遥感影像的居民地提取
- 格式:docx
- 大小:1.92 MB
- 文档页数:20
基于遥感技术的城市绿地变化监测随着城市化进程的加速,城市绿地在改善城市生态环境、提高居民生活质量等方面发挥着越来越重要的作用。
然而,城市的快速发展也给城市绿地带来了巨大的压力,绿地面积的变化成为了城市规划和管理中需要密切关注的问题。
遥感技术作为一种高效、准确的监测手段,为城市绿地变化监测提供了有力的支持。
一、遥感技术的原理及特点遥感技术是通过非接触式的传感器获取目标物体的电磁波信息,并对其进行处理和分析,从而获取目标物体的特征和状态。
遥感技术具有以下几个显著特点:1、大面积同步观测:遥感技术能够在短时间内获取大面积的地表信息,避免了传统地面调查方法的局限性。
2、时效性高:可以快速获取最新的地表数据,及时反映城市绿地的变化情况。
3、多光谱信息:能够同时获取多个波段的光谱信息,有助于区分不同的地物类型。
4、数据客观准确:不受人为因素的干扰,数据具有较高的客观性和准确性。
二、城市绿地变化监测中常用的遥感数据源1、卫星遥感影像卫星遥感影像具有覆盖范围广、重访周期短等优点。
常见的卫星如Landsat 系列、SPOT 系列等,它们提供的多光谱影像能够满足城市绿地监测的基本需求。
2、航空遥感影像航空遥感影像具有较高的空间分辨率,能够获取更为详细的城市绿地信息。
但由于其成本较高,通常在小范围的高精度监测中使用。
3、无人机遥感影像近年来,无人机遥感技术发展迅速。
无人机可以在低空飞行,获取高分辨率的影像数据,并且具有灵活、便捷的特点,适用于城市局部绿地的监测。
三、遥感技术在城市绿地变化监测中的应用流程1、数据获取首先需要根据监测的目标和要求,选择合适的遥感数据源,并获取相应的影像数据。
2、数据预处理对获取的遥感影像进行预处理,包括辐射校正、几何校正、图像镶嵌等,以提高影像的质量和可用性。
3、绿地信息提取采用合适的图像处理和分类方法,如监督分类、非监督分类、面向对象分类等,从遥感影像中提取绿地信息。
4、变化检测通过对比不同时期的绿地信息,检测城市绿地的变化情况。
面向对象的高分辨率遥感影像信息提取)))以耕地提取为例李敏¹,º,崔世勇º,李成名º,印洁º,李云岭¹(¹山东科技大学测绘学院,青岛266510;º中国测绘科学研究院,北京100039)摘要:随着高分辨率遥感影像的广泛应用,面向对象的高分辨率影像信息提取技术得到了迅速发展。
本文着重讨论面向对象的高分辨率遥感信息提取的关键技术,探索了面向对象的影像分析软件eCognition 在耕地信息提取方面的最优参数选择,并且从IK ONO S 影像中提取的耕地信息与传统分类方法的提取结果进行对比。
试验结果表明该方法具有较高的精度。
关键词:面向对象;高分辨率;信息提取;eCognit ion中图分类号:T P751 文献标识码:A 文章编号:1000-3177(2008)100-0063-04收稿日期:2008-03-03修订日期:2008-05-04作者简介:李敏(1983~),女,硕士,主要从事地理信息与遥感应用研究。
E -m ail:limin82128@1 引 言随着高分辨率遥感卫星的发展,具有丰富的几何结构和纹理信息的高分辨率遥感影像扩充了人们的视野,同时又为遥感信息提取技术提供了新的发展机遇。
传统的遥感信息提取方法都建立在像素的统计特征基础上,很少利用地物的形状、几何结构等信息,分类精度较低、效率不高,而且依赖解译人员,很大程度上不具备重复性。
为了更好地利用高分辨率遥感影像的丰富信息,实现高分辨率遥感影像的信息提取,面向对象的影像分析方法应运而生,它所处理的信息不再是低层次的像素,而是经过多尺度分割之后的目标对象。
与像素层面的分析方法相比,影像分析和理解的层次有了很大的提高和进步。
尤其是第一个面向对象的影像分析软件eCognitio n 的出现,更加速了该方法的发展。
本文就基于eCog nition 进行研究。
2 面向对象的信息提取技术2.1面向对象信息提取技术发展历程早在20世纪70年代面向对象的信息提取方法就被应用于遥感影像的解译中,Ketting and Land -g rebe(1976)提出了同质性对象提取的优点,并提出了一种分割分类算法)))ECH O (Ex tr actio n andClassificatio n o f H omog enous Objects)[1]。
利用遥感监测城市绿地动态变化在现代城市的发展进程中,城市绿地扮演着至关重要的角色。
它不仅为居民提供了休闲娱乐的空间,还在改善城市生态环境、调节气候、减少噪音等方面发挥着不可或缺的作用。
然而,随着城市的不断扩张和人口的增长,城市绿地的状况也在不断发生变化。
为了更好地规划和管理城市绿地,及时准确地掌握其动态变化信息显得尤为重要。
而遥感技术的出现,为我们提供了一种高效、准确且全面的监测手段。
遥感,简单来说,就是不直接接触目标物,通过传感器接收来自目标物的电磁波信息,并对其进行处理和分析,以获取有关目标物的特征和状态的技术。
