电压-频率变换器
- 格式:doc
- 大小:675.00 KB
- 文档页数:10
电压/频率转换器BG382的原理及应用1 概述在利用单片机设计的自动测量和控制系统中,经常要将电压信号转换为频率信号或将频率信号转换成电压信号。
这里要介绍的V/F和F/V转换器件BG382就可实现电压和频率的相互转换,而且具有较高的精度、线性和积分输入特性,利用它可以抑制串扰干扰。
如果将其输出的信号调制成射频信号或光脉冲,还可在不受电磁影响的情况下进行无线或光纤等远距离通信传输。
2 BG382的封装及引脚图1所示是BG382的外型封装形式。
其引脚及功能如表1所列。
表1 BG382的引脚功能3 BG382的V/F和F/V转换3.1 V/F转换电路图2所示是由BG382组成的简单V/F变换器,其输入为10mV~10V,输出为10Hz~1 0kHz,满刻度线性精度的典型值为±0.5%。
影响上面电路线性精度的原因是恒流源1端的电压会随输入端输入电压的变化而变化,从而使恒流源的性能变差,Io约为137μA。
如果输入电压由10mV变为10V,由此所引起的Io变化约为1μA,即对Io的影响为1/137。
而Io的变化将影响输出频率的变化,从而使线性精度的曲线上端向上翘;另外,由于集成电路内比较器的输入端,即6、7脚存在失调现象,影响了线性精度的低端;同时由于比较器的增益较低,也影响了其灵敏度,增大了误差。
以上电路仅适用于精度要求不高方面的应用,图3所示是由BG382组成的高精度V/F 转换电路,其精度可达±0.05%,该电路采用了由运放BG305和积分电容C1组成的有源积分电路,这个积分电路将负载输入电压变为正斜坡电压,当积分器输出达到BG382 内部比较器的比较电平时,单稳电路被触发,恒流源的电流Io从1端流出,使积分器的输出急剧下降,单稳输出结束时,斜坡输出电压上升,重复以上转换周期。
由于信号从运算放大器的反相端输入,因此要求输入信号为负值,如果信号从运算放大器同相端输入,则输入信号应为正。
自动检测中获取频率信号的方法摘要:在微机测控系统中往往需要将被测信号(传感器信号)转换为频率信号。
获取频率信号的常用方法是使用集成电压/频率变换器(VFC),但集成VFC有一些明显的局限。
本文讨论了集成VFC的特点,以及在微机测控系统中获取频率信号的几种实用方法,恰当选用这些方法既能满足微机测控系统的应用需要,又能克服集成VFC的某些应用局限。
关键词:自动检测;频率信号;传感器;555定时器;锁相环Automatic detection for the method of frequency signalAbstract:It is very useful for measuring and controlling systems with microcontrollers to convert sensor signals into frequency signals. The integrated voltage-to-frequency converters are commonly used for this purpose. The integrated voltage-to-frequency converters have some significant limitations of performance and cost. In a microcomputer measurement and control system is discussed in this paper to obtain frequency signal of several practical methods (VFC) without integration and its characteristics, appropriate chooses these methods can not only meet the needs of the application of microcomputer measurement and control system, and integration of VFC some application limitation can be overcome.Key words:Automatic detection; Frequency signal; sensor; 555 timer; phase-locked loop (PLL)1 引言由于频率信号具有很多重要优点,如抗干扰性好、便于远距离传送输、送入微处理器时输入灵活、接口简单、占用I/O口资源少,因而在微机测控系统中有重要应用。
