) A .(0,+∞) B .[0,+∞) C .(-∞,+∞) D .(-∞,0)【答案】D 【解析】本题主要考查的是幂函数的图像与性质。
设幂函数为,因为图像过,所以。
由幂函数的性质:当时,在上是减函数。
又为偶函数,所以在上是增函数。
应选D 。
3.(2018·浙江高三课时练习)已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】因为a =243=1613,b =425=1615,c =2513,且幂函数y =x 13在R 上单调递增,指数函数y =16x 在R 上单调递增,所以b <a <c . 故选A.4.(2017·全国高一课时练习) 下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,12时,幂函数y =x α是增函数 D.当幂指数α=-1时,幂函数y =x α在定义域上是减函数 【答案】C 【解析】当幂指数α=-1时,幂函数y =x -1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R),y >0,所以幂函数的图象不可能出现在第四象限,故选B 不正确;当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但在它的定义域上不是减函数,故选项D 不正确. 故选C.5.(2017·全国高一课时练习) 在下列四个图形中,y =x -12的图像大致是( )A. B. C. D.【答案】D 【解析】函数12y x-==的定义域为(0,+∞),是减函数.故选D. 6.(2017·全国高一课时练习)若幂函数y =(m 2-3m +3)x m -2的图像不过原点,则m 的取值范围为( ) A.1≤m≤2 B.m =1或m =2 C.m =2 D.m =1【答案】D 【解析】由幂函数()2233m y m m x -=-+的图像不过原点,可得220331m m m -<⎧⎨-+=⎩,解得21,2m m m <⎧⎨==⎩,1m ∴=,故选D. 二、填空题7.(2017·全国高一课时练习)已知幂函数f (x )的部分对应值如下表:则不等式f (|x |)≤2的解集是___________. 【答案】[–4,4] 【解析】由表中数据知2=12a⎛⎫⎪⎝⎭,∴α=12,∴f(x)=12x ,∴|x|12≤2,即|x|≤4,故-4≤x≤4,故填{x|-4≤x≤4}.8.(2017·全国高一课时练习) 已知幂函数f (x )=x 21m - (m ∈Z)的图像与x 轴,y 轴都无交点,且关于原点对称,则函数f (x )的解析式是________. 【答案】f (x )=x -1 【解析】∵函数的图像与x 轴,y 轴都无交点, ∴m 2-1<0,解得-1<m <1;∵图像关于原点对称,且m ∈Z, ∴m =0,∴f (x )=x -1.9.(2017·全国高一课时练习)若幂函数y =x α的图像经过点(8,4),则函数y =x α的值域是________. 【答案】[0,+∞) 【解析】幂函数y x α=图象经过点()8,4,48α∴=,解得2,3α=∴函数23y x =的值域为[)0,+∞. 10.(2016·全国高一课时练习)已知幂函数f(x)=12x -,若f(a+1)<f(10−2a),则实数a 的取值范围是________. 【答案】(3,5) 【解析】f(x)=12x-=1x(x>0),易知f(x)在(0,+∞)上为减函数,又f(a+1)<f(10−2a),∴10,1020,1102,a a a a +>⎧⎪->⎨⎪+>-⎩解得1,5,3,a a a >-⎧⎪<⎨⎪>⎩∴3<a<5. 三、解答题11.(2017·全国高一课时练习) 已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时,f (x ):(1)是幂函数; (2)是正比例函数; (3)是反比例函数; (4)是二次函数.【答案】(1)m =2或m =-1.(2)m =-45 .(3)m =-25.(4) m =-1. 【解析】(1)∵f (x )是幂函数, 故m 2-m -1=1,即m 2-m -2=0, 解得m =2或m =-1. (2)若f (x )是正比例函数, 则-5m -3=1,解得m =-. 此时m 2-m -1≠0,故m =-. (3)若f (x )是反比例函数,则-5m -3=-1,则m =-,此时m 2-m -1≠0, 故m =-.(4)若f (x )是二次函数,则-5m -3=2, 即m =-1,此时m 2-m -1≠0,故m =-1.12.(2017·全国高一课时练习) 比较下列各题中两个幂的值的大小:(1)2.334,2.434; (2)32-,32-;(3)(-0.31)65,0.3565. 【答案】(1)2.334<2.434.(2) 32->32-;(3)(-0.31) 65<0.3565.【解析】(1)∵y =34x 为R 上的增函数, 又2.3<2.4, ∴2.334<2.434.(2)∵y =32x -为(0,+∞)上的减函数,又<,∴()32->()32-.(3)∵y =65x 为R 上的偶函数, ∴()650.31-=650.31.又函数y =65x 为[0,+∞)上的增函数, 且0.31<0.35,∴0.3165<0.3565,即(-0.31) 65<0.3565.。
高中数学(必修一)第三章 函数的概念与性质幂函数 练习题(含答案解析)学校:___________姓名:___________班级:_____________一、单选题1.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x = 2.已知幂函数n y x =在第一象限内的图像如图所示,若112,2,,22n ⎧⎫∈--⎨⎬⎩⎭则与曲线1C 、2C 、3C、4C 对应的n 的值依次为( )A .12-、2-、2、12B .2、12、2-、12-C .2、12、12-、2-D .12-、2-、12、23.四个幂函数在同一平面直角坐标系中第一象限内的图象如图所示,则幂函数12y x =的图象是( )A .①B .①C .①D .①4.下列函数中,既是偶函数,又满足值域为R 的是( ) A .y =x 2B .1||||y x x =+C .y =tan|x |D .y =|sin x |5.如下图所示曲线是幂函数y =xα在第一象限内的图象,已知α取±2,±12四个值,则对应于曲线C 1,C 2,C 3,C 4的指数α依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12 D ..2,12,-2,-126.若幂函数()f x 经过点,且()8f a =,则=a ( )A .2B .3C .128D .5127.函数()0a y x x =≥和函数()0xy a x =≥在同一坐标系下的图像可能是( )A .B .C .D .8.式子)A .1633- B .1633--C .1633+D .1633-+9.对,a b ∈R ,记{},max ,,a a ba b b a b ≥⎧=⎨<⎩,函数()}2maxf x x -=的图象可能是( )A .B .C .D .二、解答题10.设函数()222f x x x =-+,[],1,x t t t R ∈+∈(1)求实数t 的取值范围,使()y f x =在区间[],1t t +上是单调函数; (2)求函数()f x 的最小值. 11.已知幂函数()223m m y x m --=∈Z 的图像与x 、y 轴都无交点,且关于y 轴对称,求m 的值,并画出它的草图.12.已知幂函数()()25mf x m m x =+-在()0,∞+上单调递增.(1)求()f x 的解析式;(2)若()31f x x k >+-在[1,1]-上恒成立,求实数k 的取值范围. 13.设函数()f x 是定义在R 上的奇函数,且()21x ax b f x x +=++.