在监测城市绿地动态变化方面,遥感技术具有许多独特的优势。
首先,遥感技术能够实现大面积同步观测。
相比传统的实地调查方法,遥感可以在短时间内获取整个城市甚至更大范围的绿地信息,大大提高了工作效率。
而且,遥感数据具有周期性和连续性,通过对不同时期的遥感影像进行对比分析,我们能够清晰地看到城市绿地的变化趋势。
其次,遥感技术能够提供多光谱信息。
不同的地物在不同的光谱波段上会有不同的反射特性,城市绿地也不例外。
通过对这些光谱信息的分析,我们可以准确地识别出绿地的类型、分布以及生长状况等。
例如,植被在近红外波段的反射率较高,而在可见光波段的反射率较低,利用这一特性,我们可以很容易地将植被与其他地物区分开来。
再者,遥感技术具有较高的空间分辨率。
随着遥感技术的不断发展,如今的遥感影像可以清晰地分辨出城市中的小块绿地、行道树等细节,为我们进行精细化的绿地监测提供了可能。
那么,如何利用遥感技术来监测城市绿地的动态变化呢?一般来说,主要包括以下几个步骤:数据获取是第一步。
我们需要选择合适的遥感数据源,常见的有卫星遥感影像(如 Landsat 系列、Sentinel 系列等)和航空遥感影像。
卫星遥感影像覆盖范围广、周期长,但空间分辨率相对较低;航空遥感影像空间分辨率高,但成本较高且覆盖范围有限。
在实际应用中,需要根据具体的监测需求和条件来选择合适的数据源。
高分辨率遥感影像面向对象耕地信息提取方法探讨摘要:随着高分辨率遥感技术发展,高分辨率遥感影像得到广泛应用,特别是高分辨率遥感影像面向对象信息提取技术应用广泛。
本文以某地区遥感影像为基础数据,探讨了高分辨率遥感影像面向对象耕地信息提取的技术方法,并对耕地信息提取实验结果进行精度评价,得到了良好的效果。
关键词:面向对象特征提取耕地随着遥感卫星技术的发展,高分辨率遥感影像得到了普遍应用,遥感信息提取技术得到了快速发展,特别是面向对象高分辨率遥感影像信息提取技术的实现,为人们的生产生活提供了极大方便。
面向对象提取技术促进了影像分析技术的发展[1],与传统的基于像素的分类结果相比,基于目标对象的方法得到的结果更容易被解译,而且处理结果中图斑的完整性更好[2]。
特别是利用面向对象的分类方法进行了耕地信息提取,能达到理想的精度,效果较好。
本文就基于ENVI EX高分辨率遥感影像面向对象耕地信息提取技术方法进行探讨。
1 研究区域和影像数据1.1 数据源为了准确的提取耕地信息,选择某城市全色波段与多光谱融合后的影像作为实验数据,研究区域中包括典型的耕地,以及少量的建筑物和水体。
2 耕地信息提取及分类2.1 发现对象2.1.1 准备工作根据数据源和特征提取类型等情况,进行分类提取之前,可以有选择地对对原始影像进行几何校正、辐射校正等预处理工作,如调整空间分辨率、调整光谱分辨率等。
2.1.2 影像分割及分割参数的确定影像多尺度分割中的尺度是一个关于多边形对象异质性最小的阈值,决定生成最小多边形的级别大小,分割的质量及信息提取的精度。
ENVI EX提供了一种阈值法进一步精炼分块的方法,即基于亮度值的栅格操作,根据分割后结果中的一个波段的亮度值聚合分块。
分割效果的好坏一定程度决定了分类效果的精确度,结合preview 预览分割效果,选择一个理想的分割阀值,尽可能好地分割出边缘特征。
根据参数选择原则,设置分割参数,通过试验得出,分割尺度为50,耕地类型能够被准确的分割出来,该参数比较合适。
面向对象的遥感影像信息提取摘要:随着遥感技术的不断发展,遥感影像的分辨率不断的提高,如何对遥感影像中的地物信息进行高效、快速的提取,是当前研究的热点问题。
面向对象的方法先对影像进行多尺度分割得到同质区域对象,充分利用遥感影像中丰富的光谱、形状、纹理等特征对分割后的对象进行分类。
面向对象的遥感信息提取的方法克服了传统的基于像元的分类方法只依靠光谱信息的缺点,更高效的获取地物信息,得到更高精度的分类结果。
关键词:多尺度分割、分类、遥感影像、面向对象Abstract:With the continuous development of remote sensing technology, the resolution of remote sensing image is constantly improving. How to efficiently and quickly extract the ground object information in remote sensing image is a hot issue in current research. The object oriented method firstly segmented the image to obtain the homogeneous region object, and made full use of the rich spectral, shape, texture and other features of remote sensing image to classify the segmented