摘要:本文主要介绍一种应用V/F转换器LM331实现A/D转换的电路,本电路价格低廉,外围电路简单, 适合应用在转换速度不太高的场合应用.本文包括硬件电路和软件程序的实现. 关键词:A/D转换器,V/F转换器, 高精度.引言:数据的采集与处理广泛地应用在自动化领域中,由于应用的场合不同,对数据采集与处理所要求的硬件也不相同.在控制过程中,有时要对几个模拟信号进行采集与处理,这些信号的采集与处理对速度要求不太高,一般采用AD574或ADC0809等芯片组成的A/D转换电路来实现信号的采集与模数转换,而AD574和ADC0809等A/D转换器价格较贵,线路复杂,从而提高了产品价格和项目的费用.在本文中,从实际应用出发,给出了一种应用V/F转换器LM331芯片组成的A/D转换电路,V/F转换器LM331芯片能够把电压信号转换为频率信号,而且线性度好,通过计算机处理,再把频率信号转换为数字信号,就完成了A/D转换。
它与AD574等电路相比,具有接线简单,价格低廉,转换精度高等特点,而且LM331芯片在转换过程中不需要软件程序驱动,这与AD574等需要软件程序控制的A/D转换电路相比,使用起来方便了许多。
一. 芯片简介LM331是美国NS公司生产的性能价格比比较高的集成芯片。
它是当前最简单的一种高精度V/F转换器、A/D转换器、线性频率调制解调、长时间积分器以及其它相关的器件。
LM331为双列直插式8引脚芯片,其引脚框图如图1所示。
图1 LM331逻辑框图LM331 各引脚功能说明如下:脚 1 为脉冲电流输出端,内部相当于脉冲恒流源,脉冲宽度与内部单稳态电路相同;脚 2 为输出端脉冲电流幅度调节,RS 越小,输出电流越大;脚 3 为脉冲电压输出端,OC 门结构,输出脉冲宽度及相位同单稳态,不用时可悬空或接地;脚4 为地;脚 5 为单稳态外接定时时间常数RC ;脚6 为单稳态触发脉冲输入端,低于脚7 电压触发有效,要求输入负脉冲宽度小于单稳态输出脉冲宽度Tw ;脚7 为比较器基准电压,用于设置输入脉冲的有效触发电平高低;脚8 为电源Vcc , 正常工作电压范围为4~40V。
辽宁工业大学模拟电子技术基础课程设计(论文)题目:电压/频率转换器院(系):电子与信息工程学院专业班级:通信111学号: 110405003学生姓名:阚旋指导教师:(签字)起止时间:2013.7.1—2013.7.12课程设计(论文)任务及评语院(系):电子与信息工程学院教研室:电子信息与工程f0的矩形脉冲,且。
(2)Vi变化范围:0~10。
(3)f0变化范围:0~10kHz。
(4)转换精度<1%。
设计要求:1 .分析设计要求,明确性能指标。
必须仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。
2 .确定合理的总体方案。
对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。
3 .设计各单元电路。
总体方案化整为零,分解成若干子系统或单元电路,逐个设计。
4.组成系统。
在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。
指导教师评语及成绩平时:论文质量:答辩:总成绩:指导教师签字:年月日注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要电压/频率变换器实质上是一种振荡频率随外加控制变换器。
其主要是通过输入电压控制输出频率,电压/频率变换电路的输出信号频率与输入电压成正比,所以在调频,锁扣,和模/数变换等许多领域中,得到了非常广泛的应用,电压/频率变换电路中的主要部分已经能集成在一块硅片上,这就为它的广泛应用创造了有利条件。
压控振荡器的应用十分广泛,若用方波作为控制电压,压控振荡器就是双频振荡器,能交替输出两种频率的波型,若用正弦交流电压作为控制电压,压控振荡器就成了调频振荡器,能输出抗干扰能力很强的调频波,上述各类信号波形以应用于各种智能测试设备和自动控制系统中。
