物理学9-刚体定轴转动定律的应用举例
- 格式:pptx
- 大小:1.04 MB
- 文档页数:13
物理学9-刚体定轴转动定律的应用举例刚体定轴转动定律是描述刚体绕固定轴转动时的运动规律的重要定律。
它包括角动量定理、角动量守恒定律和动能定理三个部分,这些定理在物理学中有着广泛的应用。
以下是一些应用举例。
1.陀螺的稳定性陀螺是一种具有一定自旋的旋转体,它的转轴固定在空间中的一点上。
当陀螺开始旋转时,它的自旋轴并不和转轴重合,但是随着陀螺的旋转,自旋轴始终在垂直于转轴的平面内旋转。
根据角动量定理和角动量守恒定律可以说明,当外力瞬间作用在陀螺上时,它会使陀螺的自旋轴发生进动,即自旋轴绕着转轴做圆周运动。
而由于角动量守恒,陀螺的自旋速度不会发生改变,因此在一定条件下陀螺能够保持稳定旋转,虽然它的自旋轴始终在变化。
2.动物的奔跑在物理学中,奔跑的过程可以视为人体绕着重心做定轴转动。
根据角动量定理和动能定理,人体的角动量和动能随着奔跑的速度变化而改变。
如果奔跑速度比较慢,人体的重心不会发生太大的变化,因此可以近似地看作点质量绕着固定轴转动。
但是当奔跑速度比较快时,人体的重心会发生较大的偏移,因此需要考虑人体的形变和弹性来描述奔跑的过程。
3.滑冰在滑冰的过程中,滑冰鞋与冰面之间存在摩擦力,摩擦力使得滑冰鞋相对于冰面产生旋转。
根据角动量定理和动能定理,滑冰鞋的角动量和动能会不断地改变,从而导致身体的姿态和速度也在不断变化。
为了保持平衡和稳定性,滑冰运动员需要不断进行调整和控制。
4.扭曲摆扭曲摆是一种具有非线性运动特征的振动系统,它包括一个重物、一个弹簧和一个摆动的基座。
当扭曲摆发生振动时,重物会绕着摆动的基座旋转,同时弹簧也会发生形变。
根据扭曲摆的特征方程和能量守恒定律可以推导出扭曲摆的振动规律,从而用来描述一系列自然现象,比如地震、心脏跳动等。
5.自行车的平衡自行车是一种需要保持平衡的交通工具,它的平衡性和稳定性与骑车人的动作和机械结构密切相关。
根据角动量定理和动能定理可以推导出自行车的转动惯量和角加速度,并利用牛顿第二定律和动能定理求解车轮的角速度和匀速斜面上行驶的距离等问题。
刚体的定轴转动定律1. 介绍刚体是物理学中的一个重要概念,它指的是在运动过程中形状和大小保持不变的物体。
刚体的定轴转动定律是描述刚体绕固定轴线转动的规律和性质,对于我们理解刚体的运动和应用相关物理问题具有重要意义。
2. 刚体的转动惯量2.1 定义刚体绕轴线转动时,其转动惯量是衡量刚体抵抗转动运动的特性。
转动惯量的大小取决于刚体的质量分布以及轴线的位置和方向。
2.2 转动惯量的计算方法转动惯量可以通过积分计算得到,对于一个质量为m的刚体,其转动惯量可以用以下公式表示: [ I = r^2 dm ] 其中,r是质量元dm到转轴的距离。
对于一些常见的简单形状的刚体,转动惯量可以通过一些公式直接计算得到,例如:- 细杆绕直线轴线转动:[ I = mL^2 ] - 球体绕直径轴线转动:[ I = MR^2 ] - 圆环绕直径轴线转动:[ I = MR^2 ]3. 定轴转动的角动量3.1 定义角动量是描述物体转动的物理量,刚体的角动量可以通过转动惯量和角速度的乘积得到。
