天津市海河中学2021届高三上学期第一次月考数学试卷 Word版含答案
- 格式:docx
- 大小:2.25 MB
- 文档页数:7
2021年高三上学期第一次月考数学(文)试题含答案本试卷分第I卷和第Ⅱ卷两部分,共5页.第I卷1至2页,第Ⅱ卷3至6页.满分150分,考试时间120分钟。
注意事项:l.答题前,考生务必用0.5毫米黑色签字笔将姓名、座号、准考证号、科类填写在答题卡规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.第I卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,则( )A. B. C. D.2.在△ABC中, 已知b=40, c=20, C=60°, 则此三角形的解为 ( )A. 有一解B. 有两解C. 无解D. 有解但解的个数不确定3.已知向量a,b,且|a|=1,|b|=2,则|2b-a|的取值范围是( )(A)[1,3] (B) [3,5] (C) [2,4] (D)[4,6]4.下面命题中,假命题是( )(A)“若a≤b,则2a≤2b-1”的否命题(B)“∀a∈(0,+∞),函数y=a x在定义域内单调递增”的否定(C)“π是函数y=sin x的一个周期”或“2π是函数y=sin 2x的一个周期”(D)“x2+y2=0”是“xy=0”的必要条件5、若△ABC的周长等于20,面积是,A=60°,则BC边的长是()A. 5 B.6 C.7 D.86.等差数列{a n }的公差为2,若成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1) C.D.7.若函数f (x )满足xf ′(x )>-f (x ),则下列关系一定正确的是 ( )A .2f (1)>f (2)B .2f (2)>f (1)C .f (1)>f (2)D .f (1)<f (2) 8.已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足, =18,=12,则数列{b n }的前n 项和的最大值等于 ( )A .126B .130C .132D .1349.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,那么数列{b n }=的前n 项和为( ) A .4⎝ ⎛⎭⎪⎫1-1n +1 B .4⎝ ⎛⎭⎪⎫12-1n +1 C .1-1n +1D.12-1n +1 10.已知函数y=f (x )是定义在R 上的偶函数,对于任意x ∈R 都f (x+6)=f (x )+f (3)成立;当x 1,x 2∈[0,3],且x 1≠x 2时,都有>0.给出下列四个命题:①f(3)=0;②直线x=﹣6是函数y=f (x )图象的一条对称轴;③函数y=f (x )在[﹣9,﹣6]上为增函数;④函数y=f (x )在[0,xx]上有335个零点.其中正确命题的个数为( )A . 1B . 2C . 3D . 4第II 卷 非选择题,共100分二、填空题:本大题共5小题,每小题5分,共25分11.在△ABC 中,若= 1, =,,则= .12.已知数列的前n 项和,则_______.13.向量a =(3,4)在向量b =(1,-1)方向上的投影为________.14. 数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1)·3n +1+3(n ∈N *),则数列{a n }的通项公式________.15.已知函数f (x )=(a 是常数且a >0).给出下列命题:①函数f (x )的最小值是-1;②函数f (x )在R 上是单调函数;③函数f (x )在(-∞,0)上的零点是x =;④若f (x )>0在[,+∞)上恒成立,则a 的取值范围是[1,+∞)⑤对任意的x1,x2<0且x1≠x2,恒有其中正确命题的序号是_________.(写出所有正确命题的序号)三、解答题:本大题共6小题,共75分.16.(本小题满分12分)在△ABC 中,角A,B,C 所对的边分别为a,b,c ,且满足.(I )求的面积;(II )若,求的值.17. (本小题满分12分)在数列中,已知()111411,,23log 44n n n n a a b a n N a *+==+=∈. (I )求数列的通项公式;(II )求证:数列是等差数列;(III )设数列满足,求的前n 项和.18.(本小题满分12分)如图,渔船甲位于岛屿的南偏西60°方向的处,且与岛屿相距12海里,渔船乙以10海里/时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上,此时到达处.(1)求渔船甲的速度;(2)求sin 的值.19. (本小题满分12分)在△ABC 中,a,b,c 分别是角A,B,C 的对边,且.I.求角B 的大小;II.若函数()()()2sin 2sin 22cos 1,f x x B x B x x R =++-+-∈. (1)求函数的最小正周期;(2)求 函数在区间上的最大值和最小值.20. (本小题满分13分)已知为等差数列的前n项和,(I)求数列的通项公式;(II)若数列满足:,求数列的前n项和.21. (本小题满分14分)已知函数.I.当时,求曲线在点处的切线的斜率;II.讨论函数的单调性;III.若函数有两个零点,求实数a的取值范围.xx级高三第一次模拟考试试题数学(文史类)答案一.选择题DCBDC ABCAB二. 填空题 11.2 12.100 13-22143n15.①③⑤三.解答题16.解:(1), 2分而4分又,,5分6分(2)而,8分,10分又,12分17.解:(1),∴数列是首项为,公比为的等比数列,∴.…………………………………………………………………3分(2)………………………………………………………………4分∴.………………………………………………………6分∴,公差∴数列是首项,公差的等差数列.………………………………7分(3)由(1)知,,∴ ……………………………………………………8分 ∴,)41()23()41)53()41(7)41(4411132n n n n n S +-+(+-+++++++=- ])41()41)41()41(41[)]23()53(741[132n n n n +(++++++-+-++++=- ……………………………10分n n n n n n )41(313123411])41(1[412)231(2⋅-+-=--+-+=…………………………12分 18.解析 (1)依题意知,∠BAC =120°,AB =12(海里),AC =10×2=20(海里),∠BCA =α,在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC =28(海里).所以渔船甲的速度为BC 2=14海里/时.(2)在△ABC 中,因为AB =12(海里),∠BAC =120°,BC =28(海里),∠BCA =α,由正弦定理,得AB sin α=BC sin 120°. 即sin α=AB sin 120°BC =12×3228=3314. 19.解:(Ⅰ) ,由射影定理,得 ……………4分 或边化角,由,变为,即(Ⅱ)由(Ⅰ)知,所以 2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--=sin 2cos cos 2sin sin 2cos cos 2sin cos 23333x x x x x ππππ++-+……………7分(1)的最小正周期. ……………8分 (2)3[,],2[,],2[,]4422444x x x πππππππ∈-∴∈-+∈-, 所以, ……………10分故 ……………12分20.(Ⅰ)271111011271627161104510029202a a a d a d a S a d a d d +=+=+==⎧⎧⎧⇔⇔⎨⎨⎨=+=+==⎩⎩⎩ …………4分 ………………………5分 (Ⅱ)由(1)知, ………………………7分0121123252......(21)2n n T n -=⋅+⋅+⋅++-⋅121n 21232......(23)2(21)2n n T n n -=⋅+⋅++-⋅+-⋅ +2312222......+22(21)2n n n -⋅+⋅+⋅--…………9分==1-4+ ………………………11分. ………………………12分21.(1)当时,所以曲线y=(x)在点处的切线的斜率为0. ………………………3分(2) …………………………………………4分① 当上单调递减; ………………………6分② 当.0)()(0)()0(>'∞+∈<'∈x f aa x x f a a x 时,,;当时,,当. 内单调递增,内单调递减;在,在函数)()0()(∞+∴aa a a x f ………………8分 (3)当由(2)可知上单调递减,函数不可能有两个零点; ………………………10分当a>0时,由(2)得,内单调递增,,内单调递减,在,在函数)()0()(∞+aa a a x f 且当x 趋近于0和正无穷大时,都趋近于正无穷大,故若要使函数有两个零点;则的极小值,即,解得所以的取值范围是 ………………………………14分6.[解析] A 由题意,得a 2,a 2+4,a 2+12成等比数列,即(a 2+4)2=a 2(a 2+12),解得a 2=4,即a 1=2,所以S n =2n +n (n -1)2×2=n (n +1). 7.解析 B 令g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x )>0,∴g (x )是增函数,∴g (2)>g (1),即2f (2)>f (1).8. b n +1-b n =lg a n +1-lg a n =lg a n +1a n=lg q (常数),∴{b n }为等差数列.∴⎩⎪⎨⎪⎧ b 1+2d =18,b 1+5d =12,∴⎩⎪⎨⎪⎧d =-2,b 1=22. 由b n =-2n +24≥0,得n ≤12,∴{b n }的前11项为正,第12项为零,从第13项起为负,∴S 11、S 12最大且S 11=S 12=132.9.[解析] 由题意知a n =1n +1+2n +1+3n +1+…+n n +1=1+2+3+…+n n +1=n 2,b n =1a n a n +1=4⎝⎛⎭⎫1n -1n +1,所以b 1+b 2+…+b n =4⎝⎛⎭⎫1-12+4⎝⎛⎭⎫12-13+…+4⎝⎛⎭⎫1n -1n +1=4⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=4⎝⎛⎭⎫1-1n +1.n 31405 7AAD 窭37040 90B0 邰 39719 9B27 鬧36763 8F9B 辛28110 6DCE 淎31236 7A04 稄38464 9640 陀%34530 86E2 蛢z37209 9159 酙。
2021年高三上学期第一次月考数学试卷含解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置1.已知集合A={1,cosθ},B={,1},若A=B,则锐角θ=.2.已知幂函数y=f(x)的图象过点(,),则f(4)的值为.3.若函数是偶函数,则实数a的值为.4.若函数f(x)=(e为自然对数的底数)是奇函数,则实数m的值为.5.函数y=的定义域为A,值域为B,则A∩B=.6.已知x,y满足且z=2x+y的最大值是最小值的4倍,则a的值是.7.已知点P在直线y=2x+1上,点Q在曲线y=x+lnx上,则P、Q两点间距离的最小值为.8.若函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象关于坐标原点中心对称,且在y轴右侧的第一个极值点为x=,则函数f(x)的最小正周期为.9.函数f(x)的定义域为R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式e x•f(x)>e x+1的解集为.10.已知tan(α+β)=1,tan(α﹣β)=2,则的值为.11.在锐角三角形ABC中,若tanA,tanB,tanC依次成等差数列,则tanAtanC 的值为.12.已知函数交于M、N两点,则|MN|的最大值是.13.已知函数f(x)=2x﹣1+a,g(x)=bf(1﹣x),其中a,b∈R,若关于x的不等式f(x)≥g(x)的解的最小值为2,则a的取值范围是.14.若实数x,y满足x2﹣4xy+4y2+4x2y2=4,则当x+2y取得最大值时,的值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知α∈(0,),β∈(,π),cosβ=﹣,sin(α+β)=.(1)求tan的值;(2)求sinα的值.16.在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知==.(1)求C;(2)如图,设半径为R的圆O过A,B,C三点,点P位于劣弧上,∠PAB=θ,求四边形APCB面积S(θ)的解析式及最大值.17.如图是某设计师设计的Y型饰品的平面图,其中支架OA,OB,OC两两成120°,OC=1,AB=OB+OC,且OA>OB,现设计师在支架OB上装点普通珠宝,普通珠宝的价值为M,且M与OB长成正比,比例系数为k(k为正常数):在△AOC区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为N,且N与△AOC的面积成正比,比例系数为4k,设OA=x,OB=y.(1)求y关于x的函数关系式,并写出x的取值范围;(2)求N﹣M的最大值及相应的x的值.18.对于定义域为D的函数y=f(x),若同时满足下列条件:①f(x)在D内单调递增或单调递减;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.(1)求闭函数y=﹣x3符合条件②的区间[a,b];(2)判断函数是否为闭函数?并说明理由;(3)若是闭函数,求实数k的取值范围.19.已知函数f(x)=+.(1)求函数f(x)的定义域和值域;(2)设F(x)=•[f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);(3)对(2)中g(a),若﹣m2+2tm+≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.20.过点P(﹣1,0)作曲线f(x)=e x的切线l.(1)求切线l的方程;(2)若直线l与曲线y=(a∈R)交于不同的两点A(x1,y1),B(x2,y2),求证:x1+x2<﹣4.附加题:(共4小题,满分0分)21.已知矩阵A=,B=满足AX=B,求矩阵X.22.在平面直角坐标系xOy中,设点P(x,5)在矩阵M=对应的变换下得到点Q(y﹣2,y),求.23.已知常数a>0,函数f(x)=ln(1+ax)﹣.讨论f(x)在区间(0,+∞)上的单调性.24.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,∠ABC=∠BAD=90°,且PA=AB=BC=AD=1,PA⊥平面ABCD.(1)求PB与平面PCD所成角的正弦值;(2)棱PD上是否存在一点E满足∠AEC=90°?若存在,求AE的长;若不存在,说明理由.xx学年江苏省南通市如皋中学高三(上)第一次月考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置1.已知集合A={1,cosθ},B={,1},若A=B,则锐角θ=.【考点】集合的相等.【分析】根据集合相等的条件,建立方程关系即可得到结论.【解答】解:若A=B,则cosθ=,∵θ是锐角,∴θ=,故答案为:2.已知幂函数y=f(x)的图象过点(,),则f(4)的值为2.【考点】幂函数的概念、解析式、定义域、值域.【分析】设幂函数y=f(x)=xα,根据f(x)的图象过点(,),求得α的值,可得函数f (x)的解析式,从而求得f(4)的值.【解答】解:设幂函数y=f(x)=xα,∵f(x)的图象过点(,),∴=,∴α=,∴f(x)=∴f(4)==2,故答案为:2.3.若函数是偶函数,则实数a的值为﹣.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】由题意可得,f(﹣)=f(),从而可求得实数a的值.【解答】解:∵f(x)=asin(x+)+sin(x﹣)为偶函数,∴f(﹣x)=f(x),∴f(﹣)=f(),即﹣=a,∴a=﹣.故答案为:﹣.4.若函数f(x)=(e为自然对数的底数)是奇函数,则实数m的值为1.【考点】函数奇偶性的性质.【分析】由函数的奇偶性易得f(﹣1)=﹣f(1),解m的方程可得.【解答】解:∵函数f(x)=(e为自然对数的底数)是奇函数,∴f(﹣1)=﹣f(1),∴=﹣,∴m=1.故答案为:1.5.函数y=的定义域为A,值域为B,则A∩B=[0,2] .【考点】函数的值域;交集及其运算;函数的定义域及其求法.【分析】分别求出函数的定义域,和值域,然后利用集合的基本运算求解即可.【解答】解:要使函数有意义,则﹣x2﹣2x+8≥0,即x2+2x﹣8≤0,解得﹣4≤x≤2,即函数的定义域A=[﹣4,2].y==,∵﹣4≤x≤2,∴0≤,即0≤x≤3,即函数的值域B=[0,3],∴A∩B=[﹣4,2]∩[0,3]=[0,2].故答案为:[0,2].6.已知x,y满足且z=2x+y的最大值是最小值的4倍,则a的值是.【考点】简单线性规划.【分析】首先画出可行域,利用目标函数的几何意义得到最大值和最小值的最优解,得到关于a 方程解之.【解答】解:由已知得到可行域如图:当直线y=﹣2x+z经过C(a,a)时z最小,经过A时z最大,由得到A(1,1)所以4×3a=2×1+1,解得a=;故答案为:.7.已知点P在直线y=2x+1上,点Q在曲线y=x+lnx上,则P、Q两点间距离的最小值为.【考点】两点间距离公式的应用.【分析】设直线y=2x+t与曲线y=x+lnx相切于点Q(a,b).利用=1+=2,解得切点为Q(1,1).利用点到直线的距离公式可得Q到直线y=2x+1的距离d,即为所求.【解答】解:设直线y=2x+t与曲线y=x+lnx相切于点Q(a,b).则=1+=2,解得a=1,∴b=1,∴切点为Q(1,1).Q到直线y=2x+1的距离d==.∴P、Q两点间距离的最小值为.故答案为:.8.