电压/频率变换器还具有精度高,线性度高,温度系数低,功耗低,动态范围宽的一系列优点。
LM331中文资料_中文手册_芯片中文资料_芯片中文手册电压-频率变换器LM331LM331是美国NS公司生产的性能价格比较高的集成芯片。
LM331可用作精密的频率电压(F/V)转换器、A/D转换器、线性频率调制解调、长时间积分器以及其他相关的器件。
LM331为双列直插式8脚芯片,其引脚如图3所示。
LM331内部有(1)输入比较电路、(2)定时比较电路、(3)R-S触发电路、(4)复零晶体管、(5)输出驱动管、(6)能隙基准电路、(7)精密电流源电路、(8)电流开关、(9)输出保护点路等部分。
输出管采用集电极开路形式,因此可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,从而适应TTL、DTL和CMOS等不同的逻辑电路。
此外,LM331可采用单/双电源供电,电压范围为4,40V,输出也高达40V。
引脚1(PIN1)为电流源输出端,在f(PIN3)输出逻辑低电平时,电流源,输出对电容,充电。
,,,引脚2(PIN2)为增益调整,改变,的值可调节电路转换增益的大小。
,引脚3(PIN3)为频率输出端,为逻辑低电平,脉冲宽度由,和,决定。
tt引脚4(PIN4)为电源地。
引脚5(PIN5)为定时比较器正相输入端。
引脚6(PIN6)为输入比较器反相输入端。
引脚7(PIN7)为输入比较器正相输入端。
引脚8(PIN8)为电源正端。
LM331频率电压转换器V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。
LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。
同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01,,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。
长沙学院课程设计说明书题目125电压频率变换器的设计系(部) 电子与通信工程专业(班级)姓名学号指导教师起止日期模拟电路课程设计任务书(20)一.设计题目电压频率变换器的设计二.技术参数和设计要求1. 技术参数(1)设计一种电压/频率变换电路,输入vi为直流信号(控制信号),输出频率为fo的矩形脉冲,且fo∝vi。
(2)vi变化范围为0~10V。
(3)fo变化范围为0~10kHz。
(4)转换精度<1%。
2. 设计要求(1)画出电路原理图或仿真电路图;(2)元器件及参数选择;(3)电路仿真与调试;(4)PCB文件生成与打印输出;(5)编写设计报告:包括设计与制作的全过程,附上有关资料和图纸,有心得体会。
(6)答辩,在规定时间内完成叙述并回答问题。
三.设计工作量设计时间一周,2012年下学期进行。
四.工作计划星期一:布置设计任务,查阅资料;星期二~星期四:设计方案论证,进行电路设计,计算并选择电路元件及参数;星期五:撰写设计报告及使用说明书,进行个别答辩。
五.参考资料1.彭介华,《电子技术课程设计指导》,北京:高等教育出版社,1997;2.高吉祥,《电子技术基础实验与课程设计》,北京:电子工业出版社,2005;3.童诗白,《模拟电子技术基础》,北京:高等教育出版社,1988;4.康华光,《电子技术基础——模拟部分》,北京:高等教育出版社,2006六.指导教师马凌云七.系部审批长沙学院课程设计鉴定表目录一.技术参数和设计要求 (4)1.1. 技术参数 (4)1.2 设计要求 (4)二.设计思路 (4)三.单元电路设计 (6)3.1积分器的设计: (6)3.2单稳态触发器的设计 (6)3.3电子开关的设计 (7)3.4恒流源电路的设计 (8)四、总原理图及元器件清单 (9)4.1总原理图 (9)4.2元器件清单 (9)五、基本计算与仿真调试分析 (9)5.1基本计算 (9)5.2仿真数据 (10)六、课程设计总结 (13)七、参考文献 (14)一.技术参数和设计要求1.1. 技术参数(1)设计一种电压/频率变换电路,输入vi为直流信号(控制信号),输出频率为fo的矩形脉冲,且fo∝vi。