3.2 角动量的守恒对于一个孤立系统,如果没有外力矩作用,刚体的角动量将保持不变,这就是角动量守恒定律的内容。
3.3 角动量定理角动量定理描述了外力矩对刚体角动量的影响,它可以表示为以下公式: [ = ] 其中,()是作用在刚体上的外力矩,(L)是刚体的角动量。
4. 牛顿第二定律与角加速度4.1 牛顿第二定律牛顿第二定律描述了刚体转动的加速度与作用力的关系,其公式为: [ = I] 其中,()是作用在刚体上的合外力矩,(I)是刚体的转动惯量,()是刚体的角加速度。
4.2 角加速度的计算对于旋转轴与力矩不垂直的情况,我们可以通过以下公式计算刚体的角加速度:[ = ] 其中,()是力矩与旋转轴之间的夹角。
5. 定轴转动的动能5.1 定义刚体的转动动能是由于其转动而具有的能量,它可以通过转动惯量和角速度的平方的乘积得到。
5.2 动能定理动能定理描述了外力对刚体转动动能的影响,它可以表示为以下公式: [ W = K ] 其中,(W)是作用在刚体上的合外力所做的功,(K)是刚体的转动动能。
运⽤刚体定轴转动定律解题(2)运⽤刚体定轴转动定律解题转动定律描述刚体定轴转动中的瞬时关系,常常⽤来求解⾓加速度,⼀般步骤为:1) 隔离物体:即明确研究对象。
2) 具体分析:分析所选定的定轴刚体的受⼒情况和运动情况,画出受⼒图。
3) 选定坐标:在惯性系中建⽴⼀维坐标,即在转轴上选择正⽅向。
4) 建⽴⽅程:⽤转动定律列出定轴刚体的运动微分⽅程。
5) 要特别注意⽅程中的⼒矩、转动惯量必须对同⼀轴⽽⾔。
还要注意此⽅程是标量式,式中各量均为代数量,与所选正⽅向同向的⼒矩和⾓速度为正,反之为负。
6) 求解讨论:求解⽅程,理解和讨论结果的物理意义。
请注意常常与转动定律相联系的综合性问题:与刚体定轴转动或质点圆周运动的运动学问题相联系。
刚体定轴转动与质点平动相联系(例如滑轮两边悬挂物体)。
处理⽅法仍然是隔离法,对定轴刚体⽤转动定律列⽅程,对平动质点⽤⽜顿第⼆定律列⽅程,⼆者之间⽤⾓量与线量的关系联系起来,求解⽅程组。
运⽤⾓动量定理或⾓动量守恒定律解题因为对定轴转动的刚体,其总动量往往并⽆实际意义(例如定轴转动滑轮的总动量为零),所以只能⽤⾓动量对其整体机械运动量进⾏量度。
在⼒矩持续作⽤⼀段时间的问题中,则⽤⾓动量定理取代平动问题中的动量定理。
对于平动质点和定轴刚体组成的系统,既可以对于系统整体运⽤⾓动量定理,也可以分别对平动质点运⽤动量定理,对定轴刚体运⽤⾓动量定理,再⽤⼒矩表达式将⼆者联系起来。
运⽤⾓动量定理或⾓动量守恒定律解题的⼀般步骤与运⽤动量定理或动量守恒定律求解平动问题类似,只不过⽤⾓量取代相应的线量:1. 选系统:即确定研究对象。
2. 建坐标:选取惯性系,确定参考点或转轴。
3. 选过程:即选取⼀定的时间间隔,确定系统的初、末态。
对于综合性问题,可以划分为⼏个互相衔接的阶段处理。
4. 算⼒矩:画出对所选定的参考点或转轴⼒矩不为零的外⼒,⽆须分析系统内⼒和对参考点或转轴⼒矩为零的外⼒。
5. 列⽅程:如果不满⾜⾓动量守恒条件,运⽤⾓动量定理列⽅程:对固定点:对定轴:如果满⾜⾓动量守恒条件,运⽤⾓动量守恒定律列⽅程:对固定点:对定轴:6. 求解并讨论:求解⽅程,理解和讨论结果的物理意义。