object. The object-oriented remote sensing information extraction method overcomes the shortcoming of the traditional classification method based on pixel which only relies on spectral information, and obtains the ground object information moreefficiently and gets the classification result with higher precision.Key word:Multi-scale segmentation、classification、remote sensing image、object oriented.1引言利用面向对象的信息提取技术,可以更好掌握实际生产生活中地物变化情况,以及土地利用等情况,能够为国土空间规划、土地利用调查、资源普查、交通规划、生态旅游发展等工作提供有力的数据支撑。
遥感影像地物信息智能提取方法研究作者:刘兴荣,张勇荣,杨琴来源:《经济研究导刊》2011年第12期摘要:遥感越来越多地被用于提取不同尺度土地利用、地面覆盖变化特征以及人文特征信息。
准确选取适当的遥感数据是快速、精确地发现并提取遥感图像中所需信息的前提。
综述了基于遥感影像提取地物信息的方法,并列举一些应用实例。
关键词:遥感;信息提取;数据源中图分类号:C93文献标志码:A文章编号:1673-291X(2011)12-0305-03引言遥感是20世纪60年代发展起来的综合性对地观测技术,它的产生和发展是人们认识和探索自然界的客观需要[1]。
它拓展了人眼观察的光谱范围,大大提高了数据获取的空间详细程度,可应用于军事、农业、林业、地矿、水利和环保等领域。
但通过遥感器观测的遥感数据,由于受到太阳和大气等条件的影响,必须经过人工判读或计算机处理,才能最终应用于各种领域。
本文综述了基于遥感影像提取地物信息的方法,并列举一些应用实例。
一、多源遥感数据概述遥感技术作为一种准确、客观、及时获取宏观信息的手段,在城市规划、土地利用监测、农业、林业以及自然灾害预报等方面越来越得到广泛的重视和应用[2]。
准确选取适当的遥感数据是快速、精确地发现并提取遥感图像中所需信息的前提[3]。
地物信息提取常用的遥感图像可以分为以下几类。
1.多光谱和全色影像。
全色影像具有较高的空间分辨率,而多光谱图像可以更精细地描述目标光谱。
全色图像与多光谱图像融合,既可以利用全色图像的高分辨改善多光谱图像分辨率,又可以充分利用多光谱图像中特有的对目标某些独特特征的精细描述,使融合图像包含更丰富的信息[4]。
多光谱影像及融合影像是目前地物信息提取研究的主要信息源。
2.SAR影像。
合成孔径雷达(synthetic aperture radar,SAR)是一种主动遥感方式,与光学遥感相比,具有全天时、全天候、多波段、多极化工作方式、可变侧视角穿透能力强和高分辨率等特点[5]。
中国农业大学学报 2021,26(4) :157-166 h ttp:// Journal of China Agricultural University DOI:10. 11841/j.issn. 1007-4333. 2021. 04. 14基于遥感影像的土地利用特征提取与城乡梯度差异分析—以河北省涿州市为例汤怀志1汤敏2关明文3张美聪1王子彤1(1.中国农业大学土地科学与技术学院,北京100193;2.北京佰信蓝图科技有限公司,北京102208;3.运城学院经济管理系,山西运城044099)摘要为快速获取区域土地利用特征和精细刻画城乡土地利用差异,以河北省涿州市为研究对象,基于Sentinel-2影像数据,采取面向对象方法进行影像分割,利用隶属度函数与决策树方法相结合的非监督分类算法对涿州市土地利用进行分类,并选取了不同方向的城乡梯度样带进行了土地利用特征分析。
结果表明,应用模糊决策树方法的涿州市土地利用分类结果总体精度为93. 7%,K a p p a系数0. 892,分类精度较高。
分析上述结果发现:涿州市土地利用类型以耕地与城乡居民点用地为主,林地、草地、水体等自然生态空间比例较低,土地利用的城乡梯度特征明显;耕地集中分布在距离城市中心4〜7 k m的东南、南、西方向;城乡居民点整体分布分散,在距离城市中心3 k m以内、5 k m、8〜9 k m呈现明显的集聚特征。
建议涿州市依据预期人口规模和集聚特征优化建设用地布局,提高建设用地集约利用强度,同时提高林地、草地、水体等生态空间比例。