(1)求实数a ,b 的值;(2)当x ∈⎤⎦,不等式()()22f x mx x ≥-有解,求实数m 的取值范围.三、填空题14.若点(2,4)P ,0(3,)Q y 均在幂函数()y f x =的图象上,则实数0y =_____.15.已知实数a ,b 满足等式a 12=b 13,下列五个关系式:①0<b<a<1;①-1<a<b<0;①1<a<b ;①-1<b<a<0;①a =b.其中可能成立的式子有________.(填上所有可能成立式子的序号) 16.函数3223125y x x x =--+在[0,3]上的最大值等于__________.17.定义{}()max ,()a ab a b b a b ≥⎧=⎨<⎩,则{}2max 1,2x x x +--的最小值为_________.参考答案:1.C【分析】直接根据幂函数的定义域可直接判断,偶次根式被开方式必须大于等于0才有意义,分式则必须分母不为0【详解】对选项A,则有:0x≠对选项B,则有:0x>对选项C,定义域为:R对选项D,则有:0x≥故答案选:C2.C【解析】本题可根据幂函数的图像与性质并结合题目中的图像即可得出结果.【详解】由幂函数的图像与性质可知:在第一象限内,在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,故曲线1C、2C、3C、4C对应的n的值依次为:2、12、12-、2-,故选:C.【点睛】本题考查幂函数的图像与性质,在第一象限内,幂函数在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,考查数形结合思想,是简单题.3.D【解析】由幂函数12y x=为增函数,且增加的速度比较缓慢作答.【详解】幂函数12y x=为增函数,且增加的速度比较缓慢,只有①符合.故选:D.【点睛】本题考查幂函数的图象与性质,属于基础题.4.C【分析】由函数的值域首先排除ABD,对C进行检验可得.【详解】选项A,B中函数值不能为负,值域不能R,故AB错误,选项D值域为[]0,1,故D也错误,那么选项C为偶函数,当3(,)22xππ∈时,tan tany x x==,值域是R,因此在定义域内函数值域为R,故选:C5.B【分析】在图象中,作出直线1x m =>,根据直线x m =和曲线交点的纵坐标的大小,可得曲线1C ,2C ,3C ,4C 相应的α应是从大到小排列.【详解】在图象中,作出直线1x m =>,直线x m =和曲线的交点依次为,,,A B C D , 所以A B C D y y y y >>>,所以C A B D m m m m αααα>>>, 所以A B C D αααα>>>,所以可得曲线1C ,2C ,3C ,4C 相应的α依次为 2,12,-12,-2 故选:B【点睛】本题主要考查幂函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 6.A【解析】设幂函数()f x x α=,代入点求出3α=,即可求解.【详解】设()f x x α=,因为幂函数()f x 经过点,所以f α==, 解得3α=,所以()38f a a ==,解得2a =, 故选:A 7.C【分析】按照x y a =和a y x =的图像特征依次判断4个选项即可.【详解】()0a y x x =≥必过(0,0),()0xy a x =≥必过(0,1),D 错误;A 选项:由x y a =图像知1a >,由a y x =图像可知01a <<,A 错误;B 选项:由x y a =图像知01a <<,由a y x =图像可知1a >,B 错误;C 选项:由x y a =图像知01a <<,由a y x =图像可知01a <<,C 正确. 故选:C. 8.A【分析】利用根式与分数指数幂互化和指数幂运算求解.【详解】231322333⎛⎫=-÷ ⎪⎝⎭, 21131326223333--=-=-,故选:A 9.A【分析】由()}2maxf x x -=2x -的较大者,在同一平面直角坐标系中作出两个函数的图象,取图象较高者即可得()f x 的图象.【详解】y =2y x 都是偶函数,当0x >时,12y x =在()0,∞+上单调递增,2yx 在()0,∞+上单调递减,当1x =2x -=在同一平面直角坐标系中作出y =和2yx 的图象,如图:()}2maxf x x -=2x -的较大者,所以()f x 图象是两个图象较高的,故选:A.10.(1)(][),01,-∞⋃+∞;(2)()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩【解析】(1)由题可得11t +≤或1t ≥,解出即可;(2)讨论对称轴在区间[],1t t +的位置,根据单调性即可求出. 【详解】(1)()f x 的对称轴为1x =,要使()y f x =在区间[],1t t +上是单调函数, 则11t +≤或1t ≥,解得0t ≤或1t ≥, 即t 的取值范围为(][),01,-∞⋃+∞;(2)()f x 的对称轴为1x =,开口向上,则当1t ≥时,()f x 在[],1t t +单调递增,()()2min 22f x f t t t ∴==-+,当11t t <<+,即01t <<时,()()min 11f x f ==,当11t +≤,即0t ≤时,()f x 在[],1t t +单调递减,()()2min 11f x f t t ∴=+=+,综上,()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩. 11.1m = ;草图见祥解【分析】根据幂函数的性质,可得到2230m m --<,再有图像关于y 对称,即可求得m 的值. 【详解】因为幂函数223()m m y x m Z --=∈的图像与坐标轴无交点,所以2230m m --<,解得13m -<<,又因为m Z ∈,所以0,1,2m =,因为图像关于y 对称,所以幂函数为偶函数, 当0m =时,则3y x -=为奇函数,不满足题意; 当1m =时,则4y x -= 为偶函数,满足题意; 当2m =时,则3y x -=为奇函数,不满足题意; 综上所述:1m = 草图(如下)【点睛】本题考查幂函数的性质和图像,需熟练掌握幂函数的性质和图像. 12.(1)2()f x x = (2)(),1-∞-【分析】(1)根据幂函数的定义和()f x 的单调性,求出m 得值; (2)结合第一问求出的2()f x x =,利用函数的单调性,解决恒成立问题. (1)()f x 是幂函数,则251m m +-=,2m ∴=或-3,()f x 在(0,)+∞上单调递增,则2m =所以2()f x x =; (2)()31f x x k >+-即2310x x k -+->,要使此不等式在[1,1]-上恒成立,只需使函数()231g x x x k =-+-在[1,1]-上的最小值大于0即可.①()231g x x x k =-+-在[1,1]-上单调递减,①()()11min g x g k ==--, 由10k -->,得1k <-.因此满足条件的实数k 的取值范围是(),1-∞-. 13.(1)0a =,0b = (2)1,4⎛⎤-∞ ⎥⎝⎦【分析】(1)根据定义在R 上的奇函数的性质以及定义即可解出;(2)由(1)可知,()21x f x x =+,根据分离参数法可得()()22112m x x ≤+-,再求出()()22112x x +-的最大值,即得解. (1)因为函数()f x 是定义在R 上的奇函数,所以()00f a ==,()()1111022f f b b-+-=+=+-,解得0b =,检验可知函数()21xf x x =+为奇函数,故0a =,0b =. (2)由(1)可知,()21x f x x =+,而x ∈⎤⎦,所以 ()()22f x mx x ≥-可化为()()22112m x x ≤+-,设[]23,4t x =∈,则()()()()[]222219121224,1024x x t t t t t ⎛⎫+-=+-=--=--∈ ⎪⎝⎭,而不等式()()22f x mx x ≥-有解等价于()()22max11412m x x ⎡⎤⎢⎥≤=+-⎢⎥⎣⎦,故实数m 的取值范围为1,4⎛⎤-∞ ⎥⎝⎦.14.9【分析】设出幂函数的解析式,代入P 点坐标求得这个解析式,然后令3x =求得0y 的值.