若函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象关于坐标原点中心对称,且在y轴右侧的第一个极值点为x=,则函数f(x)的最小正周期为.【考点】正弦函数的图象.【分析】由条件利用正弦函数的图象的特征,正弦函数的奇偶性、最值、周期性,求得函数f(x)的最小正周期.【解答】解:函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象关于坐标原点中心对称,可得φ=0,∵f(x)在y轴右侧的第一个极值点为x=,∴ω•=,∴ω=,∴函数f(x)=Asin(x),则函数f(x)的最小正周期为=,故答案为:.9.函数f(x)的定义域为R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式e x•f (x)>e x+1的解集为{x|x>0} .【考点】函数的定义域及其求法.【分析】设h(x)=e x f(x)﹣e x﹣1,则不等式e x f(x)>e x+1的解集就是h(x)>0 的解集.由此利用导数性质能求出不等式e x•f(x)>e x+1的解集.【解答】解:设h(x)=e x f(x)﹣e x﹣1,则不等式e x f(x)>e x+1的解集就是h(x)>0 的解集.h(0)=1×2﹣1﹣1=0,h′(x)=e x[f(x)+f′(x)]﹣e x,∵[f(x)+f′(x)]>1,∴对于任意x∈R,e x[f(x)+f′(x)]>e x,∴h'(x)=e x[f(x)+f'(x)]﹣e x>0即h(x)在实数域内单调递增.∵h(0)=0,∴当x<0 时,h(x)<0;当x>0 时,h(x)>0.∴不等式e x•f(x)>e x+1的解集为:{x|x>0}.故答案为:{x|x>0}.10.已知tan(α+β)=1,tan(α﹣β)=2,则的值为1.【考点】两角和与差的正切函数.【分析】利用已知条件求出αβ的正切函数值,然后求解的值.【解答】解:tan(α+β)=1,tan(α﹣β)=2,==,分式同除以cos(α+β)cos(α﹣β)),==1.故答案为:1.11.在锐角三角形ABC中,若tanA,tanB,tanC依次成等差数列,则tanAtanC的值为3.【考点】两角和与差的正切函数.【分析】利用等差数列列出关系式,利用三角形的内角和以及两角和的正切函数,化简求解即可.【解答】解:由题意知:A≠,B≠,C≠,且A+B+C=π,tanA,tanB,tanC依次成等差数列,∴2tanB=tanA+tanC,∴tan(A+B)=tan(π﹣C)=﹣tanC,又∵tan(A+B)=,∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)=﹣tanC+tanAtanBtanC,即tanA+tanB+tanC=tanAtanBtanC,∴tanAtanC=3.故答案为:3.12.已知函数交于M、N两点,则|MN|的最大值是.【考点】两角和与差的正弦函数;诱导公式的作用;正弦函数的定义域和值域.【分析】由已知中直线x=m分别交函数y=sinx、的图象于M、N两点,表示M、N的距离,根据辅助角公式化为一个正弦型函数的形式,根据正弦型函数的值域,即可得到结果.【解答】解:∵=cosx∵直线x=m分别交函数y=sinx、的图象于M、N两点,则|MN|=|sinx﹣cosx|∴|f(x)﹣g(x)|=|sinx﹣cosx|=|sin(x﹣)|∵x∈R∴|f(x)﹣g(x)|∈[0,]故M、N的距离的最大值为故答案为:13.已知函数f(x)=2x﹣1+a,g(x)=bf(1﹣x),其中a,b∈R,若关于x的不等式f(x)≥g(x)的解的最小值为2,则a的取值范围是a≤﹣2或a>﹣.【考点】函数的最值及其几何意义.【分析】化简不等式可得2x﹣1+a≥b(2﹣x+a),从而令F(x)=2x﹣1+a﹣b(2﹣x+a)=﹣+a ﹣ab,分类讨论以确定F(x)≥0的解集为[2,+∞),结合函数的单调性及方程与不等式的关系求解即可.【解答】解:f(x)=2x﹣1+a,g(x)=bf(1﹣x)=b(21﹣x﹣1+a)=b(2﹣x+a),∵f(x)≥g(x),∴2x﹣1+a≥b(2﹣x+a),令F(x)=2x﹣1+a﹣b(2﹣x+a)=+a﹣﹣ab=﹣+a﹣ab,①若b<0,则(﹣+a﹣ab)=+∞,与关于x的不等式f(x)≥g(x)的解的最小值为2相矛盾,故不成立;②若b=0,则F(x)=﹣+a﹣ab在R上是增函数;即F(x)=+a≥0的解集为[2,+∞),故a=﹣2;③若b>0,则F(x)=﹣+a﹣ab在R上是增函数;即F(x)=﹣+a﹣ab≥0的解集为[2,+∞),故2+a=b(+a),故b=>0,故a<﹣2或a>﹣;综上所述,a≤﹣2或a>﹣.14.若实数x,y满足x2﹣4xy+4y2+4x2y2=4,则当x+2y取得最大值时,的值为2.【考点】不等式的基本性质.【分析】实数x,y满足x2﹣4xy+4y2+4x2y2=4,变形为:(x+2y)2+(2xy﹣2)2=8,令x+2y=sinθ,2xy﹣2=2cosθ,θ∈[0,2π).则当x+2y取得最大值时,θ=,即可得出.【解答】解:∵实数x,y满足x2﹣4xy+4y2+4x2y2=4,变形为:(x+2y)2+(2xy﹣2)2=8,令x+2y=sinθ,2xy﹣2=2cosθ,θ∈[0,2π).则当x+2y取得最大值时,θ=,则x+2y=2,2xy﹣2=0,解得x=,y=.=2.故答案为:2.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知α∈(0,),β∈(,π),cosβ=﹣,sin(α+β)=.(1)求tan的值;(2)求sinα的值.【考点】y=Asin(ωx+φ)中参数的物理意义.【分析】(1)使用二倍角公式用tan表示出cosβ,求出的范围,解方程得出;(2)根据α,β的范围求出sinβ,cos(α+β),利用差角的正弦函数公式计算.【解答】解:(1)∵,且,∴,解得,∵,∴,∴,∴.(2)∵,,∴, 又,故,∴,∴sin α=sin [(α+β)﹣β]=sin (α+β)cos β﹣cos (α+β)sin β=.16.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,已知==.(1)求C ;(2)如图,设半径为R 的圆O 过A ,B ,C 三点,点P 位于劣弧上,∠PAB=θ,求四边形APCB 面积S (θ)的解析式及最大值.【考点】在实际问题中建立三角函数模型;三角函数中的恒等变换应用.【分析】(1)由已知结合正弦定理可得sin2A=sin2B ,再由角的范围可得A +B=,从而求得C ;(2)把三角形ABC 的三边用R 表示,再由S (θ)=S △ABC +S △APC ,代入三角形面积公式化简,然后由θ∈()求得四边形APCB 面积S (θ)的最大值.【解答】解:(1)由=,得=,∴sin2A=sin2B ,∵2A ,2B ∈(0,2π),∴2A=2B ,或2A +2B=π,即A=B 或A +B=,∵,∴A=B 舍去,从而C=;(2)由条件得:c=2R ,a=R ,b=R ,∠BAC=,∠CAP=θ﹣,θ∈(),S (θ)=S △ABC +S △APC =====,θ∈(), ∵∈(),∴当时,.17.如图是某设计师设计的Y型饰品的平面图,其中支架OA,OB,OC两两成120°,OC=1,AB=OB+OC,且OA>OB,现设计师在支架OB上装点普通珠宝,普通珠宝的价值为M,且M与OB长成正比,比例系数为k(k为正常数):在△AOC区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为N,且N与△AOC的面积成正比,比例系数为4k,设OA=x,OB=y.(1)求y关于x的函数关系式,并写出x的取值范围;(2)求N﹣M的最大值及相应的x的值.【考点】函数的最值及其几何意义;函数解析式的求解及常用方法.【分析】(1)根据条件结合余弦定理建立函数关系即可求y关于x的函数关系式,并写出x 的取值范围;(2)求出N﹣M的表达式,利用换元法结合基本不等式的性质即可求出N﹣M的最大值及相应的x的值.【解答】解:(1)∵OA=x,OB=y,AB=y+1,由余弦定理得x2+y2﹣2xycos120°=(y+1)2,解得y=,由x>0,y>0,得1<x<2,∵x>y,∴x>,得1<x<,∴OA的取值范围是(1,).=3kx,(2)M=kOB=ky,N=4k•S△AOC则N﹣M=k(3x﹣y)=k(3x﹣),设2﹣x=t,则t∈(,1),则N﹣M=k[3(2﹣t)﹣]=k[10﹣(4t+)]≤k(10﹣2)=(10﹣4)k,当且仅当4t=,即t=,x=2﹣时,N﹣M的最大值是)=(10﹣4)k.18.对于定义域为D的函数y=f(x),若同时满足下列条件:①f(x)在D内单调递增或单调递减;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.(1)求闭函数y=﹣x3符合条件②的区间[a,b];(2)判断函数是否为闭函数?并说明理由;(3)若是闭函数,求实数k的取值范围.【考点】函数与方程的综合运用.【分析】(1)根据单调性依据闭区间的定义等价转化为方程,直接求解.(2)判断其在(0,+∞)是否有单调性,再据闭函数的定义判断;(3)根据闭函数的定义一定存在区间[a,b],由定义直接转化求解即可.【解答】解:(1)由题意,y=﹣x3在[a,b]上递减,则解得所以,所求的区间为[﹣1,1];(2)取x1=1,x2=10,则,即f(x)不是(0,+∞)上的减函数.取,,即f(x)不是(0,+∞)上的增函数所以,函数在定义域内不单调递增或单调递减,从而该函数不是闭函数;(3)若是闭函数,则存在区间[a,b],在区间[a,b]上,函数f(x)的值域为[a,b],即,∴a,b为方程的两个实数根,即方程x2﹣(2k+1)x+k2﹣2=0(x≥﹣2,x≥k)有两个不等的实根当k≤﹣2时,有,解得,当k>﹣2时,有,无解,综上所述,.19.已知函数f(x)=+.(1)求函数f(x)的定义域和值域;(2)设F(x)=•[f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);(3)对(2)中g(a),若﹣m2+2tm+≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.【考点】函数恒成立问题;函数的定义域及其求法;函数的值域.【分析】(1)由1+x≥0且1﹣x≥0可求得定义域,先求[f(x)]2的值域,再求f(x)的值域;(2)F(x)=a++,令t=f(x)=+,则=﹣1,由此可转化为关于t的二次函数,按照对称轴t=﹣与t的范围[,2]的位置关系分三种情况讨论,借助单调性即可求得其最大值;(3)先由(2)求出函数g(x)的最小值,﹣≤g(a)对a<0恒成立,即要使﹣≤g min(a)恒成立,从而转化为关于t的一次不等式,再根据一次函数的单调性可得不等式组,解出即可.【解答】解:(1)由1+x≥0且1﹣x≥0,得﹣1≤x≤1,所以函数的定义域为[﹣1,1],又[f(x)]2=2+2∈[2,4],由f(x)≥0,得f(x)∈[,2],所以函数值域为[,2];(2)因为F(x)==a++,令t=f(x)=+,则=﹣1,∴F(x)=m(t)=a(﹣1)+t=,t∈[,2],由题意知g(a)即为函数m(t)=,t∈[,2]的最大值.注意到直线t=﹣是抛物线m(t)=的对称轴.因为a<0时,函数y=m(t),t∈[,2]的图象是开口向下的抛物线的一段,①若t=﹣∈(0,],即a≤﹣,则g(a)=m()=;②若t=﹣∈(,2],即﹣<a≤﹣,则g(a)=m(﹣)=﹣a﹣;③若t=﹣∈(2,+∞),即﹣<a<0,则g(a)=m(2)=a+2,综上有g(a)=,(3)易得,由﹣≤g(a)对a<0恒成立,即要使﹣≤g min(a)=恒成立,⇒m2﹣2tm≥0,令h(t)=﹣2mt+m2,对所有的t∈[﹣1,1],h(t)≥0成立,只需,解得m的取值范围是m≤﹣2或m=0,或m≥2.20.过点P(﹣1,0)作曲线f(x)=e x的切线l.(1)求切线l的方程;(2)若直线l与曲线y=(a∈R)交于不同的两点A(x1,y1),B(x2,y2),求证:x1+x2<﹣4.【考点】利用导数研究曲线上某点切线方程.【分析】(1)求导数,设切点,可得方程组,即可求切线l的方程;(2)设f(x)=(x+1)e x,则f(x1)=f(x2).f'(x)=(x+2)e x,可得函数f(x)的单调性;设g(x)=f(x)﹣f(﹣4﹣x),切点其单调性,即可证明结论.【解答】(1)解:y'=e x,设切点(x0,y0),则,解得x0=0,因此y'|x=0=1,l的方程是y=x+1.…(2)证明:依题意有,所以…设f(x)=(x+1)e x,则f(x1)=f(x2).f'(x)=(x+2)e x,当x<﹣2时,f'(x)<0,当x>﹣2时,f'(x)>0;所以f(x)在(﹣∞,﹣2)单调递减,在(﹣2,+∞)单调递增.因为x1≠x2,不妨设x1<﹣2,x2>﹣2.设g(x)=f(x)﹣f(﹣4﹣x),则g'(x)=f'(x)+f'(﹣4﹣x)=(x+2)e x(1﹣e﹣2(2+x)),当x>﹣2时,g'(x)>0,g(x)在在(﹣2,+∞)单调递增,所以g(x)>g(﹣2)=0,所以当x>﹣2时,f(x)>f(﹣4﹣x).…因为x2>﹣2,所以f(x2)>f(﹣4﹣x2),从而f(x1)>f(﹣4﹣x2),因为﹣4﹣x2<﹣2,f(x)在(﹣∞,﹣2)单调递减,所以x1<﹣4﹣x2,即x1+x2<﹣4.…附加题:(共4小题,满分0分)21.已知矩阵A=,B=满足AX=B,求矩阵X.【考点】矩阵与矩阵的乘法的意义.【分析】由AX=B,得=,求解即可.【解答】解:设x=,由=得解得此时x=22.在平面直角坐标系xOy中,设点P(x,5)在矩阵M=对应的变换下得到点Q(y﹣2,y),求.【考点】几种特殊的矩阵变换.【分析】由题意得到,从而求出x,y,再由逆矩阵公式求出矩阵M的逆矩阵,由此能求出.【解答】解:∵点P(x,5)在矩阵M=对应的变换下得到点Q(y﹣2,y),∴依题意,=,即解得由逆矩阵公式知,矩阵M=的逆矩阵,∴==.23.已知常数a>0,函数f(x)=ln(1+ax)﹣.讨论f(x)在区间(0,+∞)上的单调性.【考点】利用导数研究函数的单调性.【分析】利用导数判断函数的单调性,注意对a分类讨论.【解答】解:∵f(x)=ln(1+ax)﹣,∴f′(x)=﹣=,∵(1+ax)(x+2)2>0,∴当1﹣a≤0时,即a≥1时,f′(x)≥0恒成立,则函数f(x)在(0,+∞)单调递增,当0<a≤1时,由f′(x)=0得x=±,则函数f(x)在(0,)单调递减,在(,+∞)单调递增.24.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,∠ABC=∠BAD=90°,且PA=AB=BC=AD=1,PA⊥平面ABCD.(1)求PB与平面PCD所成角的正弦值;(2)棱PD上是否存在一点E满足∠AEC=90°?若存在,求AE的长;若不存在,说明理由.【考点】直线与平面所成的角.【分析】(1)以A为坐标原点建立空间直角坐标系,求出,平面PCD的法向量,即可求PB与平面PCD所成角的正弦值;(2)假设存在E符合条件,设,则由∠AEC=90°得,,列出方程,判定方程在[0,1]上是否有解即可得出结论.【解答】解:(1)依题意,以A为坐标原点,分别以AB,AD,AP为x,y,z轴建立空间直角坐标系O﹣xyz,则P(0,0,1),B(1,0,0),C(1,1,0),D(0,2,0),从而,,,设平面PCD的法向量为=(a,b,c),即,不妨取c=2,则b=1,a=1,所以平面PCD的一个法向量为=(1,1,2),此时cos<,>==﹣,所以PB与平面PCD所成角的正弦值为;(2)设,则E(0,2λ,1﹣λ),则,,由∠AEC=90°得,,化简得,5λ2﹣4λ+1=0,该方程无解,所以,棱PD上不存在一点E满足∠AEC=90°.xx年1月5日25453 636D 捭[T24198 5E86 庆20180 4ED4 仔Qc22943 599F 妟i \?30896 78B0 碰23305 5B09 嬉。
2024-2025学年天津市河西区海河中学高三(上)第一次质检数学试卷一、单选题:本题共9小题,每小题5分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合P ={x ∈N|1≤x ≤5},集合Q ={x ∈R|x 2−x−6<0},则P ∩Q 等于( )A. {1,2,3}B. {1,2}C. [1,2]D. [1,3)2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则“A =B ”是“sinA =sinB ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.已知a =21.2,b =2lg3,c =ln 13,则( )A. a >b >cB. a >c >bC. b >a >cD. b >c >a 4.下列函数是偶函数的是( )A. f(x)=xcosxB. f(x)=x 2−x x−1C. f(x)=lg |x|D. f(x)=e x −e −x5.已知向量a =(1,2),b =(−1,1),若c 满足(c +a )//b ,c ⊥(a +b ),则c =( )A. (−3,0)B. (1,0)C. (0,−3)D. (0,1)6.函数f(x)=ln (4−x)sinx ⋅ x−1的定义域为( )A. (1,π2)∪(π2,4)B. (1,π)∪(π,4)C. [1,π2)∪(π2,4]D. [1,π)∪(π,4]7.已知向量a ,b 满足:|a |=1,|a +2b |=2,且(b−2a )⊥b ,则|b |=( )A. 12B. 22 C. 32 D. 18.已知函数y =2sin(ωx +φ)(ω>0,0<φ<π)的部分图象如图所示,则( )A. ω=2,φ=5π6 B. ω=12,φ=5π6C. ω=2,φ=π6 D. ω=12,φ=π69.设a ∈R ,函数f (x )={cos (2πx−2πa)x <a x 2−2(a +1)x +a 2+5x ≥a ,若函数f (x )在区间(0,+∞)内恰有6个零点,则a 的取值范围是( )A. (2,94]∪(52,114] B. (74,2]∪(52,114]C. (2,94]∪[114,3) D.(74,2)∪[114,3)二、填空题:本题共6小题,每小题5分,共30分。
2021年高三上学期第一次月考数学(文)试卷含答案本试卷分第I卷和第II卷两部分,满分为150分,考试用时120分钟,考试结束后将答题卡交回。
