东昌东校2016学年第一学期初二阶段测试答题纸
- 格式:doc
- 大小:42.50 KB
- 文档页数:2
2015-2016学年山东省聊城市东昌府区八年级(上)期末数学试卷
一、选择题(本题共12个小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.计算(﹣)3的结果是()
A .﹣
B .﹣
C .﹣
D .
2.下列四个图形:
其中是轴对称图形,且对称轴的条数为2的图形的个数是()
A.4 B.3 C.2 D.1
3.下列各图中,∠1大于∠2的是()
A .
B .
C .
D .
4.下列命题的逆命题是真命题的是()
A.如果两个角不相等,那么这两个角不是对顶角
B.如果a=b,那么a2=b2
C.如果两个角相等,那么这两个角是同位角
D.如果一个整数能被5整除,则这个整数的个位数字是0
5.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于x轴对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.7
6.下列关于两个三角形全等的说法:
①三个角对应相等的两个三角形全等;
②三条边对应相等的两个三角形全等;
③有两角和其中一个角的对边对应相等的两个三角形全等;
④有两边和一个角对应相等的两个三角形全等.
正确的说法个数是()
A.1个B.2个C.3个D.4个。
4题2015—2016学年度上学期期中检测八年级数学试卷一、选择题(每小题3分,10题共30分) 1、下列图形是轴对称图形的有( )A.4个B.3个C.1个D.1个2、在△ABC 中,∠A ∶∠B ∶∠C =1∶1∶2,则此三角形的形状为( ) A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、等腰直角三角形3、等腰三角形的一边长是6,另一边长是12,则周长为( ) A.30 B.24 C.24或30 D.184、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA =2, 则PQ 的最小值为( )A 、1B 、 2C 、 3D 、 4 5、等腰三角形的一个角是80°,则它的底角是( ) A. 50° B. 80° C. 50°或80° D. 20°或80° 6、一个多边形的每个内角为108°,则这个多边形是( ) A 、四边形 B 、五边形 C 、六边形 D 、七边形7、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个8、将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后//A B E B 与与在同一条直线上,则∠CBD 的度数 ( )A. 大于90°B. 等于90°C. 小于90°D. 不能确定9、如图, 已知△ABC 中, AB=AC, ∠BAC =90°, 直角∠EPF 的顶点P 是BC 中点, 两边PE 、PF 分别交AB 、AC 于点E 、F, 给出以下四个结论: ①AE=CF; ②△EPF 是等腰直角三角形; ③S 四边形AEPF =21S △ABC ; ④BE+CF =EF. 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合). 上述结论中始终正确的有( )A. 1个B. 2个C. 3个D. 4个10、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°.恒成立的有( )个. A .1 B .2C .3D .4二、填空题(每题3分,6题共18分)11、已知点P (-3,4),关于x 轴对称的点的坐标为 。
初中数学试卷2015—2016学年第一学期第一次阶段性检测八年级数学试题时间:100分钟 分值:120分一. 选择题(本题共12个小题,每小题3分,共36分)1. 下列图形是轴对称图形的有( )A.2个B.3个C.4个D.5个2.一只小狗正在平面镜前欣赏自己的全身像如图,此时,它所看到的全身像是()3.如图用直尺和圆规作一个角等于已知角,则A O B AOB '''=∠∠的依据是( )A.SSS B.SAS C.ASA D.AASM Q AP NCB A O CB D A 'O C 'B 'D '(第3题图)(第5题图)4.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形5.如图,∠BAC=130°,若MP和QN分别垂直平分AB和AC,则∠PAQ等于 ( )A.50°B.75°C.80°D.105°6.如图,在不等边△ABC中,PM⊥AB,垂足为M,PN⊥AC,垂足为N,且PM=PN,点Q在AC上,PQ=QA,下列结论:①AN=AM,②QP∥AM,③AP平分∠BAC,④PA平分∠MPN,⑤△BMP≌△CNP,其中正确的个数有()A. 2个B. 3个C. 4个D. 5个(第6题图)(第7题图)(第8题图)7.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长是()A.6㎝B.4㎝C.10㎝D.以上都不对8.如图,直线a,b,c表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1个B.2个C.3个D.4个9.到三角形的各顶点距离相等的点是()A.三角形的三条角平分线的交点 C.三角形的三条中线的交点B.三角形的三条高的交点 D.三角形的三边的垂直平分线的交点10.已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OA对称,P2与P关于OB对称,则△P1OP2是()A.含30°角的直角三角形;B.顶角是30的等腰三角形;C.等边三角形D.等腰直角三角形.11.平面上有A、B两个点,以线段AB为一边作等腰直角三角形能作( )A.3个 B.4个 C.6个 D.无数个12. 已知A和B两点在线段EF的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB等于( )A.95°B.15°C.95°或15°D.170°或30°二. 填空题(本题共5个小题,每小题4分,共20分)13.在△ABC中,AD为BC边上的中线,若AC=5,中线AD=4,则边AB的取值范围是 .x 对称,那么a-b等于 .14.已知点M(a,-4)与点N(6,b)关于直线215.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交EF于F,若BF=AC,则∠ABC等于 .16.若一个等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角度数为.17. 如图,在△ABC中,∠ABC=120º,AM=AN,CN=CP,则∠MNP= .(第15题图)(第17题图)三.解答题(共64分)18.(本题8分,每小题4分)作图题:(保留作图痕迹,不写作法)(1)如图,在“V”形公路(∠AOB)内部有两个村庄C和D,现要建一个果品加工厂点M,使其到“V”形公路的距离相等,且使C、D两村的工人上下班的路程一样,用尺规在图上作出果品加工厂点M的位置.(2)如图,一牧民要从A点出发,到草地MN去喂马,该牧民在傍晚回到营帐B之前先带马去小河边PQ给马饮水.问:该牧民应该走怎样的路线最短?(在图上画出)((第18题图)(第19题图)19.(本题8分)如图,△ABC为等边三角形,点M是BC上任意一点,点N是CA上任意一点,且BM=CN,BN与AM相交于Q点,求∠AQN的度数.20.(本题8分)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC上的中线,过C作CF ⊥AE,垂足为F点,过B作BD⊥BC交CF的延长线于D点.若BD=3cm,求线段AC的长.21.(本题10分)如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC、CF,求证:CA是∠DCF的平分线.(第20题图) (第21题图) (第22题图) 22.(本题10分)如图,在四边形ABCD中,AD‖BC,E为CD的中点,连接AE,BE,BE⊥AE.求证:AB=BC+AD.(得分提示:延长AE交BC延长线于F)23.(本题10分)△ABC中,∠A=90°,AB=AC,D为BC中点,E、F分别在AC、AB上,且DE⊥DF,试判断DE、DF的数量关系,并说明理由.24.(本题10分)如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF; (2)连接AF,试判断△ACF的形状,并说明理由.FD C A B E(第23题图) (第24题图)2015—2016学年第一学期第一次阶段性检测八年级数学参考答案一.1---5:CAABC 6---10:CACDC 11—12:CC二.13. 3<AB <13 14. 2 15. 45度 16.30或150 17.30三.18. 解:(1)如图所示:(2)如图所示:19.