四川信息职业技术学院《高频电子线路》模拟考试试卷十班级姓名学号题目一二三四五六七八总分得分得分评分人一、填空题(每空1分,共20分)1.小信号调谐放大器按调谐回路的个数分和。
2.高频功率放大器主要用来放大高频信号,为了提高效率,一般工作在丙类状态。
3.电容三点式振荡器的发射极至集电极之间的阻抗Z ce性质应为,发射极至基极之间的阻抗Z be性质应为,基极至集电极之间的阻抗Z cb性质应为。
4.振幅调制与解调、混频、频率调制与解调等电路是通信系统的基本组成电路。
它们的共同特点是将输入信号进行,以获得具有所需的输出信号,因此,这些电路都属于搬移电路。
5.调频波的频偏与调制信号的成正比,而与调制信号的无关,这是调频波的基本特征。
6.在双踪示波器中观察到如下图所示的调幅波,根据所给的数值,它的调幅度应为。
7.根据干扰产生的原因,混频器的干扰主要有、、和四种。
8.无论是调频信号还是调相信号,它们的ω(t)和φ(t)都同时受到调变,其区别仅在于按调制信号规律线性变化的物理量不同,这个物理量在调相信号中是,在调频信号中是。
9.锁相环路由、和组成,它的主要作用是。
得分评分人二、单项选择题(每小题2分,共30分,将正确选项前的字母填在括号内)1.为了有效地实现集电极调幅,调制器必须工作在哪种工作状态()A.临界B.欠压C.过压D.任意状态2.石英晶体谐振于并联谐振频率fp时,相当于LC回路的()A.串联谐振现象B.并联谐振现象C.自激现象D.失谐现象3.判断下图是哪一类振荡器()A.考毕兹电路B.哈特莱电路C.西勒电路D.克拉泼电路4.谐振功率放大器与调谐小信号放大器的区别是()A.前者比后者电源电压高B.前者比后者失真小C.谐振功率放大器工作在丙类,调谐放大器工作在甲类D.谐振功率放大器输入信号小,调谐放大器输入信号大5.如下图a、b、c、d所示电路。
R、C为正常值,二极管为折线特性。
能完成检波的电路是()。
6.石英晶体振荡器的主要优点是()A.容易起振B.振幅稳定C.频率稳定度高D.减小谐波分量7.无线通信系统接收设备中的中放部分采用的是以下哪种电路()A.调谐放大器B.谐振功率放大器C.检波器D.鉴频器8.若载波u C(t)=U C cosωC t,调制信号uΩ(t)= UΩsinΩt,则调相波的表达式为()A.u PM(t)=U C cos(ωC t+m P sinΩt)B.u PM(t)=U C cos(ωC t-m P cosΩt)C.u PM(t)=U C(1+m P sinΩt)cosωC t D.u PM(t)=kUΩU C cosωC tsinΩt9.某超外差接收机的中频f I=465kHz,输入信号载频fc=810kHz,则本振信号频率为()A.2085kHz B.1740kHz C.1275kHz D.1075kHz 10.无论是调频信号还是调相信号,它们的ω(t)和φ(t)都同时受到调变,其区别仅在于按调制信号规律线性变化的物理量不同,这个物理量在调频信号中是()A.ω(t)B.φ(t) C.Δω(t) D.Δφ(t)11.关于间接调频方法的描述,正确的是()A.先对调制信号微分,再加到调相器对载波信号调相,从而完成调频B.先对调制信号积分,再加到调相器对载波信号调相,从而完成调频C.先对载波信号微分,再加到调相器对调制信号调相,从而完成调频D.先对载波信号积分,再加到调相器对调制信号调相,从而完成调频12.放大器的噪声系数N F是指()A.输入端的信噪比/输出端的信噪比B.输出端的信噪比/输入端的信噪比C.输入端的噪声功率/输出端的噪声功率 D.输出端的噪声功率/输入端的噪声功率13.鉴频特性曲线的调整内容不包括()A.零点调整B.频偏调整C.线性范围调整D.对称性调整14.某超外差接收机接收930kHz的信号时,可收到690kHz和810kHz信号,但不能单独收到其中一个台的信号,此干扰为()A.干扰哨声B.互调干扰C.镜像干扰D.交调干扰15.调频信号u AM(t)=U C cos(ωC t+m f sinΩt)经过倍频器后,以下说法正确的是()A.该调频波的中心频率、最大频偏及Ω均得到扩展,但m f不变B.该调频波的中心频率、m f及Ω均得到扩展,但最大频偏不变C.该调频波的中心频率、最大频偏及m f均得到扩展,但Ω不变D.该调频波最大频偏、Ω及m f均得到扩展,但中心频率不变得分评分人三、判断题(每小题1分,共10分,正确的打“”,错误的打“×”。
