VDMOS基本工艺流程
- 格式:ppt
- 大小:1.65 MB
- 文档页数:20
VDMOS功率晶体管的版图设计系专业姓名班级学号指导教师职称指导教师职称设计时间摘要VDMOS 是微电子技术和电力电子技术融和起来的新一代功率半导体器件。
因具有开关速度快、输入阻抗高、负温度系数、低驱动功率、制造工艺简单等一系列优点,在电力电子领域得到了广泛的应用。
目前,国际上已形成规模化生产,而我国在 VDMOS 设计领域则处于起步阶段。
本文首先阐述了 VDMOS 器件的基本结构和工作原理,描述和分析了器件设计中各种电性能参数和结构参数之间的关系。
通过理论上的经典公式来确定 VDMOS 的外延参数、单胞尺寸和单胞数量、终端等纵向和横向结构参数的理想值。
根据结构参数,利用L-edit版图绘制软件分别完成了能够用于实际生产的60V、100V、500V VDMOS 器件的版图设计。
在此基础之上确定了器件的制作工艺流程,并对工艺流水中出现的问题进行了分析。
最后,总结全文,提出下一步研究工作的方向。
关键词:,功率半导体器件,版图设计,原胞,击穿电压目录第1章绪论电力电子系统是空间电子系统和核电子系统的心脏,功率电子技术是所有电力电子系统的基础。
VDMOSFET 是功率电子系统的重要元器件,它为电子设备提供所需形式的电源以及为电机设备提供驱动。
几乎大部分电子设备和电机设备都需用到功率 VDMOS 器件。
VDMOS 器件具有不能被横向导电器件所替代的优良性能,包括高耐压、低导通电阻、大功率和可靠性等。
半导体功率器件是电力电子系统进行能量控制和转换的基本电子元器件,也称为电力电子开关器件。
它是用来进行高效电能形态变换、功率控制与处理,以及实现能量调节的新技术核心器件。
电力电子技术的不断发展为半导体功率器件开拓了广泛的应用领域,而半导体功率器件的可控制特性决定了电力电子系统的效率、体积和重量。
实践证明,半导体功率器件的发展是电力电子系统技术更新的关键。
通常,半导体功率器件是一种三端子器件,通过施加于控制端子上的控制信号,控制另两个端子处于电压阻断(器件截至)或电流导通(器件导通)状态。
VDMOS基本工艺流程1.衬底制备:选择衬底材料,通常使用N型硅衬底。
首先对硅衬底进行清洗和化学处理,去除表面的污染物和氧化层。
然后进行蓝光热膨胀法或粒子嵌入法,制备高质量的衬底。
2.掺杂:在衬底上通过离子注入技术掺入杂质,以改变衬底的电性质。
常用的杂质有硼、磷等。
掺杂的目的是形成P型浓度的因子区和N型浓度的沟道区。
3.管芯生长:在衬底上生长氧化硅薄膜(SiO2)。
氧化硅薄膜作为绝缘层和通道层,在后续步骤中起关键作用。
通常通过湿法氧化或化学气相沉积(CVD)方法生长氧化硅薄膜。
4.四个金属线通道的掺杂:通过离子注入技术,在氧化硅薄膜上刻蚀开沟槽,然后在沟槽中注入掺杂杂质,形成四个金属线通道。
这些金属线通道是导电的,用于控制器件的电流流动。
5. 介电层的形成:在金属线通道上方制备一层介电材料,用于隔离金属线通道和栅极。
常用的介电材料是多晶硅(Polysilicon)或LPCVD SiO26.栅极的形成:通过化学气相沉积或物理气相沉积的方法,在介电层上沉积金属薄膜,例如铝或铜。
然后使用光刻和蚀刻技术,将金属薄膜形成栅极结构。
7.开窗:使用光刻技术,在栅极上方开出源极和漏极的掩膜。
然后使用化学蚀刻等方法,将介电层和金属线通道暴露出来,形成源极和漏极。
8.金属的沉积:在开窗区域内,使用物理气相沉积或化学气相沉积的方法,沉积金属膜用作源极和漏极的接触电极。
常用的金属材料有铝或铜。
9.接触孔的开孔和金属的沉积:使用光刻和蚀刻技术,在栅极和金属线通道之间开孔形成接触孔。
然后通过物理气相沉积或化学气相沉积的方法,在接触孔内沉积金属薄膜,与金属线通道形成电性接触。
10.热处理:在制程的后期,对器件进行热处理,以消除应力和提高电气性能。
热处理可以通过退火或快速热退火等方法进行。
以上是VDMOS的基本工艺流程。
在实际制程中,还会包括掩膜设计、光刻、蚀刻、清洗等步骤。
VDMOS工艺流程的关键在于掺杂和金属结构的形成,通过精确的步骤和工艺参数,可以制备出高性能的VDMOS器件。