【详解】设幂函数为()f x x α=,将()2,4P 代入得24,2αα==,所以()2f x x =,令3x =,求得2039y ==.【点睛】本小题主要考查幂函数解析式的求法,考查幂函数上点的坐标,属于基础题. 15.①①①【分析】在同一坐标系中画出函数121y x =,132y x =的图象,结合函数图象,进行动态分析可得,当01b a <<<时,当1a b <<时,当1a b ==时,1132a b =可能成立,10b a -<<<、10a b -<<<时,12a 没意义,进而即可得到结论【详解】10b a -<<<、10a b -<<<时,12a 没意义,①①不可能成立;’画出121y x =与132y x =的图象(如图), 已知1132x x m ==,作直线y m =, 若0m =或1,则a b =,①能成立; 若01m <<,则01b a <<<,①能成立;若1m ,则1a b <<,①能成立,所以可能成立的式子有①①①,故答案为①①①.【点睛】本题主要考查幂函数的图象与性质,意在考查灵活应用所学知识解答问题的能力,以及数形结合思想的应用,属于中档题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.16.5【分析】对3223125y x x x =--+求导,根据单调性求最大值.【详解】3223125y x x x =--+,则266126(2)(1)y x x x x '=--=-+当2x >时,0y '>,此时函数3223125y x x x =--+单调递增;当12x -<<时,0y '<,此时函数3223125y x x x =--+单调递减;当1x <-时,0y '>,此时函数3223125y x x x =--+单调递增.则函数3223125y x x x =--+在区间[0,2]内单调递减,在区间[2,3]内单调递增当0x =时,5y =,当3x =时,4y =-所以函数3223125y x x x =--+在0x =处取到最大值5所以函数3223125y x x x =--+在区间[0,3]上的最大值是5.故答案为:5.17.1【分析】根据题干中max 函数的定义,可以得到所求函数为分段函数,求出每一段的最小值,取其中的最小值即可 【详解】令212x x x +-=-得:3x =-或1x =,由题意可得:{}2221,3max 1,22,311,1x x x x x x x x x x x ⎧+-≤-⎪+--=--<<⎨⎪+-≥⎩,画出函数对应的图像如下:由图可得:当1x =时,{}2max 1,2x x x +--最小,代入解析式可得:最小值为1故答案为:1。
3.3幂函数1.给出四个说法:①当n=0时,y=x n的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y=x n在第一象限为减函数,则n<0.其中正确的说法个数是()A.1 B.2C.3 D.42.在函数y=2x3,y=x2,y=x2+x,y=x0中,幂函数有() A.1个B.2个C.3个D.4个3.下列结论中,正确的是()①幂函数的图象不可能在第四象限②α=0时,幂函数y=xα的图象过点(1,1)和(0,0)③幂函数y=xα,当α≥0时是增函数④幂函数y=xα,当α<0时,在第一象限内,随x的增大而减小A.①②B.③④C.②③D.①④4.幂函数f(x)=xα满足x>1时f(x)>1,则α满足条件() A.α>1 B.0<α<1C.α>0 D.α>0且α≠15.已知幂函数f(x)的图象经过点(2,22),则f(4)的值为()A.16 B.1 16C.12D.26.函数f(x)=(m2-m-1)x m2-2m-3是幂函数,且在x∈(0,+∞)上是减函数,则实数m=()A.2 B.3C.4 D.57.下列幂函数为偶函数的是()A .y =x 12 B .y =3xC .y =x 2D .y =x -18.若a <0,则0.5a,5a,5-a 的大小关系是( )A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a9.设α∈{-1,1,12,3},则使函数y =x α的定义域为R ,且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,310.已知n ∈{-2,-1,0,1,2,3},若(-12)n >(-13)n ,则n =________. 11.幂函数的图象过点(2,14),则它的单调递增区间是( ) A .(0,+∞) B .[0,+∞)C .(-∞,0)D .(-∞,+∞)12.设α∈{-2,-1,-12,13,12,1,2,3},则使f (x )=x α为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4 13.使(3-2x -x 2)-34有意义的x 的取值范围是( )A .RB .x ≠1且x ≠3C .-3<x <1D .x <-3或x >114.关于x 的函数y =(x -1)α(其中α的取值范围可以是1,2,3,-1,12)的图象恒过点________.15.已知2.4α>2.5α,则α的取值范围是________.16.把(23)-13,(35)12,(25)12,(76)0按从小到大的顺序排列____________________.17.已知(m +4)-12<(3-2m )-12,求m 的取值范围.18.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-1219.以下关于函数y =x α当α=0时的图象的说法正确的是( )A .一条直线B .一条射线C .除点(0,1)以外的一条直线D .以上皆错20.函数f (x )=(1-x )0+(1-x )12的定义域为________.21.下列幂函数中,定义域为{x |x >0}的是( ) A .y =x 23 B .y =x 32 C .y =x -13 D .y =x -34 22.设x ∈(0,1)时,y =x p (p ∈R )的图象在直线y =x 的上方,则p 的取值范围是________.23.已知函数f (x )=(m 2+2m )·x m 2+m -1,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数? ,参考答案:1.解析:选B.显然①错误;②中如y =x -12的图象就不过点(0,0).根据幂函数的图象可知③、④正确,故选B.2.解析:选B.y =x 2与y =x 0是幂函数.3.解析:选D.y =x α,当α=0时,x ≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确.4.解析:选A.当x >1时f (x )>1,即f (x )>f (1),f (x )=x α为增函数,且α>1.5.解析:选C.设f (x )=x n ,则有2n =22,解得n =-12,即f (x )=x -12,所以f (4)=4-12=12.6.解析:选A.m 2-m -1=1,得m =-1或m =2,再把m =-1和m =2分别代入m 2-2m -3<0,经检验得m =2.7.解析:选C.y =x 2,定义域为R ,f (-x )=f (x )=x 2.8.解析:选B.5-a =(15)a ,因为a <0时y =x a 单调递减,且15<0.5<5,所以5a <0.5a <5-a .9.解析:选A.