概率论概率5大数定律
- 格式:ppt
- 大小:1.04 MB
- 文档页数:24
概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。
数学中研究大量的工具是极限。
因此这一章学习概率论中的极限定理。
第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。
意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。
大数定律解释了这一结论。
首先介绍切比雪夫不等式。
一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。
切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。
进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。
当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。
二、依概率收敛随机变量序列即由随机变量构成的一个序列。
不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。
只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。
依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。
注意这三个大数定律的条件有何异同。
定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。
定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。
伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。
伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。
23个大数定律大数定律是概率论中的一组重要定理,用于描述在随机试验中大量重复进行时的规律性现象。
以下是23个大数定律的简要介绍。
1. 大数定律:随着试验次数的增加,随机变量的平均值会趋近于其期望值。
2. 弱大数定律:对于独立同分布的随机变量序列,其平均值收敛于期望值的概率为1。
3. 辛钦大数定律:对于独立同分布的随机变量序列,其平均值以概率1收敛于期望值。
4. 伯努利大数定律:在一系列独立的伯努利试验中,事件发生的频率趋近于其概率。
5. 泊松大数定律:对于独立同分布的泊松随机变量序列,其平均值以概率1收敛于其参数。
6. 中心极限定理:大量独立同分布的随机变量的和趋近于正态分布。
7. 林德伯格-列维定理:对于独立同分布的随机变量序列,其和的标准化形式以概率1收敛于标准正态分布。
8. 稳定中心极限定理:对于独立同分布的随机变量序列,其和的标准化形式以概率1收敛于稳定分布。
9. 辛钦大数定律的弱形式:对于独立同分布的随机变量序列,其平均值收敛于期望值的概率为1。
10. 多重大数定律:对于多个随机变量序列,其平均值以概率1收敛于各自的期望值。
11. 大数定律的强形式:对于独立同分布的随机变量序列,其平均值收敛于期望值的概率为1。
12. 独立非同分布大数定律:对于独立非同分布的随机变量序列,其平均值以概率1收敛于各自的期望值。
13. 独立同分布大数定律的弱形式:对于独立同分布的随机变量序列,其平均值收敛于期望值的概率为1。
14. 辛钦大数定律的强形式:对于独立同分布的随机变量序列,其平均值收敛于期望值的概率为1。
15. 大数定律的加法形式:对于独立同分布的随机变量序列,其和以概率1收敛于各自的期望值之和。
16. 大数定律的乘法形式:对于独立同分布的随机变量序列,其乘积以概率1收敛于各自的期望值之积。
17. 大数定律的极限形式:对于独立同分布的随机变量序列,其平均值以概率1收敛于期望值的极限。
18. 大数定律的收敛速度:随着试验次数的增加,随机变量的平均值与期望值之间的差异逐渐减小。