注意事项:1.答卷前,考生必须用0.5毫米黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液,胶带纸、修正带和其他笔。
第I卷(共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x<3},N={x|log2x>1},则M∩N=()A. B.{x|0<x<3}C.{x|1<x<3}D.{x|2<x<3}2.命题“若且则”的否命题是()A.若且则B.若且则C.若或则D.若或则3.已知且,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.下列函数中,既是偶函数又在单调递增的函数是()A.B.C.D.5.函数的定义域是()A. B. C. D.6.二次函数的部分图象如右图,则函数的零点所在的区间是()A. B. C. D.7.已知奇函数对任意,都有,且则() A.0 B.C. D.8. 已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则的值是( )A. B. C. D.9..若函数()()()01x x f x ka a a a -=->≠-∞+∞且在,上既是奇函数又是增函数,则的图象是( )10.已知函数是定义在R 上的奇函数,且当时,成立,若(()()33,1313,2(2)a b g f g c f ===,则a ,b ,c 的大小关系是( )A.B. C. D.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共5小题,每小题5分,共25分,请将正确答案填在答题卷的相应位置。
高三上册数学第一次月考理科试题(带答案)2021届高三上册数学第一次月考文科试题〔带答案〕本试卷分第一卷(选择题)和第二卷(非选择题)两局部。
答题时120分钟,总分值150分。
第一卷(选择题共10小题,每题5分,共50分)一、选择题(每题给出的四个选项中,只要一个选项契合标题要求.)1.假定集合 , ,那么 ( )A. B. C. D.答案:A解析:集合A={ },A={ },所以,2.在复平面内,双数对应的点的坐标为()A. B. C. D.答案:A解析:原式= = ,所以,对应的坐标为(0,-1),选A3. 为等差数列,假定,那么的值为( )A. B. C. D.答案:D解析:由于为等差数列,假定,所以,,4. 函数有且仅有两个不同的零点,,那么()A.当时,,B.当时,,C.当时,,D.当时,,答案:B解析:函数求导,得:,得两个极值点:由于函数f(x)过定点(0,-2),有且仅有两个不同的零点,所以,可画出函数图象如以下图:因此,可知,,只要B契合。
5. 设集合是的子集,假设点满足:,称为集合的聚点.那么以下集合中以为聚点的有:① ; ② ; ③ ; ④ () A.①④B.②③C.①②D.①②④答案:A【解析】①中,集合中的元素是极限为1的数列,在的时分,存在满足0|x-1|1是集合的聚点②集合中的元素是极限为0的数列,最大值为2,即|x-1|1 关于某个a1,不存在0|x-1| ,1不是集合的聚点③关于某个a1,比如a=0.5,此时对恣意的xZ,都有|x﹣1|=0或许|x﹣1|1,也就是说不能够0|x﹣1|0.5,从而1不是整数集Z的聚点④ 0,存在0|x-1|0.5的数x,从而1是整数集Z的聚点应选A6. 在以下命题中, ① 是的充要条件;② 的展开式中的常数项为;③设随机变量 ~ ,假定 ,那么 .其中一切正确命题的序号是()A.②B.②③C.③D.①③答案:B解析:①是充沛不用要条件,故错误;② ,令12-4k=0,得,k=3,所以,常数项为2,正确;③正态散布曲线的对称轴是x=0,,所以,正确;7.偶函数 ,当时, ,当时, ( ).关于偶函数的图象G和直线 : ( )的3个命题如下:①当a=4时,存在直线与图象G恰有5个公共点;②假定关于 ,直线与图象G的公共点不超越4个,那么a③ ,使得直线与图象G交于4个点,且相邻点之间的距离相等.其中正确命题的序号是()A.①②B.①③C.②③D.①②③答案:D解析:由于函数和的图象的对称轴完全相反,所以两函数的周期相反,所以,所以,当时,,所以,因此选A。
2021年高三上学期第一次月考数学(理)试题含答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合的真子集的个数为()A.0 B.1 C.2 D.72.命题:,,则.是假命题,:.是假命题,:.是真命题,:,.是真命题,:3.设为定义在上的奇函数,当时,(为常数),则()(A)(B)(C)1 (D)34.已知,则的值为()A.B.C.D.5.不等式成立的一个必要但不充分条件是()A.B.C.D.6. 定义在上的函数满足(),,则等于() A.2 B.3C.6 D.97.曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.8.已知函数,表示不超过实数的最大整数,记函数的值域为,若元素,则的个数为()A.1个B.2个C.3个D.无穷多个第二部分非选择题(共110分)二、填空题:本大题共6小题,每小题5分,满分30分。
9.设扇形的圆心角为,弧长为,且已知,那么扇形的半径为 。
10.已知函数,且此函数的图象如图所示,则点的坐标是 。
11. 设全集U =R ,,B ={x | sin x },则 。
12. 将函数的图像向左平移个单位,再向上平移1个单位,得到的图像,则的值是___ _______。
13. 设定义在上的函数满足,若,则 。
14. 已知函数x x x x f ωπωπωcos )6sin()6sin()(+-++=(其中为大于0的常数),若函数上是增函数,则的取值范围是 。
三、解答题:本大题共6小题,共80分,解答应写出文字说明、演算步骤或推证过程。
15. (本小题满分12分)已知命题:使成立 ;命题:函数的定义域为,若“”为真,“”为假,求的取值范围。
16. (本小题满分12分)在中,,,. (1)求的值; (2)求的值.17. (本小题满分14分)如图所示,、分别是⊙、⊙的直径,与两圆所在的平面均垂直,,是⊙的直径,,. (1)求二面角的大小;(2)求直线与所成角的余弦值;y x O 1-1第19题图18.(本小题满分14分)已知函数。
2021年高三(上)第一次月考数学试卷含解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题:∃x∈R,2≥1的否定是()A.∃x0∈R,2<1 B.∃x∉R,2≥1C.∀x∈R,2x≥1D.∀x∈R,2x<12.下列函数中,在区间(0,2)上为增函数的是()A.y=﹣x+1 B.y=x C.y=x2﹣4x+5 D.y=3.设全集U=R,集合A={x|x(x+3)<0},B={x|x<﹣1},则如图中阴影部分表示的集合为()A.{x|﹣3<x<﹣1} B.{x|﹣1≤x<0} C.{x|﹣3<x<0} D.{x|﹣1<x<0}4.方程log3x+x﹣3=0的解所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.设函数f(x)是定义在R上以3为周期的奇函数,若f(1)>1,f(2)=,则a的取值范围是()A.a<B.a<且a≠﹣1 C.a>或a<﹣1 D.﹣1<a<6.在一次数学实验中,运用计算器采集到如下一组数据:x ﹣2.0 ﹣1.0 0 1.0 2.0 3.0y 0.24 0.51 1 2.02 3.98 8.02则y关于x的函数关系与下列最接近的函数(其中a、b、c为待定系数)是()A.y=a+bx B.y=a+b x C.f(x)=ax2+b D.y=a+7.已知函数f(x)=lnx﹣x﹣1,g(x)=x2﹣2bx+4,若对任意x1∈(0,2),存在x2∈,使f (x1)≥g(x2),则实数b的取值范围是()A.(2,]B.上是增函数,则实数a的取值范围是.15.已知f(x)是定义在R上的函数,给出下列两个命题:p:若f(x1)=f(x2),(x1≠x2),则x1+x2=4.q:若x1,x2∈(﹣∞,2](x1≠x2),则则使命题“p且q”为真命题的函数f(x)可以是.三、解答题:本大题共6个小题,满分75分.解答应写出必要的文字说明、证明过程或演算步骤.16.已知a>0且a≠1,设命题p:函数y=a x+1在R上单调递减,命题q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点,如果“p∨q”为真,且“p∧q”为假,求a的取值范围.17.设函数f(x)=的值域是集合A,函数g(x)=lg的定义域是集合B,其中a是实数.(1)分别求出集合A、B;(2)若A∪B=B,求实数a的取值范围.18.在△ABC中,a,b,c分别是角A,B,C的对边,C=2A,cosA=.(Ⅰ)求cosC,cosB的值;(Ⅱ)若,求边AC的长.19.已知函数f(x)=x2+(x≠0,a∈R).(1)判断函数f(x)的奇偶性;(2)若f(x)在区间,使f(x1)≥g(x2),则实数b的取值范围是()A.(2,]B.,使f(x1)≥g(x2),只要f(x)的最小值大于等于g(x)的最小值即可,对g(x)的图象进行讨论根据对称轴研究g(x)的最值问题,从而进行求解;解答:解:∵函数f(x)=lnx﹣x﹣1,(x>0)∴f′(x)=﹣+==,若f′(x)>0,1<x<3,f(x)为增函数;若f′(x)<0,x>3或0<x<1,f(x)为减函数;f(x)在x∈(0,2)上有极值,f(x)在x=1处取极小值也是最小值f(x)min=f(1)=﹣+﹣1=﹣;∵g(x)=x2﹣2bx+4=(x﹣b)2+4﹣b2,对称轴x=b,x∈,当b<1时,g(x)在x=1处取最小值g(x)min=g(1)=1﹣2b=4=5﹣2b;当1<b<2时,g(x)在x=b处取最小值g(x)min=g(b)=4﹣b2;当b>2时,g(x)在上是减函数,g(x)min=g(2)=4﹣4b+4=8﹣4b;∵对任意x1∈(0,2),存在x2∈,使f(x1)≥g(x2),∴只要f(x)的最小值大于等于g(x)的最小值即可,当b<1时,≥5﹣2b,解得b≥,故b无解;当b>2时,≥8﹣4b,解得b≥,综上:b≥,故选C;点评:本题考查了利用导数求闭区间上函数的最值,求函数在闭区间上的最大值与最小值是通过比较函数在(a,b)内所有极值与端点函数f(a),f(b)比较而得到的,此题还涉及函数的恒成立问题,注意问题最终转化为求函数的最值问题上;8.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=a x+b的图象大致为()A.B.C.D.考点:指数函数的图像变换;函数的零点与方程根的关系.专题:数形结合;转化思想.分析:根据题意,易得(x﹣a)(x﹣b)=0的两根为a、b,又由函数零点与方程的根的关系,可得f(x)=(x﹣a)(x﹣b)的零点就是a、b,观察f(x)=(x﹣a)(x﹣b)的图象,可得其与x轴的两个交点分别在区间(﹣∞,﹣1)与(0,1)上,又由a>b,可得b<﹣1,0<a<1;根据函数图象变化的规律可得g(x)=a X+b的单调性即与y轴交点的位置,分析选项可得答案.解答:解:由二次方程的解法易得(x﹣a)(x﹣b)=0的两根为a、b;根据函数零点与方程的根的关系,可得f(x)=(x﹣a)(x﹣b)的零点就是a、b,即函数图象与x轴交点的横坐标;观察f(x)=(x﹣a)(x﹣b)的图象,可得其与x轴的两个交点分别在区间(﹣∞,﹣1)与(0,1)上,又由a>b,可得b<﹣1,0<a<1;在函数g(x)=a x+b可得,由0<a<1可得其是减函数,又由b<﹣1可得其与y轴交点的坐标在x轴的下方;分析选项可得A符合这两点,BCD均不满足;故选A.点评:本题综合考查指数函数的图象与函数零点的定义、性质;解题的关键在于根据二次函数的图象分析出a、b的范围.二、填空题:本大题共7个小题,每小题5分,共35分.9.幂函数f(x)=xα(α为常数)的图象经过(3,),则f(x)的解析式是f(x)=..考点:幂函数的概念、解析式、定义域、值域.专题:计算题.分析:将(3,),代入f(x)=xα(α为常数)即可求得α,从而得到答案.解答:解;∵幂函数f(x)=xα(α为常数)的图象经过(3,),∴=3α,∴α=.∴f(x)的解析式是f(x)=.故答案为:f(x)=.点评:本题考查幂函数的概念,将点的坐标代入函数表达式求得α是关键,属于基础题.10.已知f(x)是偶函数,它在上是增函数,则实数a的取值范围是上是减函数,且g(x)>0,再用“对称轴在区间的右侧,且最小值大于零”求解可得结果.解答:解:令g(x)=x2﹣ax+a,由于y=f(x)=g(x)在区间(]上是增函数,故g(x)应在区间(]上是减函数,且g(x)>0.故有,即,解得2≤a<2+2.故实数a的取值范围是(x1≠x2),则则使命题“p且q”为真命题的函数f(x)可以是f(x)=﹣(x﹣2)2.考点:复合命题的真假.分析:命题“p且q”为真命题,命题p,q均为真命题.p为真命题说明函数f(x)图象关于直线x=2对称.q为真命题,可以推出f(x)在(﹣∞,2]上单调递增.可以想到二次函数.解答:解:命题“p且q”为真命题,命题p,q均为真命题.p:若f(x1)=f(x2),(x1≠x2),则x1+x2=4.说明函数f(x)图象关于直线x=2对称.若x1,x2∈(﹣∞,2](x1≠x2),,说明当x1>x2时,f(x1)>f(x2),所以f(x)在(﹣∞,2]上单调递增.根据以上性质,f(x)可以是,f(x)=﹣(x﹣2)2故答案为:f(x)=﹣(x﹣2)2.点评:本题以复合命题真假出发,考查了初等函数的性质.考查转化、数形结合的思想.三、解答题:本大题共6个小题,满分75分.解答应写出必要的文字说明、证明过程或演算步骤.16.已知a>0且a≠1,设命题p:函数y=a x+1在R上单调递减,命题q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点,如果“p∨q”为真,且“p∧q”为假,求a的取值范围.考点:复合命题的真假.专题:计算题.分析:由题意可得,P:0<a<1;由△=(2a﹣3)2﹣4>0可得q,然后由p∨q为真,p∧q为假,可知p,q一真一假,分类讨论进行求解解答:解:∵y=a x+1单调递减∴P:0<a<1∵曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点∴△=(2a﹣3)2﹣4>0∴q:a或a∵“p∨q”为真,且“p∧q”为假∴p真q假,或p假q真当p真q假时,∴0当p假q真时,∴a综上可得,a或0点评:本题以复合命题的真假关系的判断为载体,主要考查了知识函数与二次函数的性质的简单应用,属于基础试题17.设函数f(x)=的值域是集合A,函数g(x)=lg的定义域是集合B,其中a是实数.(1)分别求出集合A、B;(2)若A∪B=B,求实数a的取值范围.考点:并集及其运算;函数的定义域及其求法.专题:集合.分析:(1)根据函数定义域和值域的求法分别求出集合A、B;(2)若A∪B=B,则A⊆B,根据集合关系,建立不等式,即可求实数a的取值范围.解答:解:(1)由f(x)==x+﹣1知,当x>0时,f(x)=x+﹣1,当x<0时,f(x)=x+﹣1=﹣(﹣x﹣)﹣1,即A=(﹣∞,﹣3]∪>0,解得得x<a或x>a2+a+1,即B=(﹣∞,a)∪(a2+a+1,+∞).(2)∵A∪B=B,∴A⊆B,则有,即,解得﹣≤a≤0,即a的取值范围是.点评:本题主要考查函数定义域和值域的求解,以及集合关系的基本应用,考查学生的运算能力.18.在△ABC中,a,b,c分别是角A,B,C的对边,C=2A,cosA=.(Ⅰ)求cosC,cosB的值;(Ⅱ)若,求边AC的长.考点:解三角形;二倍角的余弦.专题:计算题.分析:(Ⅰ)由题意可得cosC=cos2A,利用二倍角公式求出cosC=,再由同角三角函数的基本关系求出sinC 和sinA 的值,由cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC,运算求得结果.(Ⅱ)由求得ac=24,再由,C=2A,可得c=2acosA=a,姐方程求得a、c的值,再利用余弦定理求出b 的值,即为所求.解答:解:(Ⅰ)由题意可得cosC=cos2A=2cos2A﹣1=,…1分故sinC=.…2分由cosA=得sinA=.…3分∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=.…4分(Ⅱ)∵,∴ac•cosB=,ac=24.…6分∵,C=2A,∴c=2acosA=a,解得a=4,c=6,…8分再由余弦定理可得b2=a2+c2﹣2accosB=25,故b=5.即边AC的长为5.…10分点评:本题主要考查正弦定理、余弦定理的应用,同角三角函数的基本关系,二倍角公式、诱导公式的应用,属于中档题.19.已知函数f(x)=x2+(x≠0,a∈R).(1)判断函数f(x)的奇偶性;(2)若f(x)在区间点评:考查偶函数、奇函数的定义,在判断f(x)奇偶性时,不要漏了a=0的情况,以及函数单调性和函数导数的关系,清楚函数y=2x3为增函数.20.市场营销人员对过去几年某商品的销售价格与销售量的关系作数据分析发现如下规律:该商品的价格上涨x%(x>0),销售数量就减少kx%(其中k为正数),预测规律将持续下去.目前该商品定价为每件10元,统计其销售数量为1000件.(1)写出该商品销售总金额y与x的函数关系,并求出当时,该商品的价格上涨多少,就能使销售总额达到最大?(2)如果在涨价过程中只要x不超过100,其销售总金额就不断增加,求此时k的取值范围.考点:函数模型的选择与应用.专题:应用题.分析:(1)由题意,价格上涨x%后为(1+x%)×10元,销售量为(1﹣x%)×1000个,故可得销售总额,利用配方法可求得结论;(2)价格上涨x%后为(1+x%)×10元,销售量为(1﹣kx%)×1000个,故可得销售总额,从而可得函数的对称轴为x=,利用在涨价过程中只要x不超过100,其销售总金额就不断增加,建立不等式,即可求得k的取值范围.解答:解:(1)由题意,价格上涨x%后为(1+x%)×10元,销售量为(1﹣x%)×1000个,故销售总额y=(1+x%)×10×(1﹣x%)×1000=(﹣x2+100x+xx0)=﹣(x﹣50)2+11250∴x=50,即商品的价格上涨50%时,销售总额达到最大;(2)销售总额y=(1+x%)×10×(1﹣kx%)×1000=﹣kx2+(100﹣100k)x+10000,函数的对称轴为x=∵在涨价过程中只要x不超过100,其销售总金额就不断增加∴,k>0∴0<k≤∴k的取值范围为0<k≤点评:本题考查函数模型的构建,考查配方法求函数的最值,考查函数的单调性,解题的关键是确定函数关系式.21.已知数列{a n}满足a1=1,a n+1=.(1)证明数列是等差数列;(2)求数列{a n}的通项公式;(3)设b n=n(n+1)a n,求数列{b n}的前n项和S n.考点:数列的求和;等差关系的确定;数列递推式.专题:等差数列与等比数列.分析:(1)由a n+1=,两边取倒数可得:即,即可证明出;(2)利用等差数列的通项公式即可得出;(3)由(2)可知,,利于“错位相减法”、等比数列的前n项和公式即可得出.解答:(1)证明:由已知可得,∴,即,∴数列是公差为1的等差数列.(2)由(1)可得,∴.(3)由(2)可知,,∴,,相减得=2n+1﹣2﹣n•2n+1,∴.点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.E21644 548C 和27279 6A8F 檏HA27002 697A 楺33699 83A3 莣36825 8FD9 这28703 701F 瀟S24769 60C1 惁34508 86CC 蛌27448 6B38 欸C#。