关键词 土地利用,面向对象分类,隶属度函数,决策树分类,遥感影像中图分类号F301.21 文章编号1007-4333(2021)04-0157-10 文献标志码ADiversity analysis of urban and rural land use based onSentinel-2 remote sensing image:A case study of Zhuozhou City in Hebei ProvinceTANG Huaizhi1,TANG Min2,GUAN Minwen3,ZHANG Meicong1,WANG Zitong1(1. College of Land Science and Technology, China Agricultural University, Beijing 100193, China;2. Beijing Baixinlantu Science and Technology Co. Ltd. , Beijing 102208, China;3. School of Economics and Management, Yuncheng College, Yuncheng 044099, China)Abstract In order to quickly get the regional land use characteristics and describe the urban and rural land use differences, this study adopts object-oriented method for image segmentation, and USES unsupervised classification algorithm combining membership function and decision tree methods to classify the land use of Zhuozhou City based on Sentinel-2 image data, and selects the different directions of urban-rural gradient belt to analysis the characteristics of land use. The results show that the overall accuracy of the classification method is 93. 7% , the Kappa coefficient is0.892, and the classification accuracy is relatively high. Based on the classification results, it is found that Zhuozhou?s land use types are mainly farmland and urban and rural residential land, while the proportions of natural ecological space such as forest land, grassland and water body are relatively low. The spatial distribution shows an obvious urban-rural gradient characteristics. The cultivated land is concentrated in the southeast, south and west directions 4-7km away from the city center. The overall distribution of urban and rural residential areas is scattered, with certain clustering characteristics within 3, 5, and 8 -9 km from the city center. It is suggested Zhuozhou should收稿日期:2020-09-04基金项目:国家自然科学基金项目(41701201)第一作者:汤怀志,讲师,主要从事耕地资源保护与土地科技创新研究,£-1113丨1:丁31^只2@。
遥感影像的居民地自动提取一、摘要科技的飞速发展,卫星的应用也变得相当广泛,卫星遥感数据提取地物信息, 已成为遥感观测地物的一种重要手段。
应用遥感图像提取居民地信息,探讨提取居民地的提取方法,可以快速得到居民地的分布情况。
在当今灾害频发的时代,研究居民地的受灾情况,快速获取受灾面积等有很好的经济效益。
从遥感信息机理分析入手,首先分析了图像区域的居民地信息,应用监督分类、非监督分类,探讨了居民地的研究提取,分析它们的优缺点;在监督分类中,应用最大似然法进行提取,有较好的效果;非监督分类效果不好。
本文重点应用谱间阈值法进行研究,进而提取居民地信息。
并以重庆市主城区遥感图像为例,通过试验,选择合适的谱间阈值,例如:b5-b3<80,可以得到比较好的研究效果。
关键字:卫星,居民地,自动提取二、遥感影像信息提取方法主动接收和被动接收方式是雷达影像和光学影像所代表的,它可以转化为图像的形式以相片或数字图像表现。