电压频率转换电路原理
电压频率转换电路是一种可以将输入电压频率转换为其他频率的电路。
其原理主要有两种:
1. 通过频率的变换器件:使用变压器或者电子器件如频率变换器、振荡器等,将输入电压的频率转换为所需的输出频率。
2. 通过数字控制电路:利用数字控制技术,将输入的模拟信号转换为数字信号,然后通过数字信号处理器(DSP)或者微控制
器进行频率转换,并将转换后的数字信号再次转换为模拟信号输出。
需要注意的是,电压频率转换电路除了转换频率外,还需要考虑转换后的电压波形、电流能力、电压调节精度等要求。
因此,在设计电压频率转换电路时需要综合考虑电路的可靠性、功率损耗、成本等因素。
微机一、填空题1、电压频率变换器(VFC)构成模数变换器时,其主要优点是(D)A:精度高 B:速度快 C:易实现 D:易隔离和抗干扰能力强。
2、为防止频率混叠,微机保护采样频率fs与采样信号中所含最高频率成分的频率fmax应满足(A)A:fs > 2fmax; B:fs< 2fmax; C:fs>fmax; D:fs=fmax;3、CPU是按一定规律工作的,在计算机内必须有一个(D)A:运算器; B:控制器; C:寄存器; D:时钟发生器。
4.电压/频率变换式数据采集系统,在规定时间内,计数器输出脉冲的个数与模拟输入电压量的(C)。
A:积分成正比 B:积分成反比 C:瞬时值的绝对值成正比5.采用VFC数据采集系统时,每隔TS计数器中读取一个数。
保护算法运算时采用的是(C)。
A:直接从计数器中读取得的数 B:TS期间的脉冲个数C:2TS或以上期间的脉冲个数6.数字滤波器是(C)。
A:由运算放大器构成的 B:由电阻、电容电路构成的 C:由程序实现的7.在微机保护中经常用全周傅氏算法计算工频量的有效值和相角,当用该算法时正确的说法是(C)。
A:对直流分量和衰减的直流分量都有很好的滤波作用B:对直流分量和所有的谐波分量都有很好的滤波作用C:对直流分量和整数倍的谐波分量都有很好的滤波作用8、微机保护中,每周波采样20点,则(A)。
A:采样间隔为lms,采样率为1000HzB:采样间隔为5/3ms,采样率为1000HzC:采样间隔为lms,采样率为1200Hz9.微机保护要保证各通道同步采样,如果不能做到同步采样,除对(B)以外对其他元件都将产生影响。
A:负序电流元件 B:相电流元件 C:零序方向元件10.微机保护一般都记忆故障前的电压,其主要目的是(B)。
A:事故后分析故障前潮流B:保证方向元件、阻抗元件动作的正确性C:微机保护录波功能的需要11.微机保护中用来存放原始数据的存储器是(C)。
模拟电子技术基础课程设计(论文) 电压/频率变换器院(系)名称电子与信息工程学院专业班级电子131班学号学生姓名指导教师起止时间:2015.7.6—2015.7.19课程设计(论文)任务及评语院(系):电子与信息工程学院教研室:电子信息工程摘要本次课程设计利用输入电压的大小改变电容的充电速度,从而改变振荡电路的振荡频率,使积分电路能随外加电压的不同而产生不同频率的锯齿波,故采用LM324集成放大器构成的积分器作为输入电路。
积分器的输出信号去控制由LM324集成放大器构成的电压比较器(迟滞比较器),电压比较器(迟滞比较器)的输出信号返回到积分器,可得到矩形脉冲输出,输出频率与输入电压基本呈线性关系,满足输出信号频率的大小与输出电压的大小成正比,即fo ∝Vi。
Vi 变化范围:0~10 ,fo变化范围:0~10kHz。
由输出信号电平通过一定反馈方式控制积分电容恒流放电,当电容放电到某一域值时,电容C 再次充电。
由此实现Vi 控制电容充放电速度,即控制输出脉冲频率。
放大器的所需的直流稳压电源采用串联反馈式稳压电路,该电路的输出电压值范围可调。
熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。
本系统采用Multisim仿真软件进行仿真测试。
在保证功能的前提下控制器件成本。
采用单面印制电路板对整体电路进行合理的布线,并进行焊接与调试。
输出信号均达到设计要求且稳定工作。