在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.10.解析:∵-12<-13,且(-12)n >(-13)n ,∴y =x n 在(-∞,0)上为减函数.又n ∈{-2,-1,0,1,2,3},∴n =-1或n =2.答案:-1或211.解析:选C.幂函数为y =x -2=1x 2,偶函数图象如图.12.解析:选A.∵f (x )=x α为奇函数, ∴α=-1,13,1,3.又∵f (x )在(0,+∞)上为减函数,∴α=-1.13.解析:选C.(3-2x -x 2)-34=14(3-2x -x 2)3, ∴要使上式有意义,需3-2x -x 2>0,解得-3<x <1.14.解析:当x -1=1,即x =2时,无论α取何值,均有1α=1,∴函数y =(x -1)α恒过点(2,1).答案:(2,1)15.解析:∵0<2.4<2.5,而2.4α>2.5α,∴y =x α在(0,+∞)为减函数.答案:α<016.解析:(76)0=1,(23)-13>(23)0=1, (35)12<1,(25)12<1,∵y =x 12为增函数,∴(25)12<(35)12<(76)0<(23)-13.答案:(25)12<(35)12<(76)0<(23)-1317.解:∵y =x -12的定义域为(0,+∞),且为减函数.∴原不等式化为⎩⎪⎨⎪⎧m +4>03-2m >0m +4>3-2m, 解得-13<m <32. ∴m 的取值范围是(-13,32).18.解析:选B.当x =2时,22>212>2-12>2-2, 即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2. 19.解析:选C.∵y =x 0,可知x ≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.20.解析:⎩⎪⎨⎪⎧1-x ≠01-x ≥0,∴x <1. 答案:(-∞,1) 21.解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x ≥0;C.y =x -13=13x ,x ≠0;D.y =x -34=14x3,x >0.22.解析:结合幂函数的图象性质可知p <1.答案:p <1 23.解:根据幂函数的定义得:m 2-m -5=1,解得m =3或m =-2,当m =3时,f (x )=x 2在(0,+∞)上是增函数;当m =-2时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故m =3.则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0⇒m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,∴m=-1±2.。
高一数学幂函数试题答案及解析1.若函数是幂函数,则的值为()A.B.C.D.【答案】A【解析】由题意,得,解得.【考点】幂函数的解析式.2.计算等于()A.B.C.D.【答案】B【解析】。
故选B。
【考点】指数幂的运算点评:本题运用指数幂的运算公式:,。
3.已知幂函数的图象过点 .【答案】3【解析】幂函数形式为,其过点,则,求得,。
【考点】幂函数点评:幂函数的形式是。
本题需先确定幂函数的解析式。
4.当时,幂函数为减函数,则实数( )A.m=2B.m=-1C.m=2或m=-1D.【答案】A【解析】因为,当时,幂函数为减函数,所以或,解得,m=2,故选B。
【考点】本题主要考查幂函数的概念及其性质。
点评:简单题,注意形如为常数)的函数是幂函数。
5.(本小题12分)已知函数是幂函数且在上为减函数,函数在区间上的最大值为2,试求实数的值。
【答案】【解析】解:因为函数是幂函数且在上为减函数,所以有,解得,——————————5’①当是的单调递减区间,————————7’②当,解得——————————9’③,解得————————11’综合①②③可知————————12’【考点】幂函数与二次函数点评:解决的关键是对于常见的基本初等函数性质的熟练运用,属于基础题。
6.已知幂函数在增函数,则的取值范围 .【答案】(0,10)【解析】根据已知表达式可知,幂函数在增函数,首先分析对数式y=lga中真数大于零,即a>0,同时要满足在增函数,说明了幂指数为正数,即1-lga>0,得到lga<1=lg10,a<10,这样结合a>0,可知实数a的取值范围是(0,10)。
【考点】本试题主要是考查了幂函数的单调性与幂指数的正负之间的关系的应用,属于基础题。
点评:解决该试题关键是理解幂函数在y轴右侧的单调性是增,说明了幂指数为正,如果在y轴右侧为减,说明幂指数为负数。
同时对数真数大于零是易忽略点。
7.幂函数的图象过点(2, ), 则它的单调递增区间是()A.(-∞, 0)B.[0, +∞)C.(0, +∞)D.(-∞, +∞)【答案】A【解析】因为幂函数过点(2, ),所以=,即。
幂函数练习题及答案一、选择题1. 幂函数\( f(x) = x^a \)中,当\( a \)为负数时,函数的图像在哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D2. 幂函数\( y = x^{-1} \)的图像是:A. 一条直线B. 一条曲线C. 两条曲线D. 无法确定答案:C3. 下列哪个幂函数在\( x = 0 \)处有定义?A. \( y = x^{-1} \)B. \( y = x^{-2} \)C. \( y = x^{1/2} \)D. \( y = x^2 \)答案:D二、填空题4. 幂函数\( y = x^n \)的图像,当\( n \)为奇数时,关于____对称。
答案:y轴5. 幂函数\( y = x^3 \)的图像在\( x = 0 \)处的切线斜率为____。
答案:0三、解答题6. 已知幂函数\( f(x) = x^a \),当\( x = 2 \)时,\( f(x) = 4 \),求\( a \)的值。
解:根据题意,\( f(2) = 2^a = 4 \),由于\( 2^2 = 4 \),所以\( a = 2 \)。
7. 幂函数\( y = x^n \)的图像在第一象限内,且在\( x = 1 \)处的导数为2,求\( n \)的值。
解:由于幂函数的导数为\( y' = n \cdot x^{n-1} \),将\( x = 1 \)代入得\( y' = n \)。
由题意知\( n = 2 \)。
四、计算题8. 求幂函数\( y = x^3 - 3x^2 + 2 \)在\( x = 2 \)处的值。
解:将\( x = 2 \)代入幂函数得\( y = 2^3 - 3 \cdot 2^2 + 2= 8 - 12 + 2 = -2 \)。
9. 已知幂函数\( y = x^a \)在\( x = 1 \)处的值为1,求\( a \)的值。