∵△ABC 为正三角形∴∠BAC=∠ABC=∠ACB=60°,AB=BC又,BM=CN∴△ABM ≌△BCN∠BAM=∠CBN∴∠AQN=ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°20.证明: 证明:∵DB ⊥BC,CF ⊥AE, ∴∠DCB+∠D=∠DCB+∠AEC=90°. ∴∠D=∠AEC . 又∵∠DBC=∠ECA=90°,且BC=CA,∴△DBC ≌△ECA (AAS ).∴BD=EC又∵EC=1/2BC∴BD=EC=1/2BC=1/2AC,且BD=3cm.∴AC=6cm.21.证明:∵BF平分∠ABC,∴∠ABF=∠CBF.在△ABF与△CBF中,AB=CB∠ABF=∠CBFBF=BF∴△ABF≌△CBF(SAS).∴AF=CF.∵AF=CF,∴∠FCA=∠FAC.∵AF∥DC,∴∠FAC=∠DCA.∴∠FCA=∠DCA,即CA平分∠DCF22.延长AE交BC延长线于F∵AD//BC∴∠DAE=∠F,∠D=∠ECF∵E是CD的中点∴DE=CE∴△ADE≌△FCE(AAS)∴AD=CF,AE=EF∵BE⊥AE∴BE是AF的中垂线∴AB=BF(中垂线上的点到线段两端距离相等)∵BF=BC+CF=BC+AD∴AB=BC+AD23. DF=DE 证明:连接AD∵∠A=90°,AB=AC∴∠B=∠C=45°∵D为BC中点∴AD=BD(等腰三角形三线合一)∴∠DAB=45°∴∠DAC=45°又∵DE⊥DF。
2015-2016学年山东省聊城市东昌府区东昌中学八年级(上)期中物理试卷一、单项选择题(每题3分,共30分)1.(3分)关于声现象,下列说法中正确的是()A.可用噪声监测设备来消除噪声污染B.声音在固体中的传播速度比在空气中的小C.我们听不到蝴蝶翅膀振动发出的声音是因为响度太小D.敲锣时用力越大,发出的声音响度越大2.(3分)用手指去触摸0℃的水和0℃的冰时,下列说法中正确的是()A.感到冰更冷,因为冰熔化时吸热B.感觉水更冷,因为“湿冷”比“干冷”更冷C.感觉一样冷,因为它们的温度相等D.感到冰更冷,因为冰的温度比水的温度低3.(3分)下列数值中,单位应该是厘米的是()A.课桌的高度约为0.8 B.一只铅笔的长度约为18C.一张试卷的厚度约为70 D.小明身高约为1.684.(3分)为了实现全球快速、简捷地通信,人类发射了各种各样的通信卫星,同步通信卫星是其中最重要的一种。
同步通信卫星()A.在高空静止不动 B.相对于地球静止C.相对于月亮静止 D.相对于太阳静止5.(3分)在公路上行驶的大货车与小轿车的速度之比是3:5,它们通过的路程之比是1:3,大货车与小轿车所用的时间之比是()A.9:5 B.3:2 C.2:3 D.5:96.(3分)下列物态变化中,属于汽化现象的是()A.春天,冰雪消融B.夏天,晾在室内的湿衣服变干C.秋天,早晨草木上露珠的形成D.冬天,湖面的水结成冰7.(3分)某固体物质从250℃开始熔化,直到300℃才熔化结束。
下列图象中能反映该物质凝固的图象是()A.B. C.D.8.(3分)下列措施不能减弱噪声的是()A.在摩托车上安装消声器B.装在城市高架桥道路两侧的透明板墙C.在人耳处戴上助听器D.在声音传播途径中植树造林9.(3分)以下与物态变化相关的说法正确的是()A.固体熔化时的温度叫做熔点B.气温低于水银熔点的地方,不能使用水银温度计C.北方的冬天,在菜窖里放几桶水,是为了利用水的汽化吸热D.电冰箱使用的制冷物质工作时,在冷冻室要液化,在冷凝器要汽化10.(3分)如图所示,小烧杯和大烧杯中都装有一定量的水,它们的底部没有接触,现用酒精灯对大烧杯进行加热,使大烧杯的水沸腾,并且继续加热,此时小烧杯的水()A.温度能达到沸点,但不能沸腾B.温度不能达到沸点,也不能沸腾C.温度能达到沸点,也能沸腾D.温度能达到沸点,沸腾与否视火力而定二、多项选择题(每题4分,共12分,漏选得2分,错选不得分)11.(4分)下列说法中正确的是()A.“闻其声而知其人”主要是根据音色来判断的B.公路旁安装隔音墙是为了在传播路径上减弱噪声C.课堂上能听到老师讲课声,是由于空气能够传声D.用大小不同的力先后敲击同一音叉,音叉发声的音调会不同12.(4分)下列说法中正确的是()A.同一晶体的熔化温度与凝固温度相同B.“下雪不冷化雪冷”这是因为雪在熔化时吸热C.深秋早晨,窗玻璃上外侧会出现一些小水珠,这是一种液化现象D.取出冰箱中被冻的冰糕,放一会,发现包装外层出现小水珠,这是一种液化现象13.(4分)下列实例中不能够使蒸发减慢的是()A.将盘子中的水倒人瓶中B.将湿手伸到干手器下方吹C.将新鲜的黄瓜装入塑料袋D.利用管道代替沟渠输水三、填空题(每空1分,共14分)14.(2分)在国庆60周年阅兵式上,一支上天似雄鹰、下海如蛟龙、入地似猛虎的神秘方队首次踢着正步走过天安门,这就是中国最年轻的兵种﹣﹣特种兵(如图所示).他们最拿手的是穿消音靴上天、入地、下海。
2015——2016学年第一学期八年级数学第一次水平检测(时间:100分钟;满分:120分)亲爱的同学,欢迎你参加本次考试。
这份试卷将再次记录你的自信、沉着、智慧和收获。
请认真审题,看清要求,仔细答题, 同时请注意在答题卷的对应位置上答题。
一、细心选一选(每题3分共36分)1. 如下书写的四个汉字,其中为轴对称图形的是( )A .B . C. D.2 . 如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A .在AC 、BC 两边高线的交点处 B .在AC 、BC 两边中线的交点处 C .在AC 、BC 两边垂直平分线的交点处 D .在∠A 、∠B 两内角平分线的交点处3. 等腰三角形有两条边长为4cm 和9cmA.17cm B .22cm C .17cm 或22cm D .18cm 4. 等腰三角形的对称轴是( ) A .顶角的平分线 B .底边上的高 C .底边上的中线 D .底边上的高所在的直线 5、和点P (-3,2)关于y 轴对称的点是( )A.(3, 2)B.(-3,2)C. (3,-2)D.(-3,-2) 6、已知:如图,AC=AE ,∠1=∠2,AB=AD ,若∠D=25°,则∠B 的度数为( ) A.25° B.30° C.15° D.30°或15°7. 如图,△ABC 中,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE BC 于F ,则图中全等直角三角形的对数为( ) A.3对 B.4对 C.5对 D.6对8、如图,在△ABC 中,AB 的中垂线交BC 于点E ,若BE=2则A 、E 两点的距离是( ). A.4 B.2 C.3 D.129、如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是( )CA .45°B .55°C .60°D .75°10、在已知△ABC 中,AB=AC , BD=DC ,则下列结论中错误的是( ) A.∠BAC=∠B B.∠1=∠2 C.AD ⊥BC D.∠B=∠C11、如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( )A 、PD =PEB 、OD =OEC 、∠DPO =∠EPOD 、PD =OPEDC BAF第9题 第11题 第12题 12、如图,已知AB =AC ,AE =AF ,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是( )A .①B .②C .①和②D .①②③二、专心填一填(每空4分共24分)13、如图,AD ⊥BC ,D 为BC 的中点,则△ABD ≌_________。
一、选择题1.化简分式2xy xx +的结果是( )A .yxB .1y x + C .1y + D .y xx+ 2.若关于x 的方程1044m xx x--=--无解,则m 的值是( ) A .2- B .2 C .3-D .33.计算233222()mn m n -⋅-的结果等于( )A .2mnB .2n mC .2mnD .72mn4.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( )A .1524x x 3=+ B .1524x x 3=- C .1524x 3x=+ D .1524x 3x=- 5.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式 6.分式242x x -+的值为0,则x 的值为( )A .2-B .2-或2C .2D .1或27.将0.50.0110.20.03x x +-=的分母化为整数,得( ) A .0.50.01123x x +-= B .5051003xx +-= C .0.50.01100203x x +-= D .50513xx +-= 8.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x⨯=++C .660840014147660840010x x⨯=⨯++ D .7840066010146608400x x++⨯=9.若实数a 使关于x 的不等式组313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .110.