关键词:锯齿波;电压比较器;充放电;积分器目录第1章绪论 (1)1.1 电压/频率变换器的发展概况 (1)1.2本文研究内容 (1)第2章电压/频率变换器总体设计方案 (2)2.1 电压/频率变换器设计方案论证 (2)2.2总体设计方案框图及分析 (2)第3章电压/频率转换器单元电路设计 (3)3.1电压/频率变换器具体电路设计 (3)3.1.1 直流稳压电源电路设计 (3)3.1.2 同相输入迟滞电压比较器电路设计 (3)3.1.3积分器电路设计 (5)3.2 元器件型号选择 (6)3.3 参数计算 (6)3.4 电压/频率变换器总体电路图 (8)第4章锯齿波发生器电路仿真与调试 (9)4.1 Multisim仿真与调试 (9)4.2 仿真结果分析 (11)第5章电压/频率变换器实物制作 (12)5.1 电压/频率变换器电路焊接 (12)5.2电压/频率变换器电路作品 (12)第6章作品测试与数据分析 (13)第7章总结 (14)参考文献 (15)附录I (16)附录II (17)第1章绪论1.1 电压/频率变换器的发展概况随着电子技术的快速发展,电子产品的功能日益强大,与人们日常生活的联系日益紧密。
电压频率转换器原理及典型电压频率转换电路的设计电压频率转换器VFC(V oltage Frequency Converter)是一种实现模数转换功能的器件,将模拟电压量变换为脉冲信号,该输出脉冲信号的频率与输入电压的大小成正比。
电压频率转换器也称为电压控制振荡电路(VCO),简称压控振荡电路。
电压频率转换实际上是一种模拟量和数字量之间的转换技术。
当模拟信号(电压或电流)转换为数字信号时,转换器的输出是一串频率正比于模拟信号幅值的矩形波,显然数据是串行的。
这与目前通用的模数转换器并行输出不同,然而其分辨率却可以很高。
串行输出的模数转换在数字控制系统中很有用,它可以把模拟量误差信号变成与之成正比的脉冲信号,以驱动步进式伺服机构用来精密控制。
VFC 电压-频率转换器(vfc)是青岛晶体管研究所生产的电路。
电压频率转换也可以称为伏频转换。
把电压信号转换为脉冲信号后,可以明显地增强信号的抗干扰能力,也利于远距离的传输。
通过和单片机的计数器接口,可以实现AD转换。
VFC 有两种常用类型:(a)多谐振荡器式VFC ;(b)电荷平衡式VFC。
多谐振荡器式VFC简单、便宜、功耗低而且具有单位MS输出(与某些传输介质连接非常方便);电荷平衡式VFC的精度高于多谐振荡是VFC,而且能对负输入信号积分。
电压/频率转换即v/f转换,是将一定的输入信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。
它的功能是将输入直流电压转换频率与其数值成正比的输出电压,故也称电压控制振荡电路。
如果任何一个物理量通过传感器转换成电信号后,以预处理变换为合适的电压信号,然后去控制压控振荡电路,再用压控振荡电路的输出驱动计数器,使之在一定时间间隔内记录矩形波个数,并用数码显示,那么可以得到该物理量的数字式测量仪表。
电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。
F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。
课程设计Ⅱ题目电压频率变换器的设计学生姓名学号 0810064013 所在院(系)物电学院专业班级电子信息科学与技术081班指导教师完成地点陕西理工学院2011 年 11月 16 日设计题目:电压/频率变换器的设计学生信息姓名性别男班级电信081班学号0810064013任务要求电压/频率变换器输入V i为直流电压(控制信号),输出频率为f0的矩形脉冲;且Vi 变化范围:0~10V;f0变化范围:0~10kHz;转换精度<1%。
并且要有具体的仿真结果。
所需实验设备、器材、软件计算机,protel软件设计与制作方案、所用方法及技术路线1.明确性能指标,仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。
2.确定合理的总体方案。
对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。
3.设计各单元电路。
总体方案化整为零,分解成若干子系统或单元电路,逐个设计。
4.组成系统。
在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。