专题3.4 幂函数1.(2021·全国高一课时练习)下列命题中,不正确的是( )A .幂函数y =x -1是奇函数B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =12x 既不是奇函数,又不是偶函数【答案】C 【解析】根据奇偶函数的定义依次判断即可.【详解】因为11xx -=,11=--xx ,所以A 正确;因为22()x x -=,所以B 正确;因为x x -=不恒成立,所以C 不正确;因为12y x =定义域为[0,+∞),不关于原点对称,所以D 正确.故选:C.2.(2020·上海高一课时练习)下列函数中,既是偶函数,又在(,0)-∞上单调递增的函数是( )A .2y x -=-B .23y x=-C .13y x=-D .3y x -=【答案】B 【解析】A: 2y x -=-为偶函数,且在()0,∞+上递增,即2y x -=-在(,0)-∞上单调递减,排除;B: 23y x =-为偶函数,在(,0)-∞上单调递增;C: 13y x=-为奇函数,故排除;D: 3y x -=为奇函数,故排除.故选:B.练基础3.(2020·石嘴山市第三中学高二月考(文))幂函数()221()21m f x m m x -=-+在()0,∞上为增函数,则实数m 的值为( )A .0B .1C .1或2D .2【答案】D 【解析】由题意()f x 为幂函数,所以2211m m -+=,解得0m =或2m =.因为()f x 在()0,∞上为增函数,所以210m ->,即12m >,所以2m =.故选D.4.(2020·上海高一课时练习)下面是有关幂函数3()-=f x x 的四种说法,其中错误的叙述是( )A .()f x 的定义域和值域相等B .()f x 的图象关于原点中心对称C .()f x 在定义域上是减函数D .()f x 是奇函数【答案】C 【解析】3()-=f x x ,函数的定义域和值域均为()(),00,-∞⋃+∞,A 正确;3()-=f x x ,()()33()f x x x f x ---=-=-=-,函数为奇函数,故BD 正确;()f x 在(),0-∞和()0,∞+是减函数,但在()(),00,-∞⋃+∞不是减函数,C 错误.故选:C.5.(2020·上海高一课时练习)若幕函数()f x 的图像经过点1,42⎛⎫⎪⎝⎭,则该函数的图像( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】B 【解析】设()f x x α=,依题意可得1(42α=,解得2α=-,所以2()f x x -=,因为22()()()f x x x f x ---=-==,所以()f x 为偶函数,其图象关于y 轴对称.故选:B.6.(2019·延安市第一中学高三月考(文))已知幂函数()f x x α=的图像过点1(2,则方程()2f x =的解是( )A .4BC .2D .12【答案】A 【解析】依题意得1(2α=,解得12α=,所以12()f x x =,由()2f x =得122x =,解得4x =.故选:A.7.(2021·浙江高一期末)幂函数()()22222m f x m m x-=--在()0,∞+为增函数,则m 的值是()A .1-B .3C .1-或3D .1或3-【答案】B 【解析】由幂函数解析式的形式可构造方程求得1m =-或3m =,分别验证两种情况下()f x 在()0,∞+上的单调性即可得到结果.【详解】()f x 为幂函数,2221m m ∴--=,解得:1m =-或3m =;当1m =-时,()1f x x -=,则()f x 在()0,∞+上为减函数,不合题意;当3m =时,()7=f x x ,则()f x 在()0,∞+上为增函数,符合题意;综上所述:3m =.故选:B.8.(2021·全国高一课时练习)下列结论正确的是( )A .幂函数图象一定过原点B .当0α<时,幂函数y x α=是减函数C .当1α>时,幂函数y x α=是增函数D .函数2y x =既是二次函数,也是幂函数【答案】D 【解析】由函数1y x -=的性质,可判定A 、B 不正确;根据函数2y x =可判定C 不正确;根据二次函数和幂函数的定义,可判定D 正确.【详解】由题意,函数1y x -=的图象不过原点,故A 不正确;函数1y x -=在(,0)-∞及(0,)+∞上是减函数,故B 不正确;函数2y x =在(,0)-∞上是减函数,在(0,)+∞上是增函数,故C 不正确;根据幂函数的定义,可得函数2y x =是二次函数,也是幂函数,所以D 正确.故选:D.9.(2021·全国高一课时练习)幂函数的图象过点(3, ),则它的单调递增区间是( )A .[-1,+∞)B .[0,+∞)C .(-∞,+∞)D .(-∞,0)【答案】B 【解析】根据利用待定系数法求出幂函数的解析式,再根据幂函数求出单调增区间即可.【详解】设幂函数为f (x )=x α,因为幂函数的图象过点(3, ),所以f (3)=3α=123,解得α=12,所以f (x )=12x ,所以幂函数的单调递增区间为[0,+∞).故选:B10.(2021·全国高三专题练习)下列关于幂函数图象和性质的描述中,正确的是()A .幂函数的图象都过(1,1)点B .幂函数的图象都不经过第四象限C .幂函数必定是奇函数或偶函数中的一种D .幂函数必定是增函数或减函数中的一种【答案】AB 【解析】举反例结合幂函数的性质判断即可.【详解】因为11α=,所以的幂函数都经过(1,1),故A 正确;当0x >时,0x α>,幂函数的图象都不经过第四象限,故B 正确;12y x =的定义域为[)0,+∞,为非奇非偶函数,故C 错误;1y x=在(),0-∞和()0,∞+上为减函数,但在定义域内不是减函数,故D 错误.故选:AB1.(2020·内蒙古自治区集宁一中高二月考(文))若a =12⎛⎫ ⎪⎝⎭23,b =15⎛⎫ ⎪⎝⎭23,c =12⎛⎫ ⎪⎝⎭13,则a ,b ,c 的大小关系是( )A .a <b <c B .c <a <b C .b <c <a D .b <a <c【答案】D 【解析】∵y =x 23 (x >0)是增函数,∴a =12⎛⎫⎪⎝⎭23>b =15⎛⎫ ⎪⎝⎭23.∵y =12⎛⎫⎪⎝⎭x 是减函数,∴a =12⎛⎫ ⎪⎝⎭23<c =12⎛⎫ ⎪⎝⎭13,∴b <a <c .故本题答案为D.2.(2019·湖北高三高考模拟(理))幂函数f (x )=x m的图象过点(2,4),且a =m 12,b =(13)m,c =―log m 3,则a 、b 、c 的大小关系是( )A .a >c >bB .b >c >aC .a >b >cD .c >a >b 【答案】C练提升【解析】幂函数f (x )=x m 的图象过点(2,4),∴2m =4,m =2;∴a =m 12=2>1,b =(13)m =19∈(0,1),c =―log m 3=﹣log 23<0,∴2>19>―log 23,∴a >b >c .故选:C .3.(2021·全国高三专题练习)已知幂函数()f x x α=满足()()2216f f =,若()4log 2a f =,()ln 2b f =,()125c f -=,则a ,b ,c 的大小关系是()A .a c b >>B .a b c >>C .b a c >>D .b c a>>【答案】C 【解析】由()()2216f f =可求得13α=,得出()f x 单调递增,根据单调性即可得出大小.【详解】由()()2216f f =可得4222αα⋅=,∴14αα+=,∴13α=,即()13f x x =.由此可知函数()f x 在R 上单调递增.而由换底公式可得242log 21log 2log 42==,22log 2ln 2log e =,125-=,∵21log 2e <<,∴2222log 2log 2log 4log e<,于是4log 2ln 2<,12<,∴1245log 2-<,故a ,b ,c 的大小关系是b a c >>.故选:C.4.(2021·安徽高三二模(理))函数()nxf x x a =,其中1a >,1n >,n 为奇数,其图象大致为()A .B .C .D .【答案】B 【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n nx x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.5.(2021·新疆高三其他模拟(理))若实数m ,n 满足m n >,且0mn ≠,则下列选项正确的是( )A .330m n ->B .1122m n⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .()lg 0m n ->D .11m n<【答案】A 【解析】利用幂函数、指数函数单调性和对数的运算可求解.