多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。
应用遥感图像制图可以大致分为4个步骤:1、接收;2、预处理;3、用户应用处理;4、分析结果、图表输出。
处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。
在影像要素中,除色调、彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。
像元的色调、彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调、彩色上的差异的话,他们的鉴别就无从说起。
其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的像元色调、彩色在空间(即影像)上分布的产物。
物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调、彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。
第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。
2.1目视解译及图像判绘2.1.1判绘原则遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。
一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。
在此基础上,再进行地质、地貌等专门要素的判读。
2.1.2遥感图像判绘1、整体观察观察图像特征,分析图像对判读目的任务的可判读性和各判读目标间的内在联系。
观察各种直接判读标志在图像上的反映,从而可以把图像分成大类别以及其他易于识别的地面特征。
2、对比分析对比分析包括多波段、多时域图像、多类型图像的对比分析和各判读标志的对比分析。
多波段图像对比有利于识别在某一波段图像上灰度相近但在其它波段图像上灰度差别较大的物体;多时域图像对比分析主要用于物体的变化繁衍情况监测;而多各个类型图像对比分析则包括不同成像方式、不同光源成像、不同比例尺图像等之间的对比。
各种直接判读标志之间的对比分析,可以识别标志相同(如色调、形状),而另一些标识不同(纹理、结构)的物体。
对比分析可以增加不同物体在图像上的差别,以达到识别目的。
3、综合分析综合分析主要应用间接判读标志、已有的判读资料、统计资料,对图像上表现得很不明显,或毫无表现的物体、现象进行判读。
间接判读标志之间相互制约、相互依存。
根据这一特点,可作更加深入细致的判读。
如对已知判读为农作物的影像范围,按农作物与气候、地貌、土质的依赖关系,可以进一步区别出作物的种属;河口泥沙沉积的速度、数量与河流汇水区域的土质、地貌、植被等因素有关,长江、黄河河口泥沙沉积情况不同,正是因为流域内的自然环境不同所至。
地图资料和统计资料是前人劳动的可靠结果,在判读中起着重要的参考作用,但必须结合现有图像进行综合分析,才能取得满意的结果。
实地调查资料,限于某些地区或某些类别的抽样,不一定完全代表整个判读范围的全部特征。
只有在综合分析的基础上,才能恰当应用、正确判读。
4、参数分析参数分析是在空间遥感的同时,测定遥感区域内一些典型物体(样本)的辐射特性数据、大气透过率和遥感器响应率等数据,然后对这些数据进行分析,达到区分物体的目的。
大气透过率的测定可同时在空间和地面测定太阳辐射照度,按简单比值确定。
仪器响应率由实验室或飞行定标获取。
利用这些数据判定未知物体属性可从两个方面进行。
其一,用样本在图像上的灰度与其他影像块比较,凡灰度与某样本灰度值相同者,则与该样本同属性;其二,由地面大量测定各种物体的反射特性或发射特性,然后把它们转化成灰度。
然后根据遥感区域内各种物体的灰度,比较图像上的灰度,即可确定各类物体的分布范围。
2.2计算机信息提取利用计算机进行遥感信息的自动提取则必须使用数字图像,由于地物在同一波段、同一地物在不同波段都具有不同的波谱特征,通过对某种地物在各波段的波谱曲线进行分析,根据其特点进行相应的增强处理后,可以在遥感影像上识别并提取同类目标物。
早期的自动分类和图像分割主要是基于光谱特征,后来发展为结合光谱特征、纹理特征、形状特征、空间关系特征等综合因素的计算机信息提取。
2.2.1自动分类常用的信息提取方法是遥感影像计算机自动分类。
首先,对遥感影像室内预判读,然后进行野外调查,旨在建立各种类型的地物与影像特征之间的对应关系并对室内预判结果进行验证。
工作转入室内后,选择训练样本并对其进行统计分析,用适当的分类器对遥感数据分类,对分类结果进行后处理,最后进行精度评价。
遥感影像的分类一般是基于地物光谱特征、地物形状特征、空间关系特征等方面特征,目前大多数研究还是基于地物光谱特征。