下列计算正确的是( ) A .1112a a a += B .2211()()a b b a +--=0C .m n a -﹣m na+=0 D .11a b b a+--=0 11.下列各式计算正确的是( )A .33x x y y=B .632m m m=C .22a b a b a b+=++D .32()()a b a b b a -=-- 12.已知有理数a ,b 满足:1ab =,1111M a b =+++,11a b N a b=+++,则M ,N 的关系为( )A .M N >B .M N <C .M N =D .M ,N 的大小不能确定 二、填空题13.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________.14.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________. 15.方程31x xx x -=+的解是______. 16.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 17.若关于x 的方程1322m xx x-+=--的解是正数,则m =____________. 18.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025千米)的颗粒物,也称为可入肺颗粒物.2.5微米用科学记数法表示为________千米. 19.分式2(1)(3)32m m m m ---+的值为0,则m =______________. 20.计算:()222333a b a b --⋅=_______________.三、解答题21.计算:(1)202()21)3--;(2)22(1)(21)(21)3(4)m m m m ⎡⎤+-+--÷-⎣⎦;(3)2221121x x x x x x --+-+22.如果n x y =,那么我们记为:(),x y n =.例如239=,则()3,92=. (1)根据上述规定,填空:()2,8=___________,12,4⎛⎫= ⎪⎝⎭__________; (2)若()4,2a =,(),83b =,求(),b a 的值. 23.先化简,再求值:2246221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭,其中x 取-1、+1、-2、-3中你认为合理的数. 24.(1)解分式方程:23193xx x +=-- (2)先化简代数式+⎛⎫+÷ ⎪---+⎝⎭2a 11a a 1a 1a 2a 1,然后选取一个使原式有意义的a 值代入求值. 25.解分式方程:(1)1171.572x x += (2)21533x x x -+=-- 26.计算:(1)化简:()()22n m n m n -++; (2)解分式方程:2132163x x x -=---.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先把分子因式分解,再约分即可. 【详解】解:22(1)1xy x x y y x x x +++==. 故选:B . 【点睛】本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.2.D解析:D 【分析】根据方程1044m xx x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值. 【详解】解:去分母得:m +1−x =0,∵方程1044m xx x --=--无解, ∴x =4是方程的增根, ∴m =3. 故选:D . 【点睛】本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根.3.A解析:A 【分析】根据整数指数幂的运算法则进行运算即可. 【详解】解:原式=43431222m m m n n m n n---=⋅=⋅=故选:A . 【点睛】本题考查了整数指数幂的运算,掌握运算法则是解题的关键4.D解析:D 【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程. 【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D . 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键.5.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确;【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.6.C解析:C【分析】分式的值为零时,分子等于零,分母不等于零.【详解】解:依题意,得x2-4=0,且x+2≠0,所以x2=4,且x≠-2,解得,x=2.故选:C.【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.D解析:D【分析】根据分式的基本性质求解.【详解】解:将0.50.0110.20.03x x+-=的分母化为整数,可得50513xx+-=.故选:D.【点睛】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键.8.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x+,∴由题意得6608400147 660840010x x⨯=++,【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.9.D解析:D 【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②,由①得:x ≤﹣3, 由②得:x ≥a+2, ∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解, 所以﹣7<a+2≤﹣3, 解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去), 当a =﹣6时,y =﹣2.5(不是整数,舍去), 当a =﹣5时,y =﹣2(是整数,符合题意), 所以符合条件的所有整数a 为﹣5. 故选:D . 【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.10.D【分析】直接根据分母不变,分子相加运算出结果即可. 【详解】 解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误;C 、原式=m n m n a ---=﹣2na,故错误;D 、原式=11a b a b---=0,故正确. 故选D . 【点睛】本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单.11.D解析:D 【分析】根据分式的基本性质进行判断即可得到结论. 【详解】解:A 、33x y 是最简分式,所以33x xy y ≠,故选项A 不符合题意;B 、624m m m=,故选项B 不符合题意;C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意; D 、3322()()()()a b a b a b b a a b --==---,正确, 故选:D . 【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.12.C解析:C 【分析】先通分,再利用作差法可比较出M 、N 的大小即可. 【详解】解:∵1111M a b=+++ ()()1111b a a b +++=++()()211b aa b ++=++,()()()()()()1121111a b b a a ab bN a b a b +++++==++++,∴()()()()221111b a a ab bM N a b a b ++++-=-++++()()2211a b a ab ba b ++---=++ ()()2211aba b -=++,∵1ab =, ∴220ab -=, ∴0M N -=,即M N .故选:C. 【点睛】本题考查的是分式的加减法及分式比较大小的法则,分式比较大小可以利用作差法、作商法等.二、填空题13.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型解析:13【分析】根据分式运算法则即可求出答案. 【详解】解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷=2()m n mm m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13故答案为:13【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600 【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论; 【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟, 根据题意得600300060030002122x x x-+=- , 解得:x=300米/分钟, 经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米. 