【详解】解:∵函数3y x =,在R x ∈时单调递增,且m n >,∴330m n ->,故A 正确;∵函数1(2x y =,在R x ∈时单调递减,且m n >,∴11()()22mn<,故B 错误;当11,2m n ==时,()1lg lg 02m n -=<,故C 错误;当,11m n ==-时,1111m n=>=-,故D 错误;故选:A.6.【多选题】(2020·新泰市第二中学高二月考)已知函数图像经过点(4,2),则下列命题正确的有( )A .函数为增函数B .函数为偶函数C .若,则D .若,则.【答案】ACD 【解析】将点(4,2)代入函数得:,则.所以,显然在定义域上为增函数,所以A 正确.的定义域为,所以不具有奇偶性,所以B 不正确.当,即,所以C 正确.当若时,=..=.即成立,所以D 正确.()f x x α=1x >()1f x >120x x <<()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭()f x x α=2=4α1=2α12()f x x =()f x [0,)+∞()f x [0,)+∞()f x 1x >1>()1f x >120x x <<()()122212(()22f x f x x x f ++-22-122x x +-0<()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭故选:ACD.7.【多选题】(2021·湖南高三月考)已知函数1,0(),0x x e x f x xe x -⎧>⎪=⎨≤⎪⎩,若关于x 的方程()f x a =有且仅有一个实数解,且幂函数()a g x x =在()0,∞+上单调递增,则实数a 的取值可能是( )A .1B .1eC .2D .e【答案】AD 【解析】作出()f x 的图象,根据方程根的个数判断参数a 的取值,再结合函数()a g x x =在()0,∞+上单调递增,即可求解出结果.【详解】当0x ≤时,()x f x xe =,()()1xf x e x '=+,当1x <-时()0f x '<,当10x -<<时()0f x '>所以()x f x xe =在(),1-∞-上单调递减,在()1,0-上单调递增,最小值为1(1)f e --=-;所以()f x 的图象如图所示,因为()f x a =有且仅有一个实数解,即()y f x =的图象与y a =有且只有一个交点,所以[)1,1,0,a e e ⎧⎫∈+∞-⎨⎬⎩⎭,又因为()a g x x =在()0,∞+上单调递增,所以0a >,所以[){},1a e ∈+∞ .故选:AD8.(2019·上海高考模拟)设α∈12,―1,―2,3,若f (x )=x α为偶函数,则α=______.【答案】―2【解析】由题可知,α=―2时,f (x )=x ―2,满足f(-x)=f(x),所以是偶函数;α=13,12,―1,3时,不满足f(-x)=f(x), ∴α=―2.故答案为:―2.9.(2021·全国高三专题练习(理))已知幂函数()39*N m y x m -=∈的图像关于y 轴对称,且在()0,∞+上函数值随着x 的增大而减小.(1)求m 值.(2)若满足()()22132mma a +<-,求a 的取值范围.【答案】(1)1m =;(2)()2,4,3⎛⎫-∞⋃+∞ ⎪⎝⎭.【解析】(1)由题意可知39m -为负偶数,且*N m ∈,即可求得m 值;(2)将所求不等式化为()()22132a a +<-,求解,即可得出结果.【详解】(1)因为函数39*()m y x m N -=∈在()0,∞+上单调递减,所以390m -<,解得3m <.又因为*m N ∈,所以1m =,2;因为函数的图象关于y 轴对称,所以39m -为偶数,故1m =.(2)由(1)可知,1m =,所以得()()22132a a +<-,解得4a >或23<a ,即a 的取值范围为()2,4,3⎛⎫-∞⋃+∞ ⎪⎝⎭.10.(2021·浙江高一期末)已知幂函数2242()(1)mm f x m x -+=-在(0,)+∞上单调递增,函数()2g x x k =-.(1)求m 的值;(2)当[1,2)x ∈时,记(),()f x g x 的值域分别为集合A ,B ,设:,:p x A q x B ∈∈,若p 是q 成立的必要条件,求实数k 的取值范围.(3)设2()()1F x f x kx k =-+-,且|()|F x 在[0,1]上单调递增,求实数k 的取值范围.【答案】(1)0m =;(2)01k ≤≤;(3)[][)1,02,-+∞ 【解析】(1)由幂函数的定义2(1)1m -=,再结合单调性即得解.(2)求解()f x ,()g x 的值域,得到集合A ,B ,转化命题p 是q 成立的必要条件为B A ⊆,列出不等关系,即得解.(3)由(1)可得22()1F x x kx k =-+-,根据二次函数的性质,分类讨论02k ≤和12k ≥两种情况,取并集即可得解.【详解】(1)由幂函数的定义得:2(1)1m -=,0m ⇒=或2m =,当2m =时,2()f x x -=在(0,)+∞上单调递减,与题设矛盾,舍去;当0m =时,2()f x x =在(0,)+∞上单调递增,符合题意;综上可知:0m =.(2)由(1)得:2()f x x =,当[1,2)x ∈时,[)()1,4f x ∈,即[)1,4A =,当[1,2)x ∈时,[)()2,4g x k k ∈--,即[)2,4B k k =--,由命题p 是q 成立的必要条件,则B A ⊆,显然B ≠∅,则2144k k -≥⎧⎨-≤⎩,即10k k ≤⎧⎨≥⎩,所以实数k 的取值范围为:01k ≤≤.(3)由(1)可得22()1F x x kx k =-+-,二次函数的开口向上,对称轴为2k x =,要使|()|F x 在[0,1]上单调递增,如图所示:或即02(0)0k F ⎧≤⎪⎨⎪≥⎩或12(0)0k F ⎧≥⎪⎨⎪≤⎩,解得:10k -≤≤或2k ≥.所以实数k 的取值范围为:[][)1,02,-+∞ 1.(2019·全国高考真题(理))若a >b ,则( )A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │【答案】C【解析】取,满足,,知A 错,排除A ;因为,知B 错,排除B ;取,满足,,知D 错,排除D ,因为幂函数是增函数,,所以,故选C .2.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩…若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是()A.1,)2⎛⎫-∞-+∞ ⎪⎝⎭ B.1,(0,2⎛⎫-∞- ⎪⎝⎭C.(,0)(0,-∞ D.(,0))-∞+∞ 【答案】D 【解析】2,1a b ==a b >ln()0a b -=9333a b =>=1,2a b ==-a b >12a b =<=3y x =a b >33a b >练真题注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0))-∞+∞ .故选:D.3.(2020·江苏高考真题)已知y =f (x )是奇函数,当x ≥0时,()23f x x = ,则f (-8)的值是____.【答案】4-【解析】先求(8)f ,再根据奇函数求(8)f -【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-4. (2018·上海卷)已知α∈{-2,-1,-12,12,1,2,3}.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α= .【答案】-1【解析】∵幂函数f (x )=x α为奇函数,∴α可取-1,1,3,又f (x )=x α在(0,+∞)上递减,∴α<0,故α=-1.5.(浙江省高考真题(文))已知函数()2,1{ 66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦ , ()f x 的最小值是 .【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.6.(江苏省高考真题)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x(x >0)图象上一动点.若点P ,A 之间的最短距离为,则满足条件的实数a 的所有值为________.【答案】-1【解析】试题分析:设点1,P x x ⎛⎫ ⎪⎝⎭()0x >,则PA ===令1,0,2t x x t x=+>∴≥ 令()()22222222g t t at a t a a =-+-=-+-(1)当2a ≥时,t a =时()g t 取得最小值()22g a a =-,=,解得a =(2)当2a <时,()g t 在区间[)2,+∞上单调递增,所以当2t =时,()g t 取得最小值()22242g a a =-+=1a =-综上可知:1a =-或a =所以答案应填:-1.。
幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。
1. 计算 2^3。
答案:2^3 = 8。
2. 计算 (-3)^4。
答案:(-3)^4 = 81。
3. 计算 (4^2)^3。
答案:(4^2)^3 = 4^6 = 4096。
4. 计算 (2^3)(2^4)。
答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。
5. 计算 (2^3)^4。
答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。
6. 计算 (2^3)/2。
答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。
7. 计算 (2^4)/(2^2)。
答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。
8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。
9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。
10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。
11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。
12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。
13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。
14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。
...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。
每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。
祝您练习顺利!。
[基础巩固]1.函数f (x )=x 3的图象( )A .关于直线y =x 对称B .关于x 轴对称C .关于原点对称D .关于y 轴对称解析 ∵f (x )=x 3是奇函数,∴f (x )的图象关于原点对称.答案 C2.若幂函数f (x )的图象经过点⎝⎛⎭⎫2,14,则f ⎝⎛⎭⎫12等于( ) A .4B .2C .12D .14解析 设f (x )=x α,则14=2α,∴α=-2. ∴f (x )=x -2.∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12-2=22=4.答案 A3.(多选)已知幂函数f (x )的图象经过点⎝⎛⎭⎫27,13,则幂函数f (x )具有的性质是( ) A .在其定义域上为增函数B .在(0,+∞)上单调递减C .奇函数D .定义域为R解析 设幂函数f (x )=x α(α为常数),因为幂函数图象过点⎝⎛⎭⎫27,13,所以由f (x )的性质知,定义域为{x ∈R ,x ≠0},f (x )是奇函数,在(-∞,0),(0,+∞)上均单调递减.答案 BC4.下列幂函数中是奇函数且在(0,+∞)上单调递增的是________(填序号).①y =x 2;②y =x ;③y =x 12;④y =x 3;⑤y =x -1. 解析 由奇偶性的定义知y =x 2为偶函数,y =x 12 =x 既不是奇函数也不是偶函数.由幂函数的单调性知y =x-1在(0,+∞)上单调递减,易知②④满足题意. 答案 ②④5.幂函数y =x-1在[-4,-2]上的最小值为________. 解析 ∵y =x -1在(-∞,0)上单调递减,∴y =x -1在[-4,-2]上递减,∴y =x -1在[-4,-2]上的最小值是-12. 答案 -126.比较下列各题中两个幂的值的大小:解析 (1)∵y =x 12为[0,+∞)上的增函数,又1.1>0.9,∴1.112 >0.912 .[能力提升]7.如图所示,曲线C 1与C 2分别是函数y =x m 和y =x n 在第一象限内的图象,则下列结论正确的是( )A .n <m <0B .m <n <0C .n >m >0D .m >n >0解析 由图象可知,两函数在第一象限内递减,故m <0,n <0.由曲线C 1,C 2的图象可知n <m .答案 A8.函数为幂函数,则该函数为________(填序号).①奇函数;②偶函数;③增函数;④减函数.解析 由为幂函数,得m -1=1,即m =2,则该函数为y =x 2,故该函数为偶函数,在(-∞,0)上是减函数,在(0,+∞)上是增函数.答案 ②9.若(3-2m )12 >(m +1)12 ,则实数m 的取值范围为____________ .解析 考查幂函数y =x 12 ,因为y =x 12 在定义域[0,+∞)上是增函数,所以⎩⎪⎨⎪⎧ 3-2m ≥0,m +1≥0,3-2m >m +1,解得-1≤m <23. 故m 的取值范围为⎣⎡⎭⎫-1,23. 答案 ⎣⎡⎭⎫-1,23 10.已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数是减函数,求满足的a 的取值范围. 解析 ∵函数y =x 3m -9在(0,+∞)上单调递减,∴3m -9<0,解得m <3.又m ∈N *,∴m =1,2.又函数图象关于y 轴对称,∴3m -9为偶数.故m =1.∴a +1>3-2a >0或0>a +1>3-2a或a +1<0<3-2a .解得23<a <32或a <-1. 故a 的取值范围为⎝⎛⎭⎫23,32∪(-∞,-1).[探索创新]11.已知幂函数在(0,+∞)上单调递增,函数g (x )=2x -k .(1)求m 的值;(2)当x ∈[1,2]时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,求实数k 的取值范围.解析 (1)依题意,得(m -1)2=1,解得m =0或m =2.当m =2时,f (x )=x -2在(0,+∞)上单调递减,与题设矛盾,舍去,∴m =0.(2)由(1)可知f (x )=x 2,当x ∈[1,2]时,f (x ),g (x )单调递增,∴A =[1,4],B =[2-k,4-k ].∵A ∪B =A ,∴B ⊆A ,∴⎩⎪⎨⎪⎧2-k ≥1,4-k ≤4,∴0≤k ≤1. ∴实数k 的取值范围是[0,1].。
3.3 幂函数练习
一、单选题
1、已知幂函数f (x )=kx α(k ∈R ,α∈R)的图象过点⎝⎛⎭⎫1
2,2,则k +α=( A ) A .12 B .1 C .3