2021年高三数学上学期1月月考试卷文(含解析)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x﹣2<0},B={x|x<a},若A∩B=A,则实数a的取值范围是()A.(﹣∞,﹣2] B.D.A.①B.①②C.②③D.①②③7.(5分)已知函数①y=sinx+cosx,②,则下列结论正确的是()A.两个函数的图象均关于点成中心对称B.两个函数的图象均关于直线成轴对称C.两个函数在区间上都是单调递增函数D.两个函数的最小正周期相同8.(5分)已知P是△ABC所在平面内一点,,现将一粒黄豆随机撒在△ABC内,则黄豆落在△APC内的概率是()A.B.C.D.9.(5分)已知某几何体的三视图如图所示,则该几何体的体积等于()A.B.32 C.D.10.(5分)已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2﹣c2,则tanC等于()A.B.C.D.11.(5分)定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈(﹣1,0)时,f(x)=2x+,则f(log220)=()A.﹣1 B.C.1 D.﹣12.(5分)抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为()A.B.1 C.D.2二.填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡上)13.(5分)设z=x+2y,其中实数x,y满足则z的取值范围是.14.(5分)已知圆O:x2+y2=1,直线x﹣2y+5=0上动点P,过点P作圆O的一条切线,切点为A,则|PA|的最小值为.15.(5分)观察下列等式;12=12,13+23=32,13+23+33=62,13+23+33+43=102,…根据上述规律,第n个等式为.16.(5分)表面积为60π的球面上有四点S、A、B、C,且△ABC是等边三角形,球心O到平面ABC的距离为,若平面SAB⊥平面ABC,则棱锥S﹣ABC体积的最大值为.三.解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分)已知数列{a n}的前n项和S n和通项a n满足2S n+a n=1,数列{b n}中,b1=1,b2=,=+(n∈N*).(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)数列{c n}满足c n=,求证:c1+c2+c3+…+c n<.18.(12分)云南省xx年全省高中男生身高统计调查数据显示:全省100000名男生的平均身高为170.5cm.现从我校xx届高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第一组,第二组,…,第6组,图是按上述分组方法得到的频率分布直方图.(1)试评估我校xx届高三年级男生在全省高中男生中的平均身高状况;(2)已知我校这50名男生中身高排名(从高到低)在全省前100名有2人,现从身高在182.5cm以上(含182.5cm)的人中任意抽取2人,求该2人中至少有1人身高排名(从高到低)在全省前100名的概率.19.(12分)如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=AF=1.(1)求四棱锥F﹣ABCD的体积V F﹣ABCD.(2)求证:平面AFC⊥平面CBF.(3)在线段CF上是否存在一点M,使得OM∥平面ADF,并说明理由.20.(12分)已知椭圆+=1(a>b>0)的离心率为,且过点(2,).(1)求椭圆的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若k AC•k BD=﹣,(i)求•的最值.(ii)求证:四边形ABCD的面积为定值.21.(12分)已知函数f(x)=在点(1,f(1))处的切线与x轴平行.(1)求实数a的值及f(x)的极值;(2)如果对任意x1、x2∈,有|f(x1)﹣f(x2)|≥k|﹣|,求实数k的取值范围.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.选修4-4:坐标系与参数方程22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数)若以O点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=4cos θ.(1)求曲线C的直角坐标方程及直线l的普通方程;(2)将曲线C上各点的横坐标缩短为原来的,再将所得曲线向左平移1个单位,得到曲线C1,求曲线C1上的点到直线l的距离的最小值.23.已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.xx-云南省部分名校xx届高三上学期1月月考数学试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x﹣2<0},B={x|x<a},若A∩B=A,则实数a的取值范围是()A.(﹣∞,﹣2] B.D.∴故选A点评:本题考查向量垂直的充要条件、考查向量模的平方等于向量的平方、考查向量的数量积公式.5.(5分)执行如图所示的程序框图,输出的S值为﹣4时,则输入的S0的值为()A.7 B.8 C.9 D.10考点:程序框图.专题:算法和程序框图.分析:根据程序框图,知当i=4时,输出S,写出前三次循环得到输出的S,列出方程求出S0的值.解答:解:根据程序框图,知当i=4时,输出S,∵第一次循环得到:S=S0﹣2,i=2;第二次循环得到:S=S0﹣2﹣4,i=3;第三次循环得到:S=S0﹣2﹣4﹣8,i=4;∴S0﹣2﹣4﹣8=﹣4解得S0=10故选D.点评:本题主要考查了直到型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题之列.6.(5分)设 a>b>1,C<0,给出下列三个结论:①>;②a c<b c;③log b(a﹣c)>log a(b﹣c).其中所有的正确结论的序号()A.①B.①②C.②③D.①②③考点:不等式比较大小.专题:计算题.分析:利用作差比较法可判定①的真假,利用幂函数y=x c的性质可判定②的真假,利用对数函数的性质可知③的真假.解答:解:①﹣=,∵a>b>1,c<0∴﹣=>0,故>正确;②考查幂函数y=x c,∵c<0∴y=x c在(0,+∞)上是减函数,而a>b>0,则a c<b c正确;③当a>b>1时,有log b(a﹣c)>log b(b﹣c)>log a(b﹣c);正确.故选D.点评:本题主要考查了不等式比较大小,以及幂函数与对数函数的性质,属于基础题.7.(5分)已知函数①y=sinx+cosx,②,则下列结论正确的是()A.两个函数的图象均关于点成中心对称B.两个函数的图象均关于直线成轴对称C.两个函数在区间上都是单调递增函数D.两个函数的最小正周期相同考点:两角和与差的正弦函数;正弦函数的单调性.专题:计算题;三角函数的图像与性质.分析:化简这两个函数的解析式,利用正弦函数的单调性和对称性,可得 A、B、D不正确,C 正确.解答:解:函数①y=sinx+cosx=sin(x+),②y=2sinxcosx=sin2x,由于①的图象关于点(﹣,0 )成中心对称,②的图象不关于点(﹣,0 )成中心对称,故A不正确.由于函数②的图象不可能关于(﹣,0)成中心对称,故B不正确.由于这两个函数在区间(﹣,)上都是单调递增函数,故C正确.由于①的周期等于2π,②的周期等于π,故 D不正确.故选 C.点评:本题考查正弦函数的单调性,对称性,化简这两个函数的解析式,是解题的突破口.8.(5分)已知P是△ABC所在平面内一点,,现将一粒黄豆随机撒在△ABC内,则黄豆落在△APC内的概率是()A.B.C.D.考点:几何概型.专题:计算题;数形结合.分析:本题考查的知识点是几何概型的意义,关键是绘制满足条件的图形,数形结合找出满足条件的△APC的面积大小与△ABC面积的大小之间的关系,再根据几何概型的计算公式进行求解.解答:解:如图示,取BC的中点为D,连接PA,PB,PC,则,又P点满足,故有,可得三点A,P,D共线且,即P点为A,D的中点时满足,此时S△APC=S△A BC故黄豆落在△APC内的概率为,故选A.点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.9.(5分)已知某几何体的三视图如图所示,则该几何体的体积等于()A.B.32 C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知可得该几何体是一个以侧视图为底面的三棱柱切去一个三棱锥所得的组合体,分别求出棱柱和棱锥的体积,相减可得答案.解答:解:由已知可得该几何体是一个以假视图为底面的三棱柱切去一个三棱锥所得的组合体,其中底面面积S=×4×4=8,棱柱的高为8,故棱柱的体积为:8×8=64,棱锥的高为4,故棱柱的体积为:×8×4=,故该几何体的体积V=64﹣=,故选:A点评:本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.10.(5分)已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2﹣c2,则tanC等于()A.B.C.D.考点:余弦定理.专题:解三角形.分析:首先由三角形面积公式得到S△ABC=,再由余弦定理,结合2S=(a+b)2﹣c2,得出sinC ﹣2cosC=2,然后通过(sinC﹣2cosC)2=4,求出结果即可.解答:解:△ABC中,∵S△ABC=,由余弦定理:c2=a2+b2﹣2abcosC,且 2S=(a+b)2﹣c2 ,∴absinC=(a+b)2﹣(a2+b2﹣2abcosC),整理得sinC﹣2cosC=2,∴(sinC﹣2cosC)2=4.∴=4,化简可得 3tan2C+4tanC=0.∵C∈(0,180°),∴tanC=﹣,故选C.点评:本题考查了余弦定理、三角形面积公式以及三角函数的化简求值,要注意角C的范围,属于中档题.11.(5分)定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈(﹣1,0)时,f(x)=2x+,则f(log220)=()A.﹣1 B.C.1 D.﹣考点:函数的值.专题:函数的性质及应用.分析:由已知得函数f(x)为奇函数,函数f(x)为周期为4是周期函数,4<log220<5,f(log220)=﹣f(log2),由f(log2)=1,能求出f(log220)=﹣1.解答:解:∵定义在R上的函数f(x)满足f(﹣x)=﹣f(x),∴函数f(x)为奇函数又∵f(x﹣2)=f(x+2)∴函数f(x)为周期为4是周期函数又∵log232>log220>log216∴4<log220<5∴f(log220)=f(log220﹣4)=f(log2)=﹣f(﹣log2)=﹣f(log2)又∵x∈(﹣1,0)时,f(x)=2x+,∴f(log2)=1故f(log220)=﹣1.故选:A.点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质和对数运算法则的合理运用.12.(5分)抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为()A.B.1 C.D.2考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2﹣ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.解答:解:设|AF|=a,|BF|=b,连接AF、BF由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos120°=a2+b2+ab配方得,|AB|2=(a+b)2﹣ab,又∵ab≤() 2,∴(a+b)2﹣ab≥(a+b)2﹣(a+b)2=(a+b)2得到|AB|≥(a+b).所以≤=,即的最大值为.故选:A点评:本题在抛物线中,利用定义和余弦定理求的最大值,着重考查抛物线的定义和简单几何性质、基本不等式求最值和余弦定理的应用等知识,属于中档题.二.填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡上)13.(5分)设z=x+2y,其中实数x,y满足则z的取值范围是.考点:简单线性规划.专题:不等式的解法及应用.分析:根据已知的约束条件画出满足约束条件的可行域,结合z在目标函数中的几何意义,求出目标函数的最大值、及最小值,进一步线出目标函数z的范围.解答:解:约束条件对应的平面区域如图示:由图易得目标函数z=2y+x在O(0,0)处取得最小值,此时z=0在B处取最大值,由可得B(),此时z=故Z=x+2y的取值范围为:故答案为:点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件,利用目标函数中z的几何意义是关键.14.(5分)已知圆O:x2+y2=1,直线x﹣2y+5=0上动点P,过点P作圆O的一条切线,切点为A,则|PA|的最小值为2.考点:圆的切线方程.专题:直线与圆.分析:利用数形结合确定圆心到直线的距离最小时,即可.解答:解:∵|PA|=,∴当OP最小时,|PA|的距离最小,此时圆心到直线的距离d==,此时|PA|的最小为=2,故答案为:2点评:本题主要考切线长公式的应用,利用数形结合以及点到直线的距离公式是解决本题的关键.15.(5分)观察下列等式;12=12,13+23=32,13+23+33=62,13+23+33+43=102,…根据上述规律,第n个等式为13+23+33+43+…+n3=()2.考点:归纳推理.专题:计算题;推理和证明.分析:根据题意,分析题干所给的等式可得:13+23=(1+2)2=32,13+23+33=(1+2+3)2 =62,13+23+33+43=(1+2+3+4)2 =102,进而可得答案.解答:解:根据题意,分析题干所给的等式可得:13+23=(1+2)2=32,13+23+33=(1+2+3)2 =62,13+23+33+43=(1+2+3+4)2 =102,则13+23+33+43+…+n3=(1+2+3+4+…+n)2 =()2,故答案为:13+23+33+43+…+n3=()2点评:本题考查归纳推理,解题的关键是发现各个等式之间变化的规律以及每个等式左右两边的关系.16.(5分)表面积为60π的球面上有四点S、A、B、C,且△ABC是等边三角形,球心O到平面ABC的距离为,若平面SAB⊥平面ABC,则棱锥S﹣ABC体积的最大值为27.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:棱锥S﹣ABC的底面积为定值,欲使棱锥S﹣ABC体积体积最大,应有S到平面ABC 的距离取最大值,由此能求出棱锥S﹣ABC体积的最大值.解答:解:∵表面积为60π的球,∴球的半径为,设△ABC的中心为D,则OD=,所以DA=,则AB=6棱锥S﹣ABC的底面积S=为定值,欲使其体积最大,应有S到平面ABC的距离取最大值,又平面SAB⊥平面ABC,∴S在平面ABC上的射影落在直线AB上,而SO=,点D到直线AB的距离为,则S到平面ABC的距离的最大值为,∴V=.故答案为:27.点评:本小题主要考查棱锥的体积的最大值的求法,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.三.解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分)已知数列{a n}的前n项和S n和通项a n满足2S n+a n=1,数列{b n}中,b1=1,b2=,=+(n∈N*).(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)数列{c n}满足c n=,求证:c1+c2+c3+…+c n<.考点:数列递推式;数列与不等式的综合.专题:综合题;等差数列与等比数列.分析:(Ⅰ)由2S n+a n=1,得S n=(1﹣a n),由此推导出{a n}是首项为,公比为的等比数列,从而求出a n.由b1=1,b2=,=+(n∈N*),得=1,=2,d==1,由此推导出{}是首项为1,公差为1的等差数列,从而求出b n;(Ⅱ)c n==n•()n,设T n=c1+c2+c3+…+c n,由错位相减求和,即可证明结论.解答:解.(Ⅰ)由2S n+a n=1,得S n=(1﹣a n),当n≥2时,a n=S n﹣S n﹣1=(1﹣a n)﹣(1﹣a n﹣1),∵a n﹣1≠0,∴=而S1=(1﹣a1),∴a1=∴{a n}是首项为,公比为的等比数列,∴a n=()n.由b1=1,b2=,=+(n∈N*),得=1,=2,d==1,∴{}是首项为1,公差为1的等差数列,∴=1+(n﹣1)×1=n,∴b n=.(2)c n==n•()n,设T n=c1+c2+c3+…+c n,则T n=1•+2•()2+…+n•()n,T n=1•()2+2•()3+…+n•()n+1,由错位相减,化简得:T n=<.点评:本题考查数列通项公式的求法,考查运算求解能力,推理论证能力;考查化归与转化思想.