设计与制作进度第一周:对protel软件的学习和总体设计;第二周:对各部分功能的设计并且按时完成。
设计与制作完成情况完成了用软件仿真来实现电压/频率的变换。
硬件部分只设计了下电路没有实物。
设计与制作收获及总结:由于以前从未接触过protel,所以完全需要自学,书上的资料不够用,就去图书馆借书,上网查资料,发现问题,不断地改进,最终才得以克服。
特别谢谢我们的指导老师刘东老师在我做课程设计过程中对我的耐心指导,以及同学的帮助。
学生签字年月日设计与制作成绩(五级制)指导老师签字年月日教研室意见教研室主任签字年月日系领导意见领导签字年月日备注:学生除填写本表相应的内容外,还应撰写一份完整的设计与制作报告.电压/频率变换器的设计与制作(陕西理工学院物理系电子信息科学与技术专业07级2班,陕西汉中 723000)指导教师:【摘要】本次课程设计利用输入电压的大小改变电容的充电速度,从而改变振荡电路的振荡频率,故采用积分器作为输入电路。
积分器的输出信号去控制电压比较器或者单稳态触发器,可得到矩形脉冲输出,由输出信号电平通过一定反馈方式控制积分电容恒流放电,当电容放电到某一域值时,电容C 再次充电。
由此实现Vi 控制电容充放电速度,即控制输出脉冲频率。
【关键词】V/F转换;高精度;555定时器。
Voltage / frequency converter design and productionLi Kang( Shaanxi University of Technology Physics Department of electronic information science and technology 07 levels of 2 classes, 723001 Shaanxi, Hanzhoung )Instructor: Liu Dong[ Abstract ] the curriculum design using the magnitude of the input voltage of capacitor charging speed change, thereby altering the oscillation frequency of the oscillating circuit is used as an input circuit, an integrator. The integrator output signal to control the voltage comparator or monostable multivibrator, pulse output can be obtained by the level of the output signal, the integrator capacitor feedback control constant current discharge, when the capacitor is discharged to a certain threshold, the capacitor C recharging. The realization of Vi control capacitor charging and discharging speed, namely to control the output pulse frequency.[ Key words ] V / F conversion; high precision; 555 timer.目录1. 电压/频率变换器的原理及应用 (3)1.1实验目的及应用意义 (3)1.2设计要求 (3)1.3设计思路 (3)1.4原理图设计 (3)1.5电路图 (4)2.电压频率变换器各单元电路设计 (4)2.1积分器设计积分器采用集成运算放大器和 RC 元件构成 (4)2.2单稳态触发器设计 (5)2.3电子开关设计 (5)2.4恒流源电路设计 (5)3. 理论计算 (6)3.1基本计算 (6)3.2元件清单 (6)3.3仿真结果 (6)4. 设计总结 (8)致谢 (8)参考文献 (8)1. 电压/频率变换器的原理及应用1.1实验目的及应用意义1.学习简单积分电路的设计与调试方法。
2.了解积分电路产生误差的原因,掌握减小误差的方法。