故答案为:600. 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.15.【分析】两边同时乘以x(x+1)化分式方程为整式方程求解即可【详解】∵∴(x+1)(x-3)=∴-2x-3=∴2x+3=0∴x=经检验x=是原方程的解故填【点睛】本题考查了分式方程的解法熟练把分式方解析:32-. 【分析】 两边同时乘以x(x+1),化分式方程为整式方程求解即可.【详解】 ∵31x x x x -=+, ∴(x+1)(x-3)= 2x ,∴2x -2x-3= 2x ,∴2x+3=0,∴x=32-, 经检验,x=32-是原方程的解, 故填32-. 【点睛】 本题考查了分式方程的解法,熟练把分式方程转化为整式方程是解题的关键,验根是解题的一个重要环节,不能忽视.16.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4【分析】将x=2代入求解即可.【详解】将x=2代入31k x x x -+-=1,得112k -=, 解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键. 17.m <5且m≠1【分析】将分式方程去分母转化为整式方程表示出x 根据x 为正数列出关于m 的不等式求出不等式的解集即可确定出m 的范围【详解】解:关于的方程的解是正数且解得m <5且m≠1故答案为:m <5且m≠ 解析:m <5且m≠1【分析】将分式方程去分母转化为整式方程,表示出x ,根据x 为正数列出关于m 的不等式,求出不等式的解集即可确定出m 的范围.【详解】 解:1322m x x x-+=-- ()m+32=-1-x x5-m x=2关于x 的方程1322m x x x -+=--的解是正数, 5-m 02>且5-m 22≠ 解得m <5且m≠1,故答案为:m <5且m≠1【点睛】此题考查了分式方程的解,得出关于m 的不等式是解题的关键,注意任何时候考虑分母不为0.18.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数的绝对值<解析:92.510-⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2.5微米=92.510-⨯千米,故答案为:92.510-⨯.【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数小于1时,n 等于原数左数第一个非零数字前零的个数,按此方法即可正确求解.19.3【分析】要使分式的值为0必须分式分子的值为0并且分母的值不为0【详解】解:要使分式由分子解得:或3;而时分母;当时分母分式没有意义所以的值为3故答案为:3【点睛】本题主要考查了分式的值为零的条件要 解析:3【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】解:要使分式由分子(1)(3)0m m --=.解得:1m =或3;而3m =时,分母23220m m -+=≠;当1m =时分母2321320m m -+=-+=,分式没有意义.所以m 的值为3.故答案为:3.【点睛】本题主要考查了分式的值为零的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义.20.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b ----+-===故答案为:3a b . 【点睛】本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.三、解答题21.(1)0;(2)112m -;(3)x 【分析】(1)根据实数的混合运算的法则计算即可;(2)利用完全平方公式,平方差公式去括号、合并同类项后再计算除法即可; (3)根据分式乘法的法则进行计算即可.【详解】解:(1)原式=23212⎛⎫- ⎪⎝⎭=92314--+ =0.25﹣3+1=-1.75;(2)原式=()()222424134m m m m ++-+-÷- =()()2244m m m -+÷- =22444m m m m-+-- =112m -; (3)原式=()()()()2111·11x x x x x x +--+- =x .【点睛】本题考查实数的混合运算、整式的混合运算、完全平方公式,平方差公式,分式的乘法运算,正确计算负整数指数幂、零指数幂、多项式乘法公式和因式分解是解题关键. 22.(1)3;-2;(2)4【分析】(1)理解题意,根据有理数乘方及负整数指数幂的计算求解;(2)根据题意,由有理数的乘方计算求得a 与b 的值,然后求解【详解】解:(1)∵328=∴()2,8=3 ∵-22112=24=∴12,4⎛⎫= ⎪⎝⎭-2 故答案为:3;-2(2)∵()4,2a =,2416=∴a=16∵(),83b =,328=∴b=2∴()(),=2,16b a又∵4216=∴(),b a 的值为4【点睛】此题主要考查了有理数的乘方及负整数指数幂的运算,正确将原式变形是解题关键. 23.22(1)x x -+;3x =-;4 【分析】先算分式的减法运算,再把除法化为乘法,进行约分化简,再代入求值,即可.【详解】 原式2462(1)2(1)(1)(1)(1)(1)x x x x x x x x ⎡⎤+++=-÷⎢⎥+-+--⎣⎦224(1)(1)(1)(2)x x x x x +-=⋅+-+ ()211x x -=+221x x -=+ 当3x =-时,原式2(3)2431⨯--==-+. 【点睛】 本题主要考查分式的化简求值,掌握分式的混合运算法则,是解题的关键.24.(1)x=-4(2)化简为:1a a -,当a=2时,原式=2 【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【详解】解:(1)两边都乘最简公分母(x 2-9)得:3+x (x+3)=x 2-9,解这个整式方程得:x=-4,经检验x=-4时,x 2-9≠0,所以,x=-4是分式方程的解. (2)原式=()()()()22a 1a 11a a 1a 1a 1⎛⎫+- ⎪+÷ ⎪---⎝⎭ ()()=222a 11a a 1a 1a 1⎛⎫- ⎪+÷ ⎪---⎝⎭()=22a a 1aa 1-⋅- =a a 1- 当a=2时,原式=2.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.25.(1)1207x =;(2)无解 【分析】(1)先去分母,解整式方程,求解后检验是否为原分式方程的解即可;(2)先去分母,解整式方程,求解后检验是否为原分式方程的解即可.【详解】 (1)解:1171.572x x +=方程两边都乘72x , 得:72+48=7x , 解得:1207x =, 经检验:1207x =是原方程的解; (2)21533x x x-+=--方程两边都乘(3x -), 得:x-2-1=5(x-3),解得:3x =,检验:当3x =时,x-3=3-3=0,是增根,故原方程无解.【点睛】此题考查解分式方程,掌握解分式方程的步骤:去分母化为整式方程,解整式方程,检验解的情况.26.(1)24m mn +;(2)x=1【分析】(1)根据单项式乘多项式法则和完全平方公式,即可得到结果;(2)通过去分母,把分式方程化为整式方程,即可求解.【详解】(1)原式=22222mn n m mn n -+++=24m mn +;(2)2132163x x x -=--- 213213(21)x x x -=--- 2(21)3x x --=-423x x --=-55=xx=1,经检验,x=1是方程的解,∴x=1.【点睛】本题主要考查整式的混合运算以及解分式方程,熟练掌握完全平方公式以及解分式方程的步骤,是解题的关键.。