有一定的探索性,对数学思维能力要求较高,是xx届高考的重点.解题时要认真审题,注意构造法的合理运用.18.(12分)云南省xx年全省高中男生身高统计调查数据显示:全省100000名男生的平均身高为170.5cm.现从我校xx届高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第一组,第二组,…,第6组,图是按上述分组方法得到的频率分布直方图.(1)试评估我校xx届高三年级男生在全省高中男生中的平均身高状况;(2)已知我校这50名男生中身高排名(从高到低)在全省前100名有2人,现从身高在182.5cm以上(含182.5cm)的人中任意抽取2人,求该2人中至少有1人身高排名(从高到低)在全省前100名的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(1)xx届高三男生的平均身高用组中值×频率,即可得到结论;(2)列举出所有的基本事件,找到满足条件的基本事件,根据概率公式计算即可.解答:解:(Ⅰ)由直方图,经过计算我校xx届高三年级男生平均身高为:160×0.1+165×0.2+170×0.3+175×0.2+180×0.1+185×0.1=171高于全市的平均值170.5;(II)这50人中182.5 cm以上的有5人,分别设为A,B,C,D,E,其中身高排名在全省前100名为A,B.故总得事件 AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10种,其中至少有1人身高排名(从高到低)在全省前100名,有AB,AC,AD,AE,BC,BD,BE,7种,设“该2人中至少有1人身高排名(从高到低)在全省前100名”为事件A,故P(A)=点评:本题考查的知识点是古典概型及其概率计算公式,频率分面直方图,属于基础题.19.(12分)如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=AF=1.(1)求四棱锥F﹣ABCD的体积V F﹣ABCD.(2)求证:平面AFC⊥平面CBF.(3)在线段CF上是否存在一点M,使得OM∥平面ADF,并说明理由.考点:棱柱、棱锥、棱台的体积;直线与平面平行的性质;平面与平面垂直的判定.专题:计算题;证明题.分析:(1)由题意求出四棱锥F﹣ABCD的高,然后求四棱锥F﹣ABCD的体积V F﹣ABCD.(2)要证平面AFC⊥平面CBF.只需证明AF垂直平面CBF内的两条相交直线BC、BF即可;(3)在线段CF上是存在一点M,取CF中点记作M,设DF的中点为N,连接AN,MN,MNAO 为平行四边形,即可说明OM∥平面ADF.解答:解:(1)∵AD=EF=AF=1∴∠OAF=60°作FG⊥AB交AB于一点G,则∵平面ABCD⊥平面ABEF∴FG⊥面ABCD(3分)所以(2)∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF,∵AF⊂平面ABEF,∴AF⊥CB,又∵AB为圆O的直径,∴AF⊥BF,∴AF⊥平面CBF.∵AF⊂面AFC,∴平面AFC⊥平面CBF;(3)取CF中点记作M,设DF的中点为N,连接AN,MN则MN,又AO,则MNAO,所以MNAO为平行四边形,(10分)∴OM∥AN,又AN⊂平面DAF,OM⊄平面DAF,∴OM∥平面DAF.(12分)点评:本题是中档题,考查空间想象能力,逻辑思维能力,计算能力,考查棱柱、棱锥、棱台的体积,直线与平面平行的性质,平面与平面垂直的判定,常考题型.20.(12分)已知椭圆+=1(a>b>0)的离心率为,且过点(2,).(1)求椭圆的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若k AC•k BD=﹣,(i)求•的最值.(ii)求证:四边形ABCD的面积为定值.考点:直线与圆锥曲线的关系;三角形的面积公式;平面向量数量积的运算;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)把点代入椭圆的方程,得到,由离心率,再由a2=b2+c2,联立即可得到a2、b2、c2;(2)(i)设A(x1,y1),B(x2,y2),设k AC=k,由k AC•k BD=﹣=﹣,可得.把直线AC、BD的方程分别与椭圆的方程联立解得点A,B,的坐标,再利用数量积即可得到关于k的表达式,利用基本不等式的性质即可得出最值;(ii)由椭圆的对称性可知S四边形ABCD=4×S△AOB=2|OA||OB|sin∠AOB,得到=4,代入计算即可证明.解答:解:(1)由题意可得,解得,∴椭圆的标准方程为.(2)(i)设A(x1,y1),B(x2,y2),不妨设x1>0,x2>0.设k AC=k,∵k AC•k BD=﹣=﹣,∴.可得直线AC、BD的方程分别为y=kx,.联立,.解得,.∴=x1x2+y1y2===2,当且仅当时取等号.可知:当x1>0,x2>0时,有最大值2.当x1<0,x2<0.有最小值﹣2.ii)由椭圆的对称性可知S四边形ABCD=4×S△AOB=2|OA||OB|sin∠AOB.∴=4=4=4=4==128,∴四边形ABCD的面积=为定值.点评:熟练掌握椭圆的定义、标准方程及其性质、直线与椭圆相交问题转化为联立方程得到一元二次方程的根与系数的关系、数量积、基本不等式的性质、三角形的面积计算公式等是解题的关键.21.(12分)已知函数f(x)=在点(1,f(1))处的切线与x轴平行.(1)求实数a的值及f(x)的极值;(2)如果对任意x1、x2∈,有|f(x1)﹣f(x2)|≥k|﹣|,求实数k的取值范围.考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)求函数的导数,根据导数的几何意义建立条件关系即可求实数a的值及f(x)的极值;(2)根据不等式单调函数的单调性关系,将不等式进行转化,利用导数求函数的最值即可得到结论.解答:解:(1)函数的f(x)的导数f′(x)==,∵f(x)在点(1,f(1))处的切线与x轴平行,∴f′(0)=,∴a=1,∴f(x)=,f′(x)=﹣,当0<x<1时,f′(x)>0,当x>1时,f′(x)<0∴f(x)在(0,1)上单调递增,在(1,+∞)单调递减,故f(x)在x=1处取得极大值1,无极小值(2)由(1)的结论知,f(x)在⇔函数F(x)=f(x)﹣=在∴k≤lnx在请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.选修4-4:坐标系与参数方程22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数)若以O点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=4cos θ.(1)求曲线C的直角坐标方程及直线l的普通方程;(2)将曲线C上各点的横坐标缩短为原来的,再将所得曲线向左平移1个单位,得到曲线C1,求曲线C1上的点到直线l的距离的最小值.考点:直线的参数方程;简单曲线的极坐标方程.专题:直线与圆.分析:(1)利用直角坐标与极坐标间的关系:ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得C的直角坐标方程,将直线l的参数消去得出直线l的普通方程.(2)曲线C1的方程为4x2+y2=4,设曲线C1上的任意点(cosθ,2sinθ),利用点到直线距离公式,建立关于θ的三角函数式求解.解答:解:(1)由ρ=4cosθ,得出ρ2=4ρcosθ,化为直角坐标方程:x2+y2=4x即曲线C的方程为(x﹣2)2+y2=4,直线l的方程是:x+y=0…(4分)(2)将曲线C横坐标缩短为原来的,再向左平移1个单位,得到曲线C1的方程为4x2+y2=4,设曲线C1上的任意点(cosθ,2sinθ)到直线l距离d==.当sin(θ+α)=0时到直线l距离的最小值为0.点评:本题考查点的极坐标和直角坐标的互化,以及利用平面几何知识解决最值问题.利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.23.已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.考点:对数函数图象与性质的综合应用.专题:计算题;压轴题;函数的性质及应用.分析:(1)先求得|x+1|+|x﹣2|>7,然后分类讨论去绝对值号,求解即可得到答案.(2)由关于x的不等式f(x)≥2,得到|x+1|+|x﹣2|≥m+4.因为已知解集是R,根据绝对值不等式可得到|x+1|+|x﹣2|≥3,令m+4≤3,求解即可得到答案.解答:解:(1)由题设知:当m=5时:|x+1|+|x﹣2|>7,不等式的解集是以下三个不等式组解集的并集:,或,或,解得函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞);(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,∴不等式|x+1|+|x﹣2|≥m+4解集是R,等价于m+4≤3,∴m的取值范围是(﹣∞,﹣1].点评:本题主要考查绝对值不等式的应用问题,题中涉及到分类讨论的思想,考查学生的灵活应用能力,属于中档题目.37571 92C3 鋃L34168 8578 蕸y 28726 7036 瀶31851 7C6B 籫:+(A22475 57CB 埋32744 7FE8 翨31767 7C17 簗21666 54A2 咢。
2021年高三上学期第一次月考数学理试卷含解析一、选择题(本大题共10小题,每小题5分,共50分.每小题只有一个选项符合题意)1.已知集合A={x∈Z||x﹣1|<3},B={x|x2+2x﹣3≥0},则A∩CRB=()A.(﹣2,1)B.(1,4)C.{2,3} D.{﹣1,0}2.函数y=的定义域为()A.(﹣∞,2) B.(2,+∞)C.(2,3)∪(3,+∞)D.(2,4)∪(4,+∞)3.函数f(x)=log3x+x﹣3的零点一定在区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.函数y=xcosx+sinx的图象大致为()A. B.C.D.5.下列各式中错误的是()A.0.83>0.73B.log0..50.4>log0..50.6C.0.75﹣0.1<0.750.1D.lg1.6>lg1.46.下列说法正确的是()A.若a∈R,则“<1”是“a>1”的必要不充分条件B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件C.若命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题D.命题“x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”7.函数向左平移个单位后是奇函数,则函数f(x)在上的最小值为()A. B. C. D.8.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1)D.(1,+∞)9.设函数f(x)=,若f(f())=4,则b=()A.1 B. C. D.10.已知定义在R上的偶函数f(x)满足f(4﹣x)=f(x),且当x∈(﹣1,3]时,f(x)=则g(x)=f(x)﹣1g|x|的零点个数是()A.9 B.10 C.18 D.20二、填空题(本大题共5个小题,每小题5分,共25分)11.已知sin(π﹣α)=log8,且α∈(﹣,0),则tan(2π﹣α)的值为.12.已知函数是R上的增函数,则实数a的取值范围是.13.在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=.14.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则实数a的取值范围是.15.设f(x)是定义在R上的偶函数,且对于∀x∈R恒有f(x+1)=f(x﹣1),已知当X ∈[0,1]时,f(x)=()1﹣x,则(1)f(x)的周期是2;(2)f(x)在(1,2)上递减,在(2,3)上递增;(3)f(x)的最大值是1,最小值是0;(4)当x∈(3,4)时,f(x)=()x﹣3其中正确的命题的序号是.三、解答题(本大题共6小题,共70分.16.(12分)设集合A={x||x﹣a|<2},B={x|<1},若A∩B=A,求实数a的取值范围.17.(12分)已知P:2x2﹣9x+a<0,q:且¬p是¬q的充分条件,求实数a的取值范围.18.(12分)已知函数f(x)=sin2x﹣sin2(x﹣),x∈R.(1)求f(x)的最小正周期;(2)求f(x)在区间[﹣,]上的最大值和最小值.19.(12分)已知函数f(x)=log2(a为常数)是奇函数.(Ⅰ)求a的值与函数f(x)的定义域;(Ⅱ)若当x∈(1,+∞)时,f(x)+log2(x﹣1)>m恒成立.求实数m的取值范围.20.(13分)在△ABC中,a,b,c分别是角A,B,C的对边,=,且a+c=2.(1)求角B;(2)求边长b的最小值.21.(14分)已知函数g(x)=ax2﹣2ax+b+1(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=.(1)求a、b的值;(2)若不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.xx学年山东省淄博市淄川一中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.每小题只有一个选项符合题意)1.(xx•太原三模)已知集合A={x∈Z||x﹣1|<3},B={x|x2+2x﹣3≥0},则A∩C R B=()A.(﹣2,1)B.(1,4)C.{2,3}D.{﹣1,0}【考点】交、并、补集的混合运算.【专题】计算题;集合思想;定义法;集合.【分析】求出A与B中不等式的解集确定出A与B,根据全集R求出B的补集,找出A 与B补集的交集即可.【解答】解:由A中不等式解得:﹣2<x<4,即B={﹣1,0,1,2,3},由B中不等式变形得:(x+3)(x﹣1)≥0,解得:x≤﹣3,或x≥1,即B=(﹣∞,﹣3]∪[1,+∞),∴C R B=(﹣3,1),则A∩(C R B)={﹣1,0}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.函数y=的定义域为()A.(﹣∞,2)B.(2,+∞)C.(2,3)∪(3,+∞)D.(2,4)∪(4,+∞)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据“让解析式有意义”的原则,对数的真数大于0,分母不等于0,建立不等式,解之即可.【解答】解:要使原函数有意义,则,解得:2<x<3,或x>3所以原函数的定义域为(2,3)∪(3,+∞).故选C.【点评】本题主要考查了函数的定义域及其求法,求定义域常用的方法就是根据“让解析式有意义”的原则,属于基础题.3.(xx秋•保山校级期末)函数f(x)=log3x+x﹣3的零点一定在区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数零点的判定定理.【专题】计算题.【分析】确定函数的定义域为(0,+∞)与单调性,再利用零点存在定理,即可得到结论.【解答】解:函数的定义域为(0,+∞)求导函数,可得>0,所以函数在(0,+∞)上单调增∵f(2)=log32+2﹣3<0,f(3)=log33+3﹣3>0∴函数f(x)=log3x+x﹣3的零点一定在区间(2,3)故选C.【点评】本题考查函数的单调性,考查零点存在定理,属于基础题.4.(xx•亳州校级模拟)函数y=xcosx+sinx的图象大致为()A.B.C.D.【考点】函数的图象.【专题】三角函数的图像与性质.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:由于函数y=xcosx+sinx为奇函数,故它的图象关于原点对称,所以排除选项B,由当x=时,y=1>0,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选:D.【点评】本题主要考查了函数的图象,考查了函数的性质,考查了函数的值,属于基础题.5.下列各式中错误的是()A.0.83>0.73B.log0..50.4>log0..50.6C.0.75﹣0.1<0.750.1D.lg1.6>lg1.4【考点】指数函数的单调性与特殊点;对数值大小的比较;对数函数的图象与性质.【专题】计算题;函数的性质及应用.【分析】通过构造函数,利用函数的单调性直接判断选项即可.【解答】解:对于A,构造幂函数y=x3,函数是增函数,所以A正确;对于B,对数函数y=log0.5x,函数是减函数,所以B正确;对于C,指数函数y=0.75x是减函数,所以C错误;对于D,对数函数y=lgx,函数是增函数,所以D正确;故选C.【点评】本题考查指数函数与对数函数的单调性的应用,基本知识的考查.6.下列说法正确的是()A.若a∈R,则“<1”是“a>1”的必要不充分条件B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件C.若命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题D.命题“x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】利用充要条件的定义,可判断A,B,判断原命题的真假,进而根据命题的否定与原命题真假性相反,可判断C,根据存在性(特称)命题的否定方法,可判断D.【解答】解:若“<1”成立,则“a>1”或“a<0”,故“<1”是“a>1”的不充分条件,若“a>1”成立,则“<1”成立,故“<1”是“a>1”的必要条件,综上所述,“<1”是“a>1”的必要不充分条件,故A正确;若“p∧q为真命题”,则“p,q均为真命题”,则“p∨q为真命题”成立,若“p∨q为真命题”则“p,q存在至少一个真命题”,则“p∧q为真命题”不一定成立,综上所述,“p∧q为真命题”是“p∨q为真命题”的充分不必要条件,故B错误;命题p:“∀x∈R,sinx+cosx=sin(x+)≤”为真命题,则¬p是假命题,故C错误;命题“x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3≥0”,故D错误;故选:A.