1.2设计要求1.根据指标要求,设计积分电路并计算电路的有关参数。
2.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。
1.3设计思路电压/频率变换器的输入信号频率 f。
与输入电压Vi 的大小成正比,输入控制电压Vi常为直流电压,也可根据要求选用脉冲信号做为控制电压,其输出信号可为正弦波或者脉冲波形电压。
本设计利用输入电压的大小改变电容的充电速度,从而改变振荡电路的振荡频率,故采用积分器作为输入电路。
积分器的输出信号去控制电压比较器或者单稳态触发器,可得到矩形脉冲输出,由输出信号电平通过一定反馈方式控制积分电容恒流放电,当电容放电到某一域值时,电容C 再次充电。
由此实现Vi 控制电容充放电速度,即控制输出脉冲频率。
1.4 原理框图设计:1.5电路图:2.电压频率变换器各单元电路设计2.1 积分器设计积分器采用集成运算放大器和RC 元件构成的反向输入积分器。
2.2单稳态触发器设计单稳态触发器采用555 定时器构成的单稳电路。
具体电路如下:2.3 电子开关设计电子开关采用开关三极管接成反向器形式,当触发器的输出为高电平时,三极管饱和导通,输出近似为 0,当触发器输出为低电平时,三极管截止,输出近似等于+Vcc。
2.4 恒流源电路设计恒流源电路可采用开关三极管 T,稳压二极管Dz 等元件构成。
具体电路如下所示。
当V1为 0 时,D2,D3 截止,D4 导通,所以积分电容通过三极管 T 放电。
当V1’为 1 时,D2,D3 导通,D4 截止,输入信号对积分电容充电。
在单稳态触发器的输出端得到矩形脉冲。
3. 理论计算3.1 基本计算根据题目要求结合电路图,输入与输出关系Vi∝f0,题目要求输入电压的范围为1~10V,而输出频率要求为1~10KHZ,所以该VFC 电路需有1khz/v 的换系数。
输入有信号电压Vin 时,积分电容充电,积分器输出下降,当降至触发器的触发电平(〈1/3Vcc),555 置位,使得积分电容通过恒流源反向充电,当积分电容电压上升到2/3Vcc 时,又使555 复位,积分电容又开始充电,从而形成振荡。
因为单稳态电路的充电时间tw=1.1R9*C3,选取R9 为43k,C3 为1000p,确定充电时间约为0.05ms。
根据所采用的恒流源电路及参数设置以及输入电压与输出频率的关系,可确定恒流源对积分电容反向充电时间,从而确定C1=0.1uf,R1=20K。
3.2 元件清单:3.3仿真结果:4. 设计总结电压/频率(U/F) 转换电路是将模拟电压信号转换成频率信号。
由于U/F 转换本身是一积分过程,其转换结果送给计算机是可采用简单的光电耦合,因而具有较强的抗干扰能力。
U/F 转换电路与计算机的接口比较简单,转换精度和线性度也比较好。
通过这次课设教我学会很多关于电子产品知识。
进一步的认识了我们现实生活电子产品,了解和掌握了一些简单电子元件的运用,大大的拓展了我们的知识面。
提高了自己以后在学习生活中自己动手能力。
给我们很大的启发,很有助于我们将来的学习生活和工作致谢:首先,要感谢刘东老师对我的悉心指导。
感谢我的本科学习中所有任课老师对我学业上的教导和帮助。
在大学四年中,他们向我们传授了专业知识,教给我们学习的方法,并引导我们解决学习中遇到的障碍,勇于知难而上。
能够在陕西理工学院完成我的本科学习,我感到非常的荣幸和自豪。
这四年将是我人生中最重要的,是我对人对事都有了深刻的认识。
感谢老师、同学们各种帮助,谢谢!参考文献1.康华光,陈大钦等.《电子技术基础》[M](第4版). 高等教育出版社,1998.5.2.傅晓林主编,吴培明副主编.《模拟电子技术》[M].重庆:重庆大学出版社,2003.1.3.姚金生,郑小利等编著.《电工学》[M] (第6版) .北京:高等教育出版社,2006.9.4.曾凡奎主编. 机械工业出版社《新简明电工手册》[M](第1版).2005.1.5.康华光主编. 高等教育出版社《电子技术基础》[M](第4版).1999.6.6.董在望主编. 《通讯电路原理》[M] (弟2版).北京:高等教育出版社,2002.5.7.汪慧,王志华编纂.《电子电路的计算机辅助分析与设计方法》[M].北京:清华大学出版社,1996.8.8.阎石.《数字电子基础》[M](第4版).西安:电子科技大学出版社,2001.3.。