一、选择题1.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .202.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°3.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30° 4.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm 5.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 6.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .407.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ 8.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF 9.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80°10.如图,△ACB ≌△A 'CB ',∠BCB '=25°,则∠ACA '的度数为( )A .35°B .30°C .25°D .20°11.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD 12.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个二、填空题13.如图,在ABC 中,=6AB ,=4AC ,点D ,E 分别在边AB ,AC 上,2BD AE CE ===,//CE AB 交DE 的延长线于点F ,则CF 的长为_____________.14.如图,ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =10cm ,则DEB 的周长是_____cm .15.已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上. 16.在Rt △ABC 中,∠C =90°,AC =15cm ,BC =8cm ,AX ⊥AC 于A ,P 、Q 两点分别在边AC 和射线AX 上移动.当PQ =AB ,AP =_____时,△ABC 和△APQ 全等.17.如图,在Rt ABC 中,90C ∠=︒,AD AC =,DE AB ⊥,交BC 于点E .若26B ∠=︒,则AEC ∠=______︒.18.如图,△ABC 中,∠C=90°,AC=40cm ,BD 平分∠ABC ,DE ⊥AB 于E ,AD :DC=5:3,则D 到AB 的距离为__________cm .19.如图,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依此规律,第n 个图形中有全等三角形的对数是______.20.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,垂足为B 、C ,AC 与BD 相交于点E ,AC=BD 且∠A=50°,则∠BEA=___________.三、解答题21.(1)如图,∠MAB =30°,AB =2cm ,点C 在射线AM 上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .22.(阅读理解)课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC ≌EDB △的理由是______.(2)求得AD 的取值范围是______.(感悟)解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(问题解决)(3)如图2,在ABC 中,点D 是BC 的中点,点M 在AB 边上,点N 在AC 边上,若DM DN ⊥,求证:BM CN MN +>.23.如图,在ABC ∆中,90,C ∠=︒点D 在BC 上,过点D 作DE AB ⊥于点,E 点F 是AC 边上一点,连接DF .若,BD DF CF EB ==,求证:AD 平分BAC ∠.24.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.25.在数学课本中,有这样一道题:如图1,AB ∥CD ,试用不同的方法证明∠B +∠C =∠BEC(1)某同学写出了该命题的逆命题,请你帮他把逆命题的证明过程补充完整.已知:如图1,∠B +∠C =∠BEC求证:AB ∥CD证明:如图2,过点E ,作EF ∥AB ,∴∠B =∠∵∠B +∠C =∠BEC ,∠BEF +∠FEC =∠BEC (已知)∴∠B +∠C =∠BEF +∠FEC (等量代换)∴∠ =∠ (等式性质)∴EF ∥∵EF ∥AB∴AB ∥CD (平行于同一条直线的两条直线互相平行)(2)如图3,已知AB ∥CD ,在∠BCD 的平分线上取两个点M 、N ,使得∠BMN =∠BNM ,求证:∠CBM =∠ABN .(3)如图4,已知AB ∥CD ,点E 在BC 的左侧,∠ABE ,∠DCE 的平分线相交于点F .请直接写出∠E 与∠F 之间的等量关系.26.已知:如图,AOB ∠.求作: A O B '''∠,使A O B AOB '''∠=∠.作法:①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;②画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';③以点C '为圆心,CD 长为半径画弧,与②中所画的弧相交于点D ;④过点D 画射线O B '',则A O B AOB '''∠=∠;A OB '''∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接C D ''.由作法可知OC O C ''=,,,∴COD C O D '''≅.( )(填推理依据).∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据△ABE ≌△CAF 得出△ACF 与△ABE 的面积相等,可得S △ABE +S △CDF =S △ACD ,即可得出答案.【详解】∵∠BED=∠CFD=∠BAC ,∠BED=∠BAE+∠ABE ,∠BAC=∠BAE+∠CAF ,∠CFD=∠FCA+∠CAF ,∴∠ABE=∠CAF ,∠BAE=∠FCA ,在△ABE 和△CAF 中,ABE CAF AB AC BAE FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CAF (ASA ),∴S △ABE =S △ACF ,∴阴影部分的面积为S △ABE +S △CDF =S △ACD ,∵S △ABC =30,BD=12DC , ∴S △ACD =20,故选:D .【点睛】本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,解题的关键是正确寻找全等三角形解决问题. 2.A解析:A【分析】 根据已知ACB ≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB ≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:C .【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键. 3.B解析:B【分析】由SAS 证明△BDE ≌△CFD ,得出∠BDE=∠CFD ,∠EDF 可由180°与∠BDE 、∠CDF 的差表示,进而求解即可.【详解】解:在△BDE 与△CFD 中,BD CF B C BE CD ⎧⎪∠∠⎨⎪⎩===,∴△BDE ≌△CFD (SAS );∴∠BDE=∠CFD ,∴∠EDF=180°-(∠BDE+∠CDF )=180°-(∠CFD+∠CDF )=180°-(180°-∠C )=50°; 故选:B .【点睛】本题主要考查了全等三角形的判定及性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.4.C解析:C【分析】延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90∘,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP ∴△APB ≌△EPB (ASA ),∴APB EPB S S =△△,AP =PE ,∴△APC 和△CPE 等底同高,∴APC PCE S S =,∴PBC PCE PCE S S S =+△△△=12ABC S=1632⨯= 故选C . 【点睛】本题考查了三角形的面积和全等三角形的性质和判定的应用,关键是求出PBC PCE PCE S S S =+△△△=12ABC S .5.B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,∴点P 到OB 的距离为5,∵点Q 是OB 边上的任意一点,∴PQ≥5.故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.6.A解析:A【分析】连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F ;然后利用角平分线定理可得OF=OE=DO=2,然后用S △ABC =S △AOC +S △OBC +S △ABO 求解即可.【详解】解:如图:连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F,∵OB ,OC 分别平分∠ABC 和∠ACB ,∴OD=OE,OF=OD,即OF=OE=DO=2,∴S △ABC =12×2AC+12×2BC +12×2AB =12×2(AC+BC+AB ) = AC+BC+AB=20.故答案为A .