【点评】本题以命题的真假判断为载体,考查了充要条件,命题的否定等知识点,是简单逻辑的简单综合应用,难度中档.7.(xx•浙江校级一模)函数向左平移个单位后是奇函数,则函数f(x)在上的最小值为()A. B. C. D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【专题】计算题;三角函数的图像与性质.【分析】根据图象变换规律,把函数y=sin(2x+φ)的图象向左平移个单位得到函数y=sin (2(x++φ))的图象,要使所得到的图象对应的函数为奇函数,求得φ的值,然后函数f (x)在上的最小值.【解答】解:把函数y=sin(2x+φ)的图象向左平移个单位得到函数y=sin(2x++φ)的图象,因为函数y=sin(2x++φ)为奇函数,故+φ=kπ,因为,故φ的最小值是﹣.所以函数为y=sin(2x﹣).x∈,所以2x﹣∈[﹣,],x=0时,函数取得最小值为.故选A.【点评】本题考查了三角函数的图象变换以及三角函数的奇偶性,三角函数的值域的应用,属于中档题.8.(xx•山东)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1)D.(1,+∞)【考点】函数奇偶性的性质;函数单调性的性质.【专题】计算题;不等式的解法及应用.【分析】由f(x)为奇函数,根据奇函数的定义可求a,代入即可求解不等式.【解答】解:∵f(x)=是奇函数,∴f(﹣x)=﹣f(x)即整理可得,∴1﹣a•2x=a﹣2x∴a=1,∴f(x)=∵f(x))=>3∴﹣3=>0,整理可得,,∴1<2x<2解可得,0<x<1故选:C【点评】本题主要考查了奇函数的定义的应用及分式不等式的求解,属于基础试题.9.(xx•山东)设函数f(x)=,若f(f())=4,则b=()A.1 B. C. D.【考点】函数的值;分段函数的应用.【专题】开放型;函数的性质及应用.【分析】直接利用分段函数以及函数的零点,求解即可.【解答】解:函数f(x)=,若f(f())=4,可得f()=4,若,即b≤,可得,解得b=.若,即b>,可得,解得b=<(舍去).故选:D.【点评】本题考查函数的零点与方程根的关系,函数值的求法,考查分段函数的应用.10.(xx秋•杭州期末)已知定义在R上的偶函数f(x)满足f(4﹣x)=f(x),且当x∈(﹣1,3]时,f(x)=则g(x)=f(x)﹣1g|x|的零点个数是()A.9 B.10 C.18 D.20【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】先根据函数的周期性画出函数y=f(x)的图象,以及y=|1gx|的图象,结合图象当x>10时,y=lg10>1此时与函数y=f(x)无交点,即可判定函数函数g(x)=f(x)﹣1g|x|的零点个数【解答】解:解:R上的偶函数f(x)满足f(4﹣x)=f(x),∴函数f(x)为周期为4的周期函数,根据周期性画出函数y=f(x)的图象,y=log6x的图象根据y=lg|x|在(1,+∞)上单调递增函数,当x=10时lg10=1,∴当x>10时y=lgx此时与函数y=f(x)无交点,结合图象可知有9个交点,则函数g(x)=f(x)﹣lg|x|的零点个数为18,故选:C【点评】本题考查函数的零点,求解本题,关键是研究出函数f(x)性质,作出其图象,将函数g(x)=f(x)﹣1g|x|的零点个数的问题转化为两个函数交点个数问题是本题中的一个亮点,此一转化使得本题的求解变得较容易.二、填空题(本大题共5个小题,每小题5分,共25分)11.(xx秋•钦州月考)已知sin(π﹣α)=log8,且α∈(﹣,0),则tan(2π﹣α)的值为.【考点】两角和与差的正切函数.【专题】三角函数的求值.【分析】由条件求得sinα的值,再根据α∈(﹣,0),求得cosα的值,从而求得tanα= 的值,可得tan(2π﹣α)=﹣tanα的值.【解答】解:∵sin(π﹣α)=log8,∴sinα=﹣log84=﹣.又α∈(﹣,0),∴cosα=,∴tanα==﹣,tan(2π﹣α)=﹣tanα=,故答案为:.【点评】本题主要考查诱导公式的应用、同角三角函数的基本关系,属于中档题.12.(xx春•延庆县期末)已知函数是R上的增函数,则实数a的取值范围是4≤a<8.【考点】分段函数的应用.【专题】计算题.【分析】利用函数单调性的定义,结合指数函数,一次函数的单调性,即可得到实数a的取值范围.【解答】解:由题意,,解得4≤a<8故答案为:4≤a<8【点评】本题考查函数的单调性,解题的关键是掌握函数单调性的定义,属于中档题.13.(xx•重庆)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=.【考点】余弦定理的应用.【专题】解三角形.【分析】利用已知条件求出A,C,然后利用正弦定理求出AC即可.【解答】解:由题意以及正弦定理可知:,即,∠ADB=45°,A=180°﹣120°﹣45°,可得A=30°,则C=30°,三角形ABC是等腰三角形,AC=2=.故答案为:.【点评】本题考查正弦定理以及余弦定理的应用,三角形的解法,考查计算能力.14.(xx•泸州模拟)设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则实数a的取值范围是(﹣∞,﹣5] .【考点】函数奇偶性的性质;函数单调性的性质.【专题】函数的性质及应用.【分析】利用函数奇偶性和单调性之间的关系,解不等式即可.【解答】解:∵当x≥0时,f(x)=x2,∴此时函数f(x)单调递增,∵f(x)是定义在R上的奇函数,∴函数f(x)在R上单调递增,若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则x+a≥3x+1恒成立,即a≥2x+1恒成立,∵x∈[a,a+2],∴(2x+1)max=2(a+2)+1=2a+5,即a≥2a+5,解得a≤﹣5,即实数a的取值范围是(﹣∞,﹣5];故答案为:(﹣∞,﹣5];【点评】本题主要考查函数奇偶性和单调性的应用,以及不等式恒成立问题,综合考查函数的性质.15.(xx春•临沂校级期中)设f(x)是定义在R上的偶函数,且对于∀x∈R恒有f(x+1)=f(x﹣1),已知当X∈[0,1]时,f(x)=()1﹣x,则(1)f(x)的周期是2;(2)f(x)在(1,2)上递减,在(2,3)上递增;(3)f(x)的最大值是1,最小值是0;(4)当x∈(3,4)时,f(x)=()x﹣3其中正确的命题的序号是(1)(2)(4).【考点】命题的真假判断与应用.【专题】综合题;函数的性质及应用.【分析】(1)依题意,f(x+2)=f[(x+1)﹣1]=f(x),可判断(1);(2)利用x∈[0,1]时,f(x)=()1﹣x=2x﹣1,可判断f(x)在区间[0,1]上为增函数,利用其周期性与偶函数的性质可判断(2);(3)利用函数的周期性、奇偶性及单调性可判断(3);(4)当x∈(3,4)时,x﹣4∈(﹣1,0),4﹣x∈(0,1),从而可得f(4﹣x)=()1﹣(4﹣x)=,又f(x)是周期为2的偶函数,可判断(4).【解答】解:(1)∵对任意的x∈R恒有f(x+1)=f(x﹣1),∴f(x+2)=f[(x+1)﹣1]=f(x),即2是f(x)的周期,(1)正确;(2)∵x∈[0,1]时,f(x)=()1﹣x=2x﹣1为增函数,又f(x)是定义在R上的偶函数,∴f(x)在区间[﹣1,0]上单调递减,又其周期T=2,∴f(x)在(1,2)上递减,在(2,3)上递增,(2)正确;(3)由(2)x∈[0,1]时,f(x)=()1﹣x=2x﹣1为增函数,f(x)在区间[﹣1,0]上单调递减,且其周期为2可知,f(x)max=f(1)=21﹣1=20=1,f(x)min=f(0)=20﹣1=,故(3)错误;(4)当x∈(3,4)时,x﹣4∈(﹣1,0),4﹣x∈(0,1),∴f(4﹣x)=()1﹣(4﹣x)=,又f(x)是周期为2的偶函数,∴f(4﹣x)=f(x)=,(4)正确.综上所述,正确的命题的序号是(1)(2)(4),故答案为:(1)(2)(4).【点评】本题考查命题的真假判断与应用,综合考查抽象函数的周期性、奇偶性、单调性即最值的综合应用,属于难题.三、解答题(本大题共6小题,共70分.16.(12分)(2011•南山区校级模拟)设集合A={x||x﹣a|<2},B={x|<1},若A∩B=A,求实数a的取值范围.【考点】集合关系中的参数取值问题.【专题】计算题.【分析】解绝对值不等式可求出集合A,解分式不等式可以求出集合B,由A∩B=A可得A⊆B,结合集合包含关系定义,可构造关于a的不等式组,解得实数a的取值范围.【解答】解:若|x﹣a|<2,则﹣2<x﹣a<2,即a﹣2<x<a+2故A={x||x﹣a|<2}={x|a﹣2<x<a+2}.…(3分)若,则,即,即﹣2<x<3.…(7分)因为A∩B=A,即A⊆B,所以.解得0≤a≤1,…(11分)故实数a的取值范围为[0,1]…(12分)【点评】本题考查的知识点是集合关系中的参数取值问题,其中解绝对值不等式和分式不等式求出集合A,B是解答本题的关键.17.(12分)(xx•颍上县校级三模)已知P:2x2﹣9x+a<0,q:且¬p是¬q的充分条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断;命题的否定.【专题】计算题.【分析】由q:,知q:2<x<3,由¬p是¬q的充分条件,知q⇒p,故设f(x)=2x2﹣9x+a,则,由此能求出实数a的取值范围.【解答】解:∵q:,∴q:2<x<3,∵¬p是¬q的充分条件,∴q⇒p,∵P:2x2﹣9x+a<0,设f(x)=2x2﹣9x+a,∴,解得a≤9.【点评】本题考查必要条件、充分条件、充要条件的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.18.(12分)(xx秋•河西区期末)已知函数f(x)=sin2x﹣sin2(x﹣),x∈R.(1)求f(x)的最小正周期;(2)求f(x)在区间[﹣,]上的最大值和最小值.【考点】复合三角函数的单调性;三角函数的周期性及其求法.【专题】三角函数的图像与性质.【分析】(1)利用二倍角的余弦降幂化积,则函数的最小正周期可求;(2)由x的范围求得相位的范围,进一步求得函数的最值.【解答】解:(1)∵f(x)=sin2x﹣sin2(x﹣)=====.∴f(x)的最小正周期T=;(2)∵x∈[﹣,],∴2x∈[],则2x﹣∈[],∴[].故f(x)在区间[﹣,]上的最大值和最小值分别为.【点评】本题考查y=Asin(ωx+φ)型函数的图象和性质,考查三角函数值域的求法,运用辅助角公式化简是解答该题的关键,是基础题.19.(12分)(xx秋•廊坊期末)已知函数f(x)=log2(a为常数)是奇函数.(Ⅰ)求a的值与函数f(x)的定义域;(Ⅱ)若当x∈(1,+∞)时,f(x)+log2(x﹣1)>m恒成立.求实数m的取值范围.【考点】函数恒成立问题;函数的定义域及其求法.【专题】函数的性质及应用;不等式的解法及应用.【分析】(Ⅰ)直接由奇函数的定义列式求解a的值,然后由对数式的真数大于0求解x的取值集合得答案;(Ⅱ)化简f(x)+log(x﹣1)为log2(1+x),由x的范围求其值域得答案.【解答】解:(Ⅰ)∵知函数f(x)=log2是奇函数,∴f(﹣x)=﹣f(x),∴,即,∴a=1.令,解得:x<﹣1或x>1.∴函数的定义域为:{x|x<﹣1或x>1};(Ⅱ)f(x)+log2(x﹣1)=log2(1+x),当x>1时,x+1>2,∴log2(1+x)>log22=1,∵x∈(1,+∞),f(x)+log2(x﹣1)>m恒成立,∴m≤1,m的取值范围是(﹣∞,1].【点评】本题考查了函数奇偶性的性质,考查了利用函数的单调性求解不等式,体现了数学转化思想方法,是中档题.20.(13分)(xx•山西模拟)在△ABC中,a,b,c分别是角A,B,C的对边,=,且a+c=2.(1)求角B;(2)求边长b的最小值.【考点】余弦定理的应用;正弦定理.【专题】计算题;规律型;转化思想;解三角形.【分析】(1)利用正弦定理化简表达式,求角B;个两角和与差的三角函数化简求解即可.(2)利用余弦定理求边长b的最小值.推出b的表达式,利用基本不等式求解即可.【解答】解:(1)在△ABC中,由已知,即cosCsinB=(2sinA﹣sinC)cosB,sin(B+C)=2sinAcosB,sinA=2sinAcosB,…4分△ABC 中,sinA≠0,故.…6分.(2)a+c=2,由(1),因此b2=a2+c2﹣2accosB=a2+c2﹣ac …9分由已知b2=(a+c)2﹣3ac=4﹣3ac …10分…11分故b 的最小值为1.…12分【点评】本题考查正弦定理以及余弦定理的应用,两角和与差的三角函数,考查转化思想以及计算能力.21.(14分)(xx•东港区校级模拟)已知函数g(x)=ax2﹣2ax+b+1(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=.(1)求a、b的值;(2)若不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.【考点】二次函数在闭区间上的最值;函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】(1)由函数g(x)=a(x﹣1)2+1+b﹣a,a>0,所以g(x)在区间[2,3]上是增函数,故,由此解得a、b的值.(2)不等式可化为2x+﹣2≥k•2x,故有k≤t2﹣2t+1,t∈[,2],求出h(t)=t2﹣2t+1的最大值,从而求得k的取值范围.【解答】解:(1)函数g(x)=ax2﹣2ax+b+1=a(x﹣1)2+1+b﹣a,因为a>0,所以g(x)在区间[2,3]上是增函数,故,解得.….(6分)(2)由已知可得f(x)=x+﹣2,所以,不等式f(2x)﹣k•2x≥0可化为2x+﹣2≥k•2x,可化为1+﹣2•≥k,令t=,则k≤t2﹣2t+1.因x∈[﹣1,1],故t∈[,2].故k≤t2﹣2t+1在t∈[,2]上能成立.记h(t)=t2﹣2t+1,因为t∈[,2],故h(t)max =h(2)=1,所以k的取值范围是(﹣∞,1].…(14分)【点评】本题主要考查求二次函数在闭区间上的最值,函数的零点与方程根的关系,函数的恒成立问题,属于中档题.26650 681A 栚r\E 36919 9037 逷{23078 5A26 娦$A921292 532C 匬<s。
2021年高三上学期第一次月考数学文试卷 含答案班级___________ 姓名____________ 成绩______________一、选择题:(本大题共8小题;每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设U=R ,集合,则下列结论正确的是( ) A. B. C.D.2.设,是两个不同的平面, 是直线且.“” 是“”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 3. 执行如图所示的程序框图,输出的S 值为 ( )A .1 B.23C.1321D.6109874. 某三棱锥的三视图如图所示,则该三棱锥的表面积是( ) A. B. C. D.55.等差数列中,,则该数列前项之和为 ( ) A . B . C . D .6. 已知函数,若对任意,都有成立,则实数m 的取值范围是 ( ).7. 在平面直角坐标系内,设、为不同的两点,直线的方程为,.有四个判断:其中正确的是( )①若,则过、两点的直线与直线平行; ②若,则直线经过线段的中点; ③存在实数,使点在直线上;④若,则点、在直线的同侧,且直线与线段的延长线相交.A .①②③B .①②④C .①③④D .①②③④ 8.关于曲线,给出下列四个命题:①曲线关于原点对称; ②曲线关于直线对称 ③曲线围成的面积大于 ④曲线围成的面积小于 上述命题中,真命题的序号为( ) A .①②③ B .①②④ C .①④ D .①③二、填空题:(本大题共6个小题,每小题5分,共30分.把答案填写在题中的横线上.) 9. ,为复数的共轭复数,则_______10. 已知圆:,在圆周上随机取一点P ,则P 到直线的距离大于的概率为 11. 在中,则.12.设关于的不等式组表示的平面区域为,已知点,点是上的动点. ,则的取值范围是 .13. 已知两点,(),如果在直线上存在点,使得,则的取值范围是_____.14. 在棱长为的正方体中,,分别为线段,(不包括端点)上的动点,且线段平行于平面,则四面体的体积的最大值是 . 三、解答题:(本大题共5个小题,70分.解答应写出文字说明、证明过程或演算步骤.) 15.已知函数.(Ⅰ) 求的最小正周期; (Ⅱ) 求在区间上的最小值.16. 某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁商品顾 客人 数(Ⅰ)估计顾客同时购买乙和丙的概率;(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买中商品的概率;(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?17. 已知等差数列的前项和为,等比数列满足,,.(Ⅰ)求数列,的通项公式;(Ⅱ)如果数列为递增数列,求数列的前项和.18.如图1,在梯形中,,,,四边形是矩形. 将矩形沿折起到四边形的位置,使平面平面,为的中点,如图2.(Ⅰ)求证:;(Ⅱ)求证://平面;(Ⅲ)判断直线与的位置关系,并说明理由.19. 已知函数.(Ⅰ)求函数的零点及单调区间;(Ⅱ)求证:曲线存在斜率为6的切线,且切点的纵坐标.20.设F 1,F 2分别为椭圆的左、右焦点,点P(1,)在椭圆E 上,且点P 和F1关于点C(0,)对称。
2021年高三上学期第一次月考数学(文)含答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合,则CA、 B、 C、 D、(2)设向量=(2,4)与向量=(x,6)共线,则实数x=BA、2B、3C、4D、6(3)若为实数,且,则DA、 B、 C、 D、(4)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是CA、抽签法B、系统抽样法C、分层抽样法D、随机数法(5)已知抛物线的准线经过点(-1,0),则抛物线焦点坐标为BA、B、C、D、(6)“”是“”的AA、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件(7)设是等差数列的前项和,若,则AA、 B、 C、 D、(8)下列函数中,最小正周期为π的奇函数是BA、y=sin(2x+)B、y=cos(2x+)C、y=sin2x+cos2xD、y=sinx+cosx(9)执行如图所示的程序框图,输出的S值为CA、1B、3C、7D、15(10)设,则CA、B、C、D、(11)一个几何体的三视图如图所示,则该几何体的表面积为DA、B、C、D、(12)设函数,则使得成立的的取值范围是AA、 B、 C、 D、二.填空题:本大题共4小题,每小题5分(13)已知x、y为正实数,且=2,则x+y的最小值是。