2
D .2
2、下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( A ) A .y =x
-2
B .y =x
-1
C .y =x 2
D .y =3
1
x
3、幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( C )
4、幂函数()()22
22m f x m m x -=--在(
)
0,∞+上单调递减,则实数m 的值为( A ) A .1-
B .3
C .1-或3
D .3-
5、若f (x )=12
x ,则不等式f (x )>f (8x -16)的解集是( A )
A .⎣⎡⎭⎫2,167
B .(0,2]
C .⎝⎛⎭⎫-∞,16
7 D .[2,+∞) 6、若幂函数f (x )=(
)
1
2
2
55a a a x
---在(0,+∞)上单调递增,则a 等于( D )
A .1
B .6
C .2
D .-1
7、幂函数a b c d y x y x y x y x ====,,,在第一象限的图像如图所示,则a b c d ,,,的大小关系是 ( D )
A .a b c d >>>
B .d b c a >>>
C .d c b a >>>
D .b c d a >>>
8、已知幂函数y =p q
x (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( D )
A .p ,q 均为奇数,且p
q >0
B .q 为偶数,p 为奇数,且p
q <0
C .q 为奇数,p 为偶数,且p
q >0
D .q 为奇数,p 为偶数,且p
q <0
二、多选题
9.下列关于幂函数y x α=的性质说法正确的有( CD ) A .当1α=-时,函数在其定义域上递减 B .当0α=时,函数图象是一条直线 C .当2α=时,函数是偶函数
D .当3α=时,函数的图象与x 轴交点的横坐标为0 10.已知函数()
a f x x 的图象经过点1,33⎛⎫
⎪⎝⎭
则( CD )
A .()f x 的图象经过点(3,9)
B .()f x 的图象关于y 轴对称
C .()f x 在(0,)+∞上单调递减
D .()f x 在(0,)+∞内的值域为(0,)+∞
11、已知幂函数f (x )=()
2
23
1m
m m m x +---,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,都满足
2
121)
()(x x x f x f -->0,若a ,b ∈R 且f (a )+f (b )<0,则下列结论可能成立的有( BC )
A .a +b >0且ab <0
B .a +b <0且ab <0
C .a +b <0且ab >0
D .以上都可能
12.若函数()f x x α
=的定义域为R 且为奇函数,则α可能的值为( BD )
A .1-
B .1
C .2
D .3
三、填空题
13.若幂函数()21m
y m m x =--为偶函数,则m = ___2_____ .
14、已知幂函数f (x )=mx n +k 的图象过点⎝⎛⎭⎫
116,14,则m -2n +3k =_____0__. 15、若()()
2
12
2
1
112-+>+m m m ,则实数m 的取值范围是______⎣⎢
⎡⎭
⎪
⎫5-12,2__________.
16、给出下面四个条件:①f (m +n )=f (m )+f (n );②f (m +n )=f (m )·f (n );③f (mn )=f (m )·f (n );④f (mn )=f (m )+f (n ).如果m ,n 是幂函数y =f (x )定义域内的任意两个值,那么幂函数y =f (x )一定满足的条件的序号为__③______. 四、解答题
17.已知幂函数()f x x α
=的图象经过点3,19⎛⎫ ⎪⎝⎭
,求函数的解析式,并作出该函数图象的草
图,判断该函数的奇偶性和单调性.
解:因为幂函数()f x x α=的图象经过点3,19⎛⎫ ⎪⎝⎭
,故可得139α
=,解得2α=-,
故()2
f x x -=,其定义域为{|0}x x ≠,关于原点对称;
其函数图象如下所示:
数形结合可知,因为()f x 的图象关于y 轴对称,故其为偶函数; 且()f x 在()0,+∞单调递减,在(),0-∞单调递增.
18、已知幂函数f (x )=(m 2-5m +7)x -m -1
(m ∈R)为偶函数.
(1)求f ⎝⎛⎭⎫12的值;
(2)若f (2a +1)=f (a ),求实数a 的值. 解:(1)由m 2-5m +7=1,得m =2或3. 当m =2时,f (x )=x
-3
是奇函数,∴不满足题意,∴m =2舍去;
当m =3时,f (x )=x -
4,满足题意, ∴f (x )=x -4
,∴f ⎝⎛⎭⎫12=⎝⎛⎭
⎫12-4
=16.
(2)由f (x )=x
-4
为偶函数和f (2a +1)=f (a )可得|2a +1|=|a |,
即2a +1=a 或2a +1=-a ,∴a =-1或a =-1
3
.
19、已知幂函数f (x )=2
1
()m
m x
-+(m ∈N *).
(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;
(2)若函数f (x )的图象经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.
解:(1)因为m 2+m =m (m +1)(m ∈N *),
而m 与m +1中必有一个为偶数,所以m 2+m 为偶数, 所以函数f (x )=21
()m m x
-+(m ∈N *)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.
(2)因为函数f (x )的图象经过点(2,2), 所以
2=2(m 2+m )-
1
2()1
2
m m +-,即12
2=2
()1
2
m
m +-,
所以m 2+m =2,解得m =1或m =-2. 又因为m ∈N *,所以m =1,f (x )=1
2
x , 又因为f (2-a )>f (a -1), 所以⎩⎪⎨⎪
⎧
2-a ≥0,a -1≥0,
2-a >a -1,
解得1≤a <3
2
,
故函数f (x )的图象经过点(2,2)时,m =1.
满足条件f (2-a )>f (a -1)的实数a 的取值范围为[1,3
2).
20、19.已知函数()()()21
51Z m f x m m x m +=-+∈为幂函数,且为奇函数.
(1)求m 的值,并确定()f x 的解析式; (2)令()()21g x f x x =++y
g x 在1,12x ⎡⎤
∈-⎢⎥⎣⎦
的值域.
解:(1)因为函数()()()21
51Z m f x m m x m +=-+∈为幂函数,
所以2511m m -+=,解得0m =或5m =, 当0m =时,函数()f x x =是奇函数,符合题意,
当5m =时,函数()6
f x x =是偶函数,不符合题意,
综上所述,m 的值为0,函数()f x 的解析式为()f x x =. (2)由(1)知,()f x x =,
所以()()2121g x f x x x x =+=++ 令21t x =+21
2
t x -=,
1
1,0123,032
x x t -≤≤∴≤+≤∴≤≤ 所以2211
()222
t t g t t t -=+=+-,3t ⎡∈⎣, 根据二次函数的性质知,()g t 的对称轴为11
1
22
t =-
=-⨯,开口向上,
所以()g t 在3⎡⎣上单调递增;
所以2min
011
()(0)0222
g t g ==+-=-,
(2
max 31
()(3)3312
2
g t g ==
= 所以函数()g x 在1,12⎡⎤-⎢⎥⎣⎦
的值域为1312⎡⎤
-⎢⎥⎣⎦.。