【点睛】本题主要考查了角平分线定理,正确作出辅助线、利用角平分线定理得到OF=OE=DO=2是解答本题的关键.7.C解析:C【分析】先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.8.C解析:C【分析】由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.9.A解析:A【分析】根据题意可证明ABE ACD ≅,即得到B C ∠=∠.再利用三角形外角的性质,可求出DME ∠,继而求出BMD ∠.【详解】根据题意ABE ACD ≅(SAS ),∴30B C ∠=∠=︒∵DME B BDC ∠=∠+∠,BDC C A ∠=∠+∠∴307030130DME B A C ∠=∠+∠+∠=︒+︒+︒=︒∴180********BMD DME ∠=︒-∠=︒-︒=︒故选A.【点睛】本题考查三角形全等的判定和性质,三角形外角的性质.利用三角形外角的性质求出∠=∠+∠+∠是解答本题的关键.DME B A C10.C解析:C【分析】利用全等三角形的性质可得∠A′CB′=∠ACB,再利用等式的性质可得答案.【详解】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB,∴∠A′CB′-∠A′CB=∠ACB-∠A′CB,∴∠ACA′=∠BCB′=25°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应角相等.11.C解析:C【分析】在△ACD和△ABD中,AD=AD,AB=AC,由全等三角形判定定理对选项一一分析,排除不符合题意的选项即可.【详解】解:添加A选项中条件可用HL判定两个三角形全等,故选项A不符合题意;添加B选项中的条件可用SSS判定两个三角形全等,故选项B不符合题意;添加C选项中的条件∠1=∠2可得∠CDA=∠BDA,结合已知条件不SS判定两个三角形全等,故选项C符合题意;添加D选项中的条件可用SAS判定两个三角形全等,故选项D不符合题意.故选:C.【点睛】本题考查了全等三角形的判定,判定三角形全等的方法:SSS、SAS、ASA、AAS,判断直角三角形全等的方法:“HL”.12.B解析:B【分析】添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明.【详解】解:①在ABC和AED中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED AAS ≅;⑤不可以;故选:B .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理.二、填空题13.4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD 再求出AD 的长即可【详解】解:∵AB=6BD=2∴AD=AB-BD=6-2=4∵∴∠BAC=∠FCE 在△ADE 和△CFE 中∴△ADE ≌△CFE ∴解析:4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD ,再求出AD 的长即可.【详解】解:∵AB=6,BD=2∴AD=AB-BD=6-2=4∵//CE AB∴∠BAC=∠FCE ,在△ADE 和△CFE 中BAC FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE≌△CFE∴CF=AD=4.故答案为:4.【点睛】此题主要考查了全等三角形的判定与性质,证明△ADE≌△CFE是解答此题的关键.14.10【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE =CDAC=AE加上BC=AC三角形的周长为BE+BD+DE=BE+CB=AE+BE于是周长可得【详解】解:∵AD平分∠BAC交B解析:10【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE=CD,AC=AE,加上BC=AC,三角形的周长为BE+BD+DE=BE+CB=AE+BE,于是周长可得.【详解】解:∵AD平分∠BAC交BC于点D,DE⊥AB,∠C=90°,∴CD=DE,∵AD=AD,∴ACD AED,∴AC=AE,又∵AC=BC,∴△DEB的周长=DB+DE+BE=AC+BE=AB=10.故填:10.【点睛】本题主要考查角平分线的性质以及全等三角形的证明,解题的关键是理解并掌握角平分线的性质以及全等三角形的证明方法.15.【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可【详解】解:∵点P(2mm-1)在二四象限的角平分线上∴2m=-(m-1)解得m=故答案为:【点睛】本题考查了点的坐标熟记第解析:1 3【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可.【详解】解:∵点P(2m,m-1)在二、四象限的角平分线上,∴2m=-(m-1),解得m=13.故答案为:13.【点睛】本题考查了点的坐标,熟记第二四象限角平分线上点的横坐标与纵坐标互为相反数是解题的关键.16.8cm 或15cm 【分析】分情况讨论:①AP =BC =8cm 时Rt △ABC ≌Rt △QPA (HL );②当P 运动到与C 点重合时Rt △ABC ≌Rt △PQA (HL )此时AP =AC =15cm 【详解】解:①当P 运动解析:8cm 或15cm【分析】分情况讨论:①AP =BC =8cm 时,Rt △ABC ≌Rt △QPA (HL );②当P 运动到与C 点重合时,Rt △ABC ≌Rt △PQA (HL ),此时AP =AC =15cm .【详解】解:①当P 运动到AP =BC 时,如图1所示:在Rt △ABC 和Rt △QPA 中,AB QP BC PA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △QPA (HL ),即AP =B =8cm ;②当P 运动到与C 点重合时,如图2所示:在Rt △ABC 和Rt △PQA 中,AB PQ AC PA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △PQA (HL ),即AP =AC =15cm .综上所述,AP 的长度是8cm 或15cm .故答案为:8cm或15cm.【点睛】本题考查了三角形全等的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键,注意分类讨论,以免漏解.17.58【分析】根据∠C=90°AD=AC证明Rt△CAE≌Rt△DAE∠CAE=∠DAE=∠CAB再由∠C=90°∠B=26°求出∠CAB的度数然后即可求出∠AEC的度数【详解】解:∵在△ABC中∠C解析:58【分析】根据∠C=90°,AD=AC证明Rt△CAE≌Rt△DAE,∠CAE=∠DAE=12∠CAB,再由∠C=90°,∠B=26°,求出∠CAB的度数,然后即可求出∠AEC的度数.【详解】解:∵在△ABC中,∠C=90°,DE⊥AB交BC于点E,∴∠ADE=∠C=90°,在Rt△ACE和Rt△ADE中,∵AC AD AE AE⎧⎨⎩==,∴Rt△CAE≌Rt△DAE,∴∠CAE=∠DAE=12∠CAB,∵∠B+∠CAB=90°,∠B=26°,∴∠CAB=90°-26°=64°,∵∠AEC=90°-12∠CAB=90°-32°=58°.故答案为:58.【点睛】此题主要考查学生对直角三角形全等的判定和三角形内角和定理的理解和掌握,解答此题的关键是求证Rt△CAE≌Rt△DAE.18.15【分析】根据角平分线的性质可得DE=DC然后求出DC即得答案【详解】解:∵AC=40cmAD:DC=5:3∴DC=15cm∵BD平分∠ABCDE⊥AB∠C=90°∴DE=DC=15cm即D到AB解析:15【分析】根据角平分线的性质可得DE=DC,然后求出DC即得答案.【详解】解:∵AC=40cm,AD:DC=5:3,∴DC=15cm,∵BD平分∠ABC,DE⊥AB,∠C=90°,∴DE=DC=15cm ,即D 到AB 的距离为15cm .故答案为:15.【点睛】本题考查了角平分线的性质,属于基础题目,熟练掌握角平分线的性质定理是解题关键. 19.【分析】根据图形得出当有1点D 时有1对全等三角形;当有2点DE 时有3对全等三角形;当有3点DEF 时有6对全等三角形;根据以上结果得出当有n 个点时图中有个全等三角形即可【详解】解:当有1点D 时有1对全 解析:)(12n n +【分析】根据图形得出当有1点D 时,有1对全等三角形;当有2点D 、E 时,有3对全等三角形;当有3点D 、E 、F 时,有6对全等三角形;根据以上结果得出当有n 个点时,图中有)(12n n +个全等三角形即可.【详解】解:当有1点D 时,有1对全等三角形;当有2点D 、E 时,有3对全等三角形;当有3点D 、E 、F 时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n 个点时,图中有)(12n n +个全等三角形.故答案为:)(12n n +.