(14)函数在其极值点处的切线方程是__________.(15)若满足,则目标函数的最大值为 4 .(16)在区间上随机地选择一个数p,则方程有两个负根的概率为________.2/3 三.解答题:本大题共70分,解答应写出文字说明,证明过程或演算步骤(17)(本小题满分12分)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且3a=2c sin A.(1)确定角C的大小;(2)若c=7,且△ABC的面积为332,求a+b的值.解:(1)由3a=2c sin A及正弦定理得,3sin A=2sin C sin A.∵sin A≠0,∴sin C=32,∵△ABC是锐角三角形,∴C=π3.(2)∵C=π3,△ABC面积为332,∴12ab sinπ3=332,即ab=6.①∵c=7,∴由余弦定理得a2+b2-2ab cosπ3=7,即a2+b2-ab=7.②由②变形得(a+b)2=3ab+7.③将①代入③得(a+b)2=25,故a+b=5.(18)(本小题满分12分)如图,圆锥的顶点为,底面圆为,底面的一条直径为,为半圆弧的中点,为劣弧的中点,已知,(1)求三棱锥的体积;1/3(2)求异面直线和所成角的余弦值。
2021年高三数学第一学期第一次月考试卷理(含解析)一、选择题.(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={1,5,a},B={2,b},若A∩B={2,5},则a+b的值是() A. 10 B. 9 C. 7 D. 42.复数(i是虚数单位)在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数y=的图象关于x轴对称的图象大致是()A. B.C. D.4.函数f(x)=2x﹣的一个零点在区间(1,2)内,则实数a的取值范围是() A.(1,3) B.(1,2) C.(0,3) D.(0,2)5.定积分的值为()A.﹣1 B. 1 C. e2﹣1 D. e26.下列命题中的假命题是()A.存在x∈R,lgx=0 B.存在x∈R,tanx=1C.任意x∈R,x3>0 D.任意x∈R,2x>07.设P={x|x<4},Q={x|x2<4},则()A. P包含于Q B. Q包含于P C. P包含于C R Q D. Q包含于C R P8.已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件9.设函数,则下列结论错误的是()A. D(x)的值域为{0,1} B. D(x)是偶函数C. D(x)不是周期函数 D. D(x)不是单调函数10.定义在R上的函数f(x),当x≠﹣2时,恒有(x+2)f′(x)<0(其中f′(x)是函数f(x)的导数),又a=f(log3),b=f[],c=f(ln3),则()A. a<b<c B. b<c<a C. c<a<b D. c<b<a11.设函数f(x)=xe x,则()A. x=1为f(x)的极大值点 B. x=1为f(x)的极小值点C. x=﹣1为f(x)的极大值点 D. x=﹣1为f(x)的极小值点12.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣ B.﹣ C. D.二、填空题.(本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.)13.函数f(x)=的定义域为.14.如图是一个算法的流程图,则输出S的值是.15.已知定义域为R的函数f(x)在(﹣5,+∞)上为减函数,且函数y=f(x﹣5)为偶函数,设a=f(﹣6),b=f(﹣3),则a,b的大小关系为.16.曲线y=x3﹣x+3在点(1,3)处的切线方程为.三、解答题.(本大题共5小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.)17.已知等差数列{a n}的前n项和为S n,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.18.为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4.(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;(Ⅱ)求二面角A﹣PB﹣D的余弦值.20.已知圆C1:(x+)2+y2=,圆C2:(x﹣)2+y2=,动圆P与已知两圆都外切.(1)求动圆的圆心P的轨迹E的方程;(2)直线l:y=kx+1与点P的轨迹E交于不同的两点A、B,AB的中垂线与y轴交于点N,求点N的纵坐标的取值范围.21.已知函数g(x)=,f(x)=g(x)﹣ax.(1)求函数g(x)的单调区间;(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(3)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.四、请在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.【选修4—1:平面几何选讲】(本小题满分10分)22.如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF 与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,直线C的参数方程为为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为ρ2﹣4ρcosθ+3=0.(1)求直线C的普通方程和曲线P的直角坐标方程;(2)设直线C和曲线P的交点为A、B,求|AB|.【选修4-5:不等式选讲】(共1小题,满分0分)24.设函数f(x)=|2x﹣a|+5x,其中a>0.(Ⅰ)当a=3时,求不等式f(x)≥5x+1的解集;(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.xx学年河南省驻马店市确山二中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题.(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={1,5,a},B={2,b},若A∩B={2,5},则a+b的值是()A. 10 B. 9 C. 7 D. 4考点:并集及其运算.专题:集合.分析:由A与B,以及两集合的交集,确定出a与b的值,即可求出a+b的值.解答:解:∵A={1,5,a},B={2,b},且A∩B={2,5},∴a=2,b=5,则a+b=7.故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.复数(i是虚数单位)在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:复数代数形式的乘除运算;复数的基本概念.分析:先对复数化简并整理出实部和虚部,求出对应的点的坐标,即判断出点所在的象限.解答:解:∵==2+i,∴在复平面上对应的点坐标是(2,1),即在第一象限,故选A.点评:本题考查了复数的乘除运算,以及复数的几何意义,属于基础题.3.函数y=的图象关于x轴对称的图象大致是()A. B.C. D.考点:指数函数的图像变换.专题:综合题.分析:先求出原函数的单调性以及定义域,再结合关于x轴对称的函数图象自检的关系即可得到正确答案.解答:解:∵函数y═=﹣1的定义域为[0,+∞),且图象是在定义域上单调递增,最低点为(0,﹣1)∴所求图象在定义域上单调递减,最高点为(0,1).故选:B.点评:本题主要考查了幂函数的图象,以及图象过的特殊点的坐标,属于基础题.一般解决这类问题常用排除法.4.函数f(x)=2x﹣的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3) B.(1,2) C.(0,3) D.(0,2)考点:函数零点的判定定理.专题:计算题.分析:由题意可得f(1)f(2)=(0﹣a)(3﹣a)<0,解不等式求得实数a的取值范围.解答:解:由题意可得f(1)f(2)=(0﹣a)(3﹣a)<0,解得 0<a<3,故实数a的取值范围是(0,3),故选C.点评:本题考查函数零点的定义以及函数零点判定定理的应用,属于基础题.5.定积分的值为()A.﹣1 B. 1 C. e2﹣1 D. e2考点:定积分.专题:计算题.分析:由定积分的定义根据公式直接变形,求出定积分的值即可解答:解:定积分=(e x)|0ln2=2﹣1=1答案为:1.故选B.点评:本题考查定积分,解题的关键是掌握住定积分的定义及其公式,本题是基本概念题.6.下列命题中的假命题是()A.存在x∈R,lgx=0 B.存在x∈R,tanx=1C.任意x∈R,x3>0 D.任意x∈R,2x>0考点:命题的真假判断与应用.分析: A、B、C可通过取特殊值法来判断;D、由指数函数的值域来判断.解答:解:A、x=1成立;B、x=成立;D、由指数函数的值域来判断.对于C选项x=﹣1时,(﹣1)3=﹣1<0,不正确.故选C点评:本题考查逻辑语言与指数数、二次函数、对数函数、正切函数的值域,属容易题.7.设P={x|x<4},Q={x|x2<4},则()A. P包含于Q B. Q包含于P C. P包含于C R Q D. Q包含于C R P考点:集合的包含关系判断及应用.专题:集合.分析:此题只要求出x2<4的解集{x|﹣2<x<2},画数轴即可求出解答:解:P={x|x<4},Q={x|x2<4}={x|﹣2<x<2},如图所示,可知Q包含于P,故B正确.点评:此题需要学生熟练掌握子集、真子集和补集的概念,主要考查了集合的基本运算,属容易题.8.已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:考虑“a>0且b>0”与“a+b>0且ab>0”的互推性.解答:解:由a>0且b>0⇒“a+b>0且ab>0”,反过来“a+b>0且ab>0”⇒a>0且b>0,∴“a>0且b>0”⇔“a+b>0且ab>0”,即“a>0且b>0”是“a+b>0且ab>0”的充分必要条件,故选C点评:本题考查充分性和必要性,此题考得几率比较大,但往往与其他知识结合在一起考查.9.设函数,则下列结论错误的是()A. D(x)的值域为{0,1} B. D(x)是偶函数C. D(x)不是周期函数 D. D(x)不是单调函数考点:分段函数的解析式求法及其图象的作法.专题:证明题.分析:由函数值域的定义易知A结论正确;由函数单调性定义,易知D结论正确;由偶函数定义可证明B结论正确;由函数周期性定义可判断C结论错误,故选D解答:解:A显然正确;∵=D(x),∴D(x)是偶函数,B正确;∵D(x+1)==D(x),∴T=1为其一个周期,故C错误;∵D()=0,D(2)=1,D()=0,显然函数D(x)不是单调函数,故D正确;故选:C.点评:本题主要考查了函数的定义,偶函数的定义和判断方法,函数周期性的定义和判断方法,函数单调性的意义,属基础题10.定义在R上的函数f(x),当x≠﹣2时,恒有(x+2)f′(x)<0(其中f′(x)是函数f(x)的导数),又a=f(log3),b=f[],c=f(ln3),则()A. a<b<c B. b<c<a C. c<a<b D. c<b<a考点:利用导数研究函数的单调性;对数值大小的比较.专题:函数的性质及应用;导数的综合应用.分析:先由条件(x+2)f′(x)<0得到函数的单调区间,再比较自变量log3与与ln3的大小解答:解:(x+2)f′(x)<0⇔或∴f(x)在(﹣∞,﹣2)时递增,f(x)在(﹣2,+∞)时递减,=﹣1,0<<1,1<ln3∴log3<<ln3,又函数f(x)在(﹣2,+∞)时递减,∴f(log3)>f[]>f(ln3),∴a>b>c故选:D点评:本题考查函数的单调性,比较函数值的大小转化为比较自变量的大小是解题的关键.11.(5分)(xx•开福区校级模拟)设函数f(x)=xe x,则()A. x=1为f(x)的极大值点 B. x=1为f(x)的极小值点C. x=﹣1为f(x)的极大值点 D. x=﹣1为f(x)的极小值点考点:利用导数研究函数的极值.专题:导数的概念及应用.分析:由题意,可先求出f′(x)=(x+1)e x,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点解答:解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选:D点评:本题考查利用导数研究函数的极值,解题的关键是正确求出导数及掌握求极值的步骤,本题是基础题,12.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣ B.﹣ C. D.考点:奇函数;函数的周期性.专题:计算题.分析:由题意得 =f(﹣)=﹣f(),代入已知条件进行运算.解答:解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),∴=f(﹣)=﹣f()=﹣2×(1﹣)=﹣,故选:A.点评:本题考查函数的周期性和奇偶性的应用,以及求函数的值.二、填空题.(本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.)13.函数f(x)=的定义域为(0,] .考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.14.如图是一个算法的流程图,则输出S的值是63 .考点:设计程序框图解决实际问题.专题:算法和程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求满足条件S=1+2+22+…+2n≥33的最小的S值,并输出.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求满足条件S=1+2+22+…+2n≥33的最小的S值∵S=1+2+22+23+24=31<33,不满足条件.S=1+2+22+23+24+25=63≥33,满足条件故输出的S值为:63.故答案为:63点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.15.已知定义域为R的函数f(x)在(﹣5,+∞)上为减函数,且函数y=f(x﹣5)为偶函数,设a=f(﹣6),b=f(﹣3),则a,b的大小关系为a>b .考点:奇偶性与单调性的综合.专题:计算题.分析:函数y=f(x﹣5)为偶函数,及函数的图象的平移可知y=f(x)的图象关于x=﹣5对称,由函数f(x)在(﹣5,+∞)上为减函数及a=f(﹣6)=f(﹣4)可比较a,b的大小解答:解:∵函数y=f(x﹣5)为偶函数,图象关于x=0对称又∵由y=f(x﹣5)向左平移5个单位可得函数y=f(x)的图象∴y=f(x)的图象关于x=﹣5对称∵函数f(x)在(﹣5,+∞)上为减函数∴a=f(﹣6)=f(﹣4)>b=f(﹣3)∴a>b故答案为:a>b点评:本题主要考查了偶函数的图象的对称及函数的图象的平移,函数的单调性在大小比较中的应用.16.曲线y=x3﹣x+3在点(1,3)处的切线方程为2x﹣y+1=0 .考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:先求出导函数,然后将x=1代入求出切线的斜率,利用点斜式求出直线的方程,最后化成一般式即可.解答:解:y′=3x2﹣1,令x=1,得切线斜率2,所以切线方程为y﹣3=2(x﹣1),即2x﹣y+1=0.故答案为:2x﹣y+1=0.点评:本题主要考查导数的几何意义:在切点处的导数值为切线的斜率、考查直线的点斜式,属于基础题.三、解答题.(本大题共5小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.)17.已知等差数列{a n}的前n项和为S n,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.考点:等差数列与等比数列的综合.专题:计算题.分析:(I)将已知等式用等差数列{a n}的首项、公差表示,列出方程组,求出首项、公差;利用等差数列的通项公式求出数列{a n}的通项公式.(II)利用等比数列的通项公式求出,进一步求出b n,根据数列{b n}通项的特点,选择错位相减法求出数列{b n}的前n项和T n.解答:解:(Ⅰ)依题意得解得,∴a n=a1+(n﹣1)d=3+2(n﹣1)=2n+1,即a n=2n+1.(Ⅱ),b n=a n•3n﹣1=(2n+1)•3n﹣1T n=3+5•3+7•32+…+(2n+1)•3n﹣13T n=3•3+5•32+7•33+…+(2n﹣1)•3n﹣1+(2n+1)•3n﹣2T n=3+2•3+2•32+…+2•3n﹣1﹣(2n+1)3n∴T n=n•3n.点评:解决等差、等比两个特殊数列的问题,一般将已知条件用基本量表示,列出方程组解决;求数列的前n项和,一般先求出数列的通项,根据通项的特点选择合适的求和方法.18.为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.考点:离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.专题:计算题.分析:(1)设报考飞行员的人数为n,前三小组的频率分别为p1,p2,p3,根据前3个小组的频率之比为1:2:3和所求频率和为1建立方程组,解之即可求出第二组频率,然后根据样本容量等于进行求解即可;(2)由(1)可得,一个报考学生体重超过60公斤的概率为,所以x服从二项分布,从而求出x的分布列,最后利用数学期望公式进行求解.