在计算机分类之前,往往要做些预处理,如校正、增强、滤波等,以突出目标物特征或消除同一类型目标的不同部位因照射条件不同、地形变化、扫描观测角的不同而造成的亮度差异等。
利用遥感图像进行分类,就是对单个像元或比较匀质的像元组给出对应其特征的名称,其原理是利用图像识别技术实现对遥感图像的自动分类。
计算机用以识别和分类的主要标志是物体的光谱特性,图像上的其它信息如大小、形状、纹理等标志尚未充分利用。
计算机图像分类方法,常见的有两种,即监督分类和非监督分类。
监督分类,首先要从欲分类的图像区域中选定一些训练样区,在这样训练区中地物的类别是已知的,用它建立分类标准,然后计算机将按同样的标准对整个图像进行识别和分类。
它是一种由已知样本,外推未知区域类别的方法;非监督分类是一种无先验(已知)类别标准的分类方法。
对于待研究的对象和区域,没有已知类别或训练样本作标准,而是利用图像数据本身能在特征测量空间中聚集成群的特点,先形成各个数据集,然后再核对这些数据集所代表的物体类别。
与监督分类相比,非监督分类具有下列优点:不需要对被研究的地区有事先的了解,不存在人为因素所导致的错判,对分类的结果与精度要求相同的条件下,在时间和成本上较为节省,但实际上,非监督分类不如监督分类的精度高,所以监督分类使用的更为广泛。
2.2.2纹理特征分析细小地物在影像上有规律地重复出现,它反映了色调变化的频率,纹理形式很多,包括点、斑。
在这些形式的基础上根据粗细、疏密、宽窄、长短、等条件还可再细分为更多的类型。
每种类型的地物在影像上都有本身的纹理图案,因此,可以从影像的这一特征识别地物。
纹理反映的是亮度(灰度)的空间变化情况,有三个主要标志:某种局部的序列性在比该序列更大的区域内不断重复;序列由基本部分非随机排列组成;各部分大致都是均匀的统一体,在纹理区域内的任何地方都有大致相同的结构尺寸。
这个序列的基本部分通常称为纹理基元。
因此可以认为纹理是由基元按某种确定性的规律或统计性的规律排列组成的,前者称为确定性纹理(如人工纹理),后者呈随机性纹理(或自然纹理)。
对纹理的描述可通过纹理的粗细度、平滑性、颗粒性、随机性、方向性、直线性、周期性、重复性等这些定性或定量的概念特征来表征。
相应的众多纹理特征提取算法也可归纳为两大类,即结构法和统计法。
结构法把纹理视为由基本纹理元按特定的排列规则构成的周期性重复模式,因此常采用基于传统的 Fourier 频谱分析方法以确定纹理元及其排列规律。
此外结构元统计法和文法纹理分析也是常用的提取方法。
结构法在提取自然景观中不规则纹理时就遇到困难,这些纹理很难通过纹理元的重复出现来表示,而且纹理元的抽取和排列规则的表达本身就是一个极其困难的问题。
在遥感影像中纹理绝大部分属随机性,服从统计分布,一般采用统计法纹理分析。
目前用得比较多的方法包括:共生矩阵法、分形维方法、马尔可夫随机场方法等。
共生矩阵是一比较传统的纹理描述方法,它可从多个侧面描述影像纹理特征。
2.2.3图像分割图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,此处特性可以是像素的灰度、颜色、纹理等预先定义的目标可以对应单个区域,也可以对应多个区域。
由图像处理到图像分析的关键步骤,在图像工程中占据重要的位置。
一方面,它是目标表达的基础,对特征测量有重要的影响;另一方面,因为图像分割及其基于分割的目标表达、特征抽取和参数测量的将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,彼此是紧密关联的。
图像分割在一般意义下是十分困难的问题,目前的图像分割一般作为图像的前期处理阶段,是针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。
有三种不同的途径,其一是将各象素划归到相应物体或区域的象素聚类方法即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘象素再将边缘象素连接起来构成边界形成分割。
1、阈值与图像分割阈值是在分割时作为区分物体与背景象素的门限,大于或等于阈值的象素属于物体,而其它属于背景。
这种方法对于在物体与背景之间存在明显差别(对比)的景物分割十分有效。
实际上,在任何实际应用的图像处理系统中,都要用到阈值化技术。
为了有效地分割物体与背景,人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。
2、梯度与图像分割当物体与背景有明显对比度时,物体的边界处于图像梯度最高的点上,通过跟踪图像中具有最高梯度的点的方式获得物体的边界,可以实现图像分割。
这种方法容易受到噪声的影响而偏离物体边界,通常需要在跟踪前对梯度图像进行平滑等处理,再采用边界搜索跟踪算法来实现。
3、边界提取与轮廓跟踪为了获得图像的边缘人们提出了多种边缘检测方法,如 Sobel, Canny edge, LoG 。
在边缘图像的基础上,需要通过平滑、形态学等处理去除噪声点、毛刺、空洞等不需要的部分,再通过细化、边缘连接和跟踪等方法获得物体的轮廓边界。