【点睛】 本题考查了对全等三角形的应用,关键是根据已知图形得出规律,题目比较典型,但有一定的难度.20.80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB 进一步得∠ACB=40°根据三角形外角的性质可求出∠BEA 【详解】解:∵AB ⊥BCDC ⊥BC ∴∠ABC=∠DCB=90°在Rt △ABC 和Rt解析:80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB ,进一步得∠ACB=40°,根据三角形外角的性质可求出∠BEA .【详解】解:∵AB ⊥BC ,DC ⊥BC ,∴∠ABC=∠DCB=90°,在Rt △ABC 和Rt △DCB 中,AC BD BC CB⎧⎨⎩==, ∴Rt △ABC ≌Rt △DCB (HL );∴∠DBC=∠ACB ,∵∠A=50°,∴∠ACB=∠DCB=40°∵∠AEB=∠DBC+∠ABC∴∠AEB=40°+40°=80°,故答案为:80°.【点睛】此题主要考查了直角三角形全等的判定以及三角形外角的性质,熟练掌握直角三角形全等的判定定理是解答此题的关键.三、解答题21.(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可;(2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a ,故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.22.(1)SAS ;(2)17AD <<;(3)见解析【分析】(1)根据AD=DE ,∠ADC=∠BDE ,BD=DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE=AC=6,AE=2AD ,由三角形三边关系定理得出8-6<2AD <8+6,求出即可;(3)延长ND 至点E ,使DE DN =,连接BE 、ME ,证明BED ≌()SAS CND △,得到BE CN =,根据三角形三边关系解答即可.【详解】(1)解:∵在△ADC 和△EDB 中,AD DE ADC BDE BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△EDB (SAS ),故答案为:SAS ;(2)解:∵由(1)知:△ADC ≌△EDB ,∴BE=AC=6,AE=2AD ,∵在△ABE 中,AB=8,由三角形三边关系定理得:8-6<2AD <8+6, ∴1<AD <7,故答案为:1<AD <7.(3)证明:延长ND 至点E ,使DE DN =,连接BE 、ME , 如图所示:∵点D 是BC 的中点,∴BD CD =.在BED 和CND △中,DE DN BDE CDN BD CD =⎧⎪∠=∠⎨⎪=⎩, ∴BED ≌()SAS CND △,∴BE CN =,∵DM DN ⊥,DE DN =,∴ME MN =,在BEM △中,由三角形的三边关系得:BM BE ME +>, ∴BM CN MN +>.【点睛】本题是三角形综合题,主要考查了三角形的中线,三角形的三边关系定理,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.23.证明见解析【分析】由已知可得RT △DCF ≌RT △DEB ,从而得到DC=DE ,又由已知可得DC ⊥AC ,DE ⊥AB ,所以由角平分线的判定定理即可得解.【详解】证明:由题意可得,在Rt DCF ∆和Rt DEB ∆中,CF EB BD DF =⎧⎨=⎩Rt DCF Rt DEB ∴∆≅∆,DC DE ∴=90,C ∠=︒,DC AC ∴⊥,DE AB ⊥AD ∴平分BAC ∠.【点睛】本题考查角平分线与直角三角形的综合运用,熟练掌握角平分线的判定与直角三角形的判定和性质是解题关键.24.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F ,BC=EF ,然后根据SAS 可以得到结论;(2)同(1)有∠B=∠F ,再结合已知条件和对顶角相等可以证得ΔABO ≅ΔDFO ,从而得到OB=OF ,所以点O 为BF 中点 .【详解】证明:(1)∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,∴在ΔABC和ΔDFE 中,AB DFB F BC EF=⎧⎪∠=∠⎨⎪=⎩,∴ΔABC≅ΔDFE (SAS);(2)与(1)同理有∠B=∠F,∴在ΔABO和ΔDFO 中,AOB DOFB FAB DF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO≅ΔDFO(AAS),∴OB=OF,∴点O为BF中点.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键.25.(1)BEF,C,CEF,CD;(2)证明见解析;(3)∠E=2∠F【分析】(1)过点E,作EF∥AB,根据内错角性质即可得出∠B=∠BEF,利用等量代换即可证出∠C=∠CEF,进而得出EF∥CD.(2)如图3,过点N作NG∥AB,交BM于点G,可以知道NG∥AB∥CD,由平行线的性质得出∠ABN=∠BNG,∠GNC=∠NCD,由三角形的外角性质得出∠BMN=∠BCM+∠CBM,证出∠BCM+∠CBM=∠BNG+∠GNC,进而得出∠BCM+∠CBM=∠ABN+∠NCD,由角平分线得出∠BCM=∠NCD,即可得出结论.(3)如图4,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,根据平行线的性质和角平分线的定义即可得到结论.【详解】(1)证明:如图2,过点E,作EF∥AB,∴∠B=∠BEF,∵∠B+∠C=∠BEC,∠BEF+∠FEC=∠BEC(已知),∴∠B+∠C=∠BEF+∠FEC(等量代换),∴∠C=∠CEF(等式性质),∴EF∥CD,∵EF∥AB,∴AB∥CD(平行于同一条直线的两条直线互相平行);故答案为:BEF,C,CEF,CD;(2)如图3所示,过点N作NG∥AB,交BM于点G,则NG∥AB∥CD,∴∠ABN =∠BNG ,∠GNC =∠NCD ,∵∠BMN 是△BCM 的一个外角,∴∠BMN =∠BCM +∠CBM ,又∵∠BMN =∠BNM ,∠BNM =∠BNG +∠GNC ,∴∠BCM +∠CBM =∠BNG +∠GNC ,∴∠BCM +∠CBM =∠ABN +∠NCD ,∵CN 平分∠BCD ,∴∠BCM =∠NCD ,∴∠CBM =∠ABN .(3)如图4,分别过E ,F 作EG ∥AB ,FH ∥AB ,则EG ∥CD ,FH ∥CD ,∴∠BEG =∠ABE ,∠CEG =∠DCE ,∴∠BEC =∠BEG +∠CEG =∠ABE +∠DCE ,同理可得∠BFC =∠ABF +∠DCF ,∵∠ABE ,∠DCE 的平分线相交于点F ,∴∠ABE =2∠ABF ,∠DCE =2∠DCF ,∴∠BEC =2(∠ABF +∠DCF )=2∠BFC .【点睛】本题考察了命题与定理、平行线的性质与判定、逆命题、三角形的外角性质、角平分线定义等知识;熟练掌握平行线的判定与性质,作出辅助平行线是解决问题的关键. 26.(1)补全图形见解析;(2)OD O D ''=,CD C D ''=,SSS .【分析】(1)根据题意要求作图即可;(2)根据题意利用SSS 证明COD C O D '''≅即可.【详解】(1)作图:(2)连接C D '',∵OC O C ''=,OD O D ''= ,CD C D ''=,∴COD C O D '''≅(SSS ),∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角故答案为:OD O D ''=,CD C D ''=,SSS ..【点睛】此题考查作图能力—作一个角等于已知角,全等三角形的判定及性质,根据题意画出图形并确定对应相等的条件证明三角形全等是解题的关键.。
上海东昌东校人教版八年级上册期中生物期中试卷及答案.doc一、选择题1.猪肉绦虫最发达的器官是()A.运动器官B.感觉器官C.生殖器官D.消化器官2.为探究环境因素对蚯蚓生活的影响,有同学设计了下面的实验:取3个大小一样的广口瓶,分别贴上甲、乙、丙标签。
在甲、丙瓶中放入湿润的肥沃土壤,在乙瓶中放入经烘干的肥沃土壤。
然后在3瓶中同时各放入5条大小及生活状况相同的蚯蚓(如图)。
观察一段时间,下列实验现象描述错误的是A.乙瓶中的蚯蚓蠕动能力会明显减弱B.蚯蚓的呼吸依靠湿润的体壁来完成C.甲乙两瓶的实验现象说明:影响蚯蚓生活的环境因素是水分D.若将丙装置放在暗处,则可以进一步探究光对蚯蚓的影响。