解答:解:(1)设报考飞行员的人数为n,前三小组的频率分别为p1,p2,p3,则由条件可得:解得p1=0.125,p2=0.25,p3=0.375…(4分)又因为,故n=48…(6分)(2)由(1)可得,一个报考学生体重超过60公斤的概率为…(8分)所以x服从二项分布,∴随机变量x的分布列为:x 0 1 2 3p则…(12分)(或:)点评:本题主要考察了频率分布直方图,以及离散型随机变量的概率分布和数学期望,同时考查了计算能力,属于中档题.19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4.(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;(Ⅱ)求二面角A﹣PB﹣D的余弦值.考点:用空间向量求平面间的夹角;平面与平面垂直的判定.专题:综合题;空间角.分析:(I)欲证平面MBD⊥平面PAD,根据面面垂直的判定定理可知在平面MBD内一直线与平面PAD垂直,而根据平面PAD与平面ABCD垂直的性质定理可知BD⊥平面PAD;(Ⅱ)建立空间直角坐标系,求出平面PAB的法向量,平面PBD的法向量为,利用向量的数量积公式,可求二面角A﹣PB﹣D的余弦值.解答:(Ⅰ)证明:在△ABD中,由于AD=4,BD=8,AB=4,所以AD2+BD2=AB2,所以AD⊥BD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD,所以BD⊥平面PAD,又BD⊂平面MBD,故平面MBD⊥平面PAD(Ⅱ)建立如图所示的空间直角坐标系,则D(0,0,0),A(4,0,0),P(2,0,2),B (0,8,0)∴,设平面PAB的法向量为由可得,取同理可得平面PBD的法向量为∴cos==∴二面角A﹣PB﹣D的余弦值为.点评:本题主要考查平面与平面垂直的判定,考查空间角解题的关键是掌握面面垂直的判定,正确运用向量法求解空间角.20.已知圆C1:(x+)2+y2=,圆C2:(x﹣)2+y2=,动圆P与已知两圆都外切.(1)求动圆的圆心P的轨迹E的方程;(2)直线l:y=kx+1与点P的轨迹E交于不同的两点A、B,AB的中垂线与y轴交于点N,求点N的纵坐标的取值范围.考点:轨迹方程;圆与圆的位置关系及其判定.专题:圆锥曲线的定义、性质与方程.分析:(1)求出已知两圆的圆心坐标和半径,由两圆的位置关系求得|PC1|,|PC2|,由知点P在以C1,C2为焦点的双曲线右支上,从而求得E的方程;(2)联立直线和双曲线方程,化为关于x的一元二次方程,设出A,B的坐标,由根与系数关系得到A,B的横纵坐标的和,求出AB的中点坐标,由直线方程的点斜式得到AB的中垂线方程,表示出直线在y轴上的截距后由k的范围得答案.解答:解:(1)已知两圆的圆心半径分别为,,设动圆P的半径为r,由题意知,,则.则点P在以C1,C2为焦点的双曲线右支上,其中,则,求得E的方程为2x2﹣y2=1(x>0);(2)将直线y=kx+1代入双曲线方程,并整理得(k2﹣2)x2+2kx+2=0.设A(x1,y1),B(x2,y2),AB的中点为M(x0,y0).依题意,直线l与双曲线的右支交于不同两点,故⇒.且,.则AB的中垂线方程为.令x=0,得.∵﹣2<k<﹣,∴.点评:本题考查了轨迹方程,考查了圆与圆的位置关系,考查了直线与圆锥曲线的位置关系,涉及直线与圆锥曲线位置关系问题,常把直线方程和曲线方程联立,利用一元二次方程的根与系数的关系解题,是高考试卷中的压轴题.21.已知函数g(x)=,f(x)=g(x)﹣ax.(1)求函数g(x)的单调区间;(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(3)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:压轴题;导数的综合应用.分析:(1)根据解析式求出g(x)的定义域和g′(x),再求出临界点,求出g′(x)<0和g′(x)>0对应的解集,再表示成区间的形式,即所求的单调区间;(2)先求出f(x)的定义域和f′(x),把条件转化为f′(x)≤0在(1,+∞)上恒成立,再对f′(x)进行配方,求出在x∈(1,+∞)的最大值,再令f′(x)max≤0求解;(3)先把条件等价于“当x∈[e,e2]时,有f(x)min≤f′(x)max+a”,由(2)得f′(x)2]上的最小值,结合(2)求出的a的范围max,并把它代入进行整理,再求f′(x)在[e,e对a进行讨论:和,分别求出f′(x)在[e,e2]上的单调性,再求出最小值或值域,代入不等式再与a的范围进行比较.解答:(1)解:由得,x>0且x≠1,则函数g(x)的定义域为(0,1)∪(1,+∞),且g′(x)=,令g′(x)=0,即lnx﹣1=0,解得x=e,当0<x<e且x≠1时,g′(x)<0;当x>e时,g′(x)>0,∴函数g(x)的减区间是(0,1),(1,e),增区间是(e,+∞),(2)由题意得函数f(x)=在(1,+∞)上是减函数,∴f′(x)=﹣a≤0在(1,+∞)上恒成立,即当x∈(1,+∞)时,f′(x)max≤0即可,又∵f′(x)=﹣a==,∴当时,即x=e2时,.∴,得,故a的最小值为.(3)命题“若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立”等价于“当x∈[e,e2]时,有f(x)min≤f′(x)max+a”,由(2)得,当x∈[e,e2]时,,则,故问题等价于:“当x∈[e,e2]时,有”,当时,由(2)得,f(x)在[e,e2]上为减函数,则,故,当时,由于f′(x)=在[e,e2]上为增函数,故f′(x)的值域为[f′(e),f′(e2)],即[﹣a,].(i)若﹣a≥0,即a≤0,f′(x)≥0在[e,e2]恒成立,故f(x)在[e,e2]上为增函数,于是,,不合题意.(ii)若﹣a<0,即0<,由f′(x)的单调性和值域知,存在唯一x0∈(e,e2),使f′(x0)=0,且满足:当x∈(e,x0)时,f′(x)<0,f(x)为减函数;当x∈(x0,e2)时,f′(x)>0,f (x)为增函数;所以,f(x)min=f(x0)=≤,x∈(e,e2),所以,a≥,与0<矛盾,不合题意.综上,得.点评:本题主要考查了函数恒成立问题,以及利用导数研究函数的单调性等知识,考查了分类讨论思想和转化思想,计算能力和分析问题的能力.四、请在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.【选修4—1:平面几何选讲】(本小题满分10分)22.如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF 与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.考点:与圆有关的比例线段;圆的切线的判定定理的证明.专题:计算题;直线与圆.分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线.解答:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.可得△BFC∽△DGC,△FEC∽△GAC.∴,得.∵G是AD的中点,即DG=AG.∴BF=EF.(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°.由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是圆O的切线,∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.点评:本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,直线C的参数方程为为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为ρ2﹣4ρcosθ+3=0.(1)求直线C的普通方程和曲线P的直角坐标方程;(2)设直线C和曲线P的交点为A、B,求|AB|.考点:点的极坐标和直角坐标的互化;点到直线的距离公式;参数方程化成普通方程.专题:计算题;直线与圆.分析:(1)参数t得到曲线C的普通方程为x﹣y﹣1=0,利用x=ρcosθ,y=ρsinθ,即可得出P的直角坐标方程;(2)利用点到直线的距离公式可求出圆心到直线的距离d和弦长l=即可得出.解答:解:(1)由曲线C的参数方程为为参数),消去参数t得到曲线C的普通方程为x﹣y﹣1=0;∵x=ρcosθ,y=ρsinθ,曲线P在极坐标系下的方程为ρ2﹣4ρcosθ+3=0,∴曲线P的直角坐标方程为x2+y2﹣4x+3=0.(2)曲线P可化为(x﹣2)2+y2=1,表示圆心在(2,0),半径r=1的圆,则圆心到直线C的距离为,故|AB|==.点评:本题考查直角坐标系与极坐标之间的互化,熟练掌握极坐标与直角坐标的互化公式、点到直线的距离公式、弦长l=是解题的关键.【选修4-5:不等式选讲】(共1小题,满分0分)24.设函数f(x)=|2x﹣a|+5x,其中a>0.(Ⅰ)当a=3时,求不等式f(x)≥5x+1的解集;(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)当a=3时,f(x)≥5x+1可化为|2x﹣3|≥1,由此求得不等式f(x)≥5x+1的解集.(Ⅱ)由f(x)≤0 得|2x﹣a|+5x≤0,此不等式化为不等式组,或.分别求得这两个不等式组的解集,再取并集,即得所求.解答:解:(Ⅰ)当a=3时,f(x)≥5x+1可化为|2x﹣3|≥1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由此可得 x≥2 或 x≤1.故不等式f(x)≥5x+1的解集为 {x|x≥2 或 x≤1{.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由f(x)≤0 得|2x﹣a|+5x≤0,此不等式化为不等式组,或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)即,或.因为a>0,所以不等式组的解集为 {x|x≤﹣},由题设可得﹣=﹣1,故 a=3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣点评:本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于中档题.31074 7962 祢30628 77A4 瞤H26694 6846 框 29373 72BD 犽31967 7CDF 糟U20889 5199 写28118 6DD6 淖37325 91CD 重K32414 7E9E 纞/。
海河中学2020-2021学年度第一学期高三年级第一次月考
数学试卷
一、选择题(每题5分)
1.已知集合A=,B={﹣1,0,1,2},则A∩B等于()
A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,2,3}D.{0,1,2,3} 2.设命题p:2x<2,命题q:x2<1,则p是q成立的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
3.已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()
A.﹣4B.﹣3C.﹣2D.﹣1
4.已知函数f(x)=ln(﹣x2﹣2x+3),则f(x)的增区间为()
A.(﹣∞,﹣1)B.(﹣3,﹣1)C.[﹣1,+∞]D.[﹣1,1]
5.在△ABC中,∠ABC=,AB=,BC=3,则sin∠BAC=()
A.B.C.D.
6.函数的图像大致为()
A.B.C.
D.
7.在△ABC中,a,b,c分别为内角A,B,C的对边,若,,且,则c()A.B.4C.D.5
8.已知函数f(x)=2|x|﹣log|x|,且a=f(ln),b=f(log2),c=f(2﹣1),则a,b,c的大小关系为()
A.c<a<b B.b<c<a C.a<c<b D.b<a<c
9.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<,其图象相邻两条对称轴之间的距离为,且函数f(x+)是偶函数,下列判断正确的是()
A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点(,0)对称C.函数f(x)的图象关于直线x=﹣对称D.函数f(x)在[,π]上单调递增
10.已知函数f(x)=,若函数g(x)=|f(x)|﹣x+m恰有三个零点,则实数m的取值范围是()
A.B.
C.D.
二、填空题(每题5分)
11.是虚数单位,若是纯虚数,则实数的值为.
12.不等式的解集为.(用区间表示)
13.在的展开式中,项的系数为.(用数字作答).
14.已知平面向量,满足,,,则.
15.已知函数,则函数的极大值为.
16.将函数的图象上各点的横坐标伸长到原来的6倍(纵坐标不变),再将所得到的图象向右平移个单位长度,得到函数的图象.若为奇函数,则的最小值为.
17.已知函数的图像关于对称,且函数在上单调递减,若时,不等式恒成立,则实数的取值范围是.
18.如图,在中,已知AB=3,AC=2,∠BAC=120°,D为边BC的中点.若CE⊥AD,垂足为E,则的值为.
三、解答题(每题15分)
19.已知函数f(x)=2cosωx cos(ωx+)+2sin2ωx(ω>0)的最小正周期为π.(1)求ω的值和函数f(x)的单调增区间;
(2)求函数f(x)在区间上的取值范围.
20.设函数f(x)=﹣x3+ax2+bx+c的导数f'(x)满足f'(﹣1)=0,f'(2)=9.(1)若f(x)在区间[﹣2,2]上的最大值为20,求c的值.
(2)若函数f(x)的图象与x轴有三个交点,求c的范围.
21.在△ABC中,角A、B、C所对的边分别为a、b、c,且﹣2sin2C+2cos C+3=0.(1)求角C的大小;
(2)若b=a,△ABC的面积为sin A sin B,求sin A及c的值.
22.已知函数f(x)=lnx+ax,在点(t,f(t))处的切线方程为y=3x﹣1.
(1)求a的值;
(2)已知k≤2,当x>1时,f(x)>k(1﹣)+2x﹣1恒成立,求实数k的取值范围;(3)对于在(0,1)中的任意一个常数b,是否存在正数x0,使得,请说明理由.
参考答案
一、选择题(每题5分)
ABBBCBBCDA
二、填空题(每题5分)
11.12.13.14.15.16. 17.18.
三、解答题(每题15分)
19.解:(1)f(x)=﹣2sinωx cosωx+1﹣cos2ωx
=﹣sin2ωx﹣cos2ωx+1
=﹣2sin(2ωx+)+1
∵函数f(x)的最小正周期为T==π,
∴ω=1.
∴f(x)=﹣2sin(2x+)+1.
由2kπ+≤2x+≤2kπ+,
得kπ+≤x≤kπ+,
∴函数f(x)的单调增区间为[kπ+,kπ+],k∈Z.
(2)∵≤x≤π,
∴f(x)在区间[,]单调递增,在区间[,π]单调递减,
f()=﹣2sin+1=0,f()=﹣2sin+1=3,f(π)=﹣2sin+1=0,因此f(x)的取值范围为[0,3].
20.解:(1)函数的导数f′(x)=﹣3x2+2ax+b,
∵f'(x)满足f'(﹣1)=0,f'(2)=9,
∴,得a=3,b=9,
∴f(x)=﹣x3+3x2+9x+c,
f′(x)=﹣3x2+6x+9=﹣3(x2﹣2x﹣3),
由f′(x)>0得﹣3(x2﹣2x﹣3)>0得x2﹣2x﹣3<0,得﹣1<x<3,
此时函数单调递增,即递增区间为(﹣1,3),
由f′(x)<0得﹣3(x2﹣2x﹣3)<0得x2﹣2x﹣3>0,得x<﹣1或x>3,
此时函数单调递减,即递减区间为(﹣∞,﹣1),(3,+∞);
所以当x=﹣1时,函数取得极小值f(﹣1)=1+3﹣9+c=c﹣5,
f(﹣2)=8+12﹣18+c=2+c,f(2)=﹣8+12+18+c=22+c,
则f(x)在区间[﹣2,2]上的最大值为f(2)=22+c=20,则c=﹣2.
(2)由(I)知当x=﹣1时,函数取得极小值f(﹣1)=1+3﹣9+c=c﹣5,
当x=3时,函数取得极大值f(3)=﹣27+27+27+c=27+c,
若函数f(x)的图象与x轴有三个交点,
则,得,得﹣27<c<5,
即c的范围是(﹣27,5).
21.解:(1)∵﹣2sin2C+2cos C+3=0,可得:﹣2(1﹣cos2C)+2cos C+3=0,∴2cos2C+2cos C+1=0,
∴cos C=﹣,∵0<C<π,
∴C=.
(2)∵c2=a2+b2﹣2ab cos C=3a2+2a2=5a2,∴c=a,
∴sin C=sin A,
∴sin A=sin C=,
∵S△ABC=ab sin C=sin A sin B,
∴ab sin C=sin A sin B,
∴••sin C=()2sin C=,
∴c=1.
22.解:(1)函数f(x)=lnx+ax的导数为f′(x)=+a,
在点(t,f(t))处切线方程为y=3x﹣1,可得f′(t)=+a,
∴函数的切线方程为y﹣(lnt+at)=(+a)(x﹣t),即y=(+a)x+lnt﹣1,
∴,解得a=2;
(2)证明:由(1)可得f(x)=lnx+2x,
∵f(x)>k(1﹣)+2x﹣1,∴lnx>k(1﹣)﹣1即为xlnx+x﹣k(x﹣3)>0,可令g(x)=xlnx+x﹣k(x﹣3),
g′(x)=2+lnx﹣k,
由x>1,可得lnx>0,2﹣k≥0,即有g′(x)>0,g(x)在(1,+∞)递增,
可得g(x)>g(1)=1+2k≥0,∴﹣≤k≤2
故k的取值范围为[﹣,2];
(3)对于在(0,1)中的任意一个常数b,
假设存在正数x0,使得:+x02<1.
由e f(x0+1)﹣3x0﹣2+x02=e ln(x0+1)﹣x0+x02=(x0+1)•e﹣x0+x02<1成立,
从而存在正数x0,使得上式成立,只需上式的最小值小于0即可.
令H(x)=(x+1)•e﹣x+x2﹣1,H′(x)=e﹣x﹣(x+1)•e﹣x+bx=x(b﹣e﹣x),
令H′(x)>0,解得x>﹣lnb,令H′(x)<0,解得0<x<﹣lnb,
则x=﹣lnb为函数H(x)的极小值点,即为最小值点.
故H(x)的最小值为H(﹣lnb)=(﹣lnb+1)e lnb+ln2b﹣1=ln2b﹣blnb+b﹣1,再令G(x)=ln2x﹣xlnx+x﹣1,(0<x<1),
G′(x)=(ln2x+2lnx)﹣(1+lnx)+1=ln2x>0,
则G(x)在(0,1)递增,可得G(x)<G(1)=0,则H(﹣lnb)<0.
故存在正数x0=﹣lnb,使得+x02<1.。