可选择乙丙作为对照实验3.钟一同学制作了一些栩栩如生的动物雕像,其中属于昆虫的是()A.B.C.D.4.如图,关于观察鲫鱼的实验,以下说法正确的是A.鱼属于脊椎动物,体温不会随环境温度的变化而改变B.背部白色、腹面黑色属于保护色C.③尾鳍可以控制鱼体前进的方向D.用鳃呼吸、皮肤辅助呼吸适于水中生活5.如图是草食性动物的是(),依据是:()A.A图,具有门齿B.A图,没有犬齿C.B图,具有臼齿D.B图,具有犬齿6.结构与功能相适应是生物学观点之一,下列能说明该观点的是()A.鼻腔内毛细血管丰富,适于清洁空气B.肺泡壁和毛细血管壁都很薄,利于气体交换C.鸟的长骨中空,利于提供能量进行飞行D.根尖分生区细胞小,利于吸收水和无机盐7.都属于两栖动物的一组是()A.乌龟、青蛙、鳄鱼B.大鲵、小鲵、乌龟C.蝾螈、大鲵、蟾蜍D.蟾蜍、鳄鱼、水獭8.下列我国特产珍稀动物中不属于哺乳动物是A.熊猫B.扬子鳄C.藏羚羊D.金丝猴9.如图是骨、关节和肌肉的几种模式图,正确的是()A.B.C.D.10.在某一次生物课堂上,同学们踊跃举手回答问题,如图是举手时动作示意图,对此叙述错误的是()A.1代表肱二头肌,处于收缩状态B.2代表肱三头肌,处于舒张状态C.1两端的肌腱连在同一块骨上D.3代表关节,既灵活又牢固11.当你由伸肘状态变为屈肘状态时(如右图),你的上肢肌肉 X和Y会分别处于什么状态?A.X收缩、Y收缩B.X舒张、Y收缩C.X舒张、Y舒张D.X收缩、Y舒张12.如图人体运动的有关结构模式图,说法错误的是()A.图甲的1从5中脱落出来叫脱臼B.甲图与灵活有关的是4和3内的滑液C.乙图屈肘时6收缩,7舒张D.乙图7 两端的肌腱都连接8肱骨上13.关节活动起来非常灵活,与之有关的结构特点是关节结构里有()A.关节软骨和韧带B.关节头和关节窝C.关节腔和滑液D.关节软骨和滑液14.地球上动物种类繁多,它们多种多样的运动方式和行为扩大了其活动范围,便于更好的生存和繁術。
一、选择题1.甲、乙、丙、丁为四辆在同一平直公路上行驶的小车,它们的运动图像如图所示,由图可知其中受到平衡力作用的是( )A .甲和丙B .甲和丁C .甲、丙、丁D .乙、丙、丁2.下列有关估测中,最符合实际的是( ) A .声音在15℃的空气中的传播速度为3310m /s ⨯ B .人正常步行的速度约为20m /s C .橡皮从课桌掉到地上的时间的5s D .教室内课桌的高度约为80cm3.为响应“绿色出行”的号召,三个好朋友决定选择不同的低碳环保方式出行。
小刘骑电动车以18km/h 的速度平稳前进;小韩以4m/s 的速度跑步前进;小王骑自行车出行,他每分钟通过的路程为 270m 。
关于三者速度下列说法正确的是( ) A .小刘速度最大 B .小韩速度最大C .小王速度最大D .三人速度一样大4.甲、乙两物体同时同地同向运动,如图所示,分别为两物体运动的v -t 图像。
下列说法正确的是( )A .0-4s 时间内甲做匀速直线运动B .第2s 时刻甲、乙两物体再次相遇C .0-4s 时间内甲、乙运动路程相等D .0-4s 时间内甲的平均速度为5m/s 5.从匀速直线运动的公式sv t=可知,以下叙述正确的是( ) A .速度与路程成正比 B .速度与时间成反比C .速度随时间或路程的改变而改变D .做匀速直线运动的物体的速度与时间或路程无关6.小明同学骑自行车从家到学校,他通过前一半路程的平均速度为7m/s ,通过后一半路程的平均速度为3m/s ,则他全程的平均速度是( )A.4.2m/s B.5m/s C.4.8m/s D.4.5m/s7.如图所示图像描述了甲、乙、丙、丁四物体的运动状态,其中运动速度相同的两物体是()A.甲和丁B.甲和乙C.乙和丙D.丙和丁8.为宣传“绿色出行,低碳生活”理念,三个好朋友在某景点进行了一场有趣的运动比赛。
小张驾驶电瓶车以36km/h的速度前进,小王以10m/s的速度跑步前进,小李骑自行车,每分钟通过的路程是0.6km。
东昌东校2016 学年第一学期 英语阶段测试(二)
答题纸
Part 1 Listening Comprehension (25分)
I. Listen and choose the right picture. (每个句子读两遍)(5分) 1. _________ 2. _________ 3. _________ 4. _________ 5. _________
II. Listen to the dialogue and choose the right answer. (每组对话读两遍)(10分) 6._______ 7.________ 8.______ 9._______ 10.________
11.______ 12.______ 13.______ 14.______ 15.________
III. Listen to the passage and say whether the following sentences are true or false. (短文读两遍)(5分)
16.______ 17._______ 18.________ 19.________ 20.________
IV . Listen and fill in the blanks with the words you hear. (短文读两遍)(5分) 21.______ 22._______ 23._______ 24.______ 25._______
Part2 Vocabulary and grammar (共39分) I. Choose the best answer. (选择正确的答案):(共13分)
26._____ 27._____ 28.______ 29.______ 30.______ 31._____
32._____ 33._____ 34._____ 35.______ 36._____ 37.______ 38._____
II. Complete the following passage with the words or expressions in the box. Each can only be used once. (8分)
39.___ 40.____ 41.____ 42._____ 43._____ 44.______ 45._____ 46._____
III. Complete the sentences with the given words in their proper forms (共8分)
47._____ 48._____ 49._____ 50._____ 51._____ 52._____ 53._____ 54._______
IV . Rewrite the following sentences as required (根据所给要求,改写下列句子。
每空格 限填一词) (共10分)
55.____ _____ 56._____ _____ 57.______ _____ 58 .______ _____
59._____________________________________________________.
Part3 Reading and Writing (第三部分 阅读与写作)
Choose the best answer (根据短文内容,选择最恰当的答案): (6分) 60.______ 61._____ 62._____ 63.______ 64._______ 65.______
Choose the words or expressions and complete the passage (选择最恰当的单词或词语完成短文):
66._____ 67.____ 68.____ 69.___ _ 70.______ 71. ______
Read the passage and fill in the blanks with proper words (在短文的空格内填入适当的词,使其内容通顺。
每空格限填一词,首字母已给) (共7分)
72. ____ 73._____ 74.____ 75._____ 76._____ 77.______ 78.______ (D)Answer the question (根据短文内容回答下列问题): (7分) 79.______________________________________. 80.______________________________________. 81.______________________________________. 82._______________________________________. 83._______________________________________. 84._______________________________________.
Ⅵ. Writing. (10分)
Write a passage of at least 60 words on the topic “My favourite cartoon character ”.
Suggested questions:
Who /What is your favourite cartoon character? Why do you like it / him / her best?
______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______(60) ______ ______ ______.
………………………………装………………………………订……………………………………线………………………………
班级________________ 姓名________________ 学号________________。