以太网交换机交换方式学习资料讲解
- 格式:docx
- 大小:10.54 KB
- 文档页数:4
以太网交换机交换方式学习以太网交换机交换方式学习在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。
AD:在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。
在实际使用时,一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。
交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。
交换机拥有一条很高带宽的背部总线和内部交换矩阵。
交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。
交换机在同一时刻可进行多个端口对之间的数据传输。
每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。
当节点A向节点D发送数据时。
节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。
和HUB的一点小区别假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于2×10Mbps=20Mbps,而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出 10Mbps。
HUB集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。
以太网交换机交换方法
以太网交换机的交换方法主要有存储转发和剪辑转发两种。
1. 存储转发:当交换机接收到一个数据帧时,会先将整个数据帧保存在接收缓冲区中,并进行CRC校验等处理。
然后,交换机会解析数据帧的目的MAC地址,查询交换表中的目的MAC地址对应的端口,并将数据帧转发到目标端口。
这种交换方法的优点是能够避免传输错误的数据帧,并具有较低的时延。
2. 剪辑转发:当交换机接收到一个数据帧时,会立即开始转发该数据帧,而不等待整个数据帧接收完毕。
它会读取数据帧的目的MAC地址,并进行快速判定,确定数据帧应转发到哪个端口。
这种交换方法的优点是能够更快速地转发数据帧,但由于还未对数据帧进行完整性校验,可能会导致错误数据帧的传输。
两种交换方法各有优劣,存储转发适用于对数据完整性要求较高的场景,而剪辑转发适用于对实时性要求较高的场景。
在实际使用中,交换机会根据不同的配置和需求选择合适的交换方法。
网络知识基础之:网络交换机的交换方式交换机通过以下三种方式进行交换:(1) 直通式直通方式的以太网交换机可以理解为在各端口间是纵横交叉的线路矩阵电话交换机。
它在输入端口检测到一个数据包时,检查该包的包头,获取包的目的地址,启动内部的动态查找表转换成相应的输出端口,在输入与输出交叉处接通,把数据包直通到相应的端口,实现交换功能。
由于不需要存储,延迟非常小、交换非常快,这是它的优点。
它的缺点是,因为数据包内容并没有被以太网交换机保存下来,所以无法检查所传送的数据包是否有误,不能提供错误检测能力。
由于没有缓存,不能将具有不同速率的输入/输出端口直接接通,而且容易丢包。
(2) 存储转发存储转发方式是计算机网络领域应用最为广泛的方式。
它把输入端口的数据包先存储起来,然后进行CRC(循环冗余码校验)检查,在对错误包处理后才取出数据包的目的地址,通过查找表转换成输出端口送出包。
正因如此,存储转发方式在数据处理时延时大,这是它的不足,但是它可以对进入交换机的数据包进行错误检测,有效地改善网络性能。
尤其重要的是它可以支持不同速度的端口间的转换,保持高速端口与低速端口间的协同工作。
(3) 碎片隔离这是介于前两者之间的一种解决方案。
它检查数据包的长度是否够64个字节,如果小于64字节,说明是假包,则丢弃该包;如果大于64字节,则发送该包。
这种方式也不提供数据校验。
它的数据处理速度比存储转发方式快,但比直通式慢。
简略的概括一下交换机的基本功能:1. 像集线器一样,交换机提供了大量可供线缆连接的端口,这样可以采用星型拓扑布线。
2. 像中继器、集线器和网桥那样,当它转发帧时,交换机会重新产生一个不失真的方形电信号。
3. 像网桥那样,交换机在每个端口上都时使用的相同转发或过滤逻辑。
4. 像网桥那样,交换机将局域网分为多个冲突域,每个冲突域都是有独立的宽带,因此大大提高了局域网的宽带。
5. 除了具有网桥、集线器和中继器的功能以外,交换机还提供了更先进的功能,如虚拟局域网(VLAN)和更高的性能。
以太网交换机原理培训以太网交换机作为现代网络中不可或缺的设备,其原理和工作方式是学习网络基础知识的重要内容之一、本文将详细介绍以太网交换机的原理,并通过对其工作流程、数据转发方式和冲突处理机制的解释,帮助读者更好地理解它的工作原理。
以太网交换机是一种用于局域网(LAN)的设备,它能够接收、处理和转发以太网帧(Frame)。
以太网是一种常用的局域网技术,也是现代计算机网络中最常用的物理层和数据链路层协议。
它通过在物理介质上传输数据,使用MAC地址来标识不同的设备。
首先,当交换机接收到一个帧时,它会检查帧中的MAC地址,并将该地址与交换机内部的MAC地址表进行比对。
如果交换机在MAC地址表中找到了目标地址,说明目标设备直接连接到交换机的一些端口上,此时交换机会将帧直接发送到相应的端口。
这个过程被称为学习,因为交换机会将源MAC地址和对应的端口映射关系添加到它的MAC地址表中。
如果交换机在MAC地址表中没有找到目标地址,它会将帧发送到除接收端口外的所有端口上。
这是因为交换机没有确定目标设备的位置,所以需要将帧广播到局域网中的所有设备。
这个过程称为广播。
在广播过程中,交换机会将源MAC地址和对应的端口映射关系加入到MAC地址表中。
最后,当目标设备接收到帧之后,它会将帧中的目的MAC地址与自己的MAC地址进行比对。
如果两者一致,说明帧是发送给自己的,目标设备就会处理这个帧。
如果不一致,目标设备会直接丢弃这个帧。
这个过程被称为转发,因为交换机将帧从一个接口转发到另一个接口。
除了基本的学习、广播和转发功能之外,以太网交换机还具有一些其他的功能,比如冲突处理机制。
在早期的以太网中,由于所有设备都可以同时访问物理介质,会导致很多冲突。
为了解决这个问题,以太网交换机引入了冲突域的概念。
冲突域是指一个物理子网中,所有设备共享的物理介质。
通过将每个端口连接的设备划分到独立的冲突域中,以太网交换机可以有效地减少冲突。
当一个帧从一个冲突域发送到另一个冲突域时,交换机会将帧拆分成更小的帧,并为每个帧分配不同的传输时间。
网络交换机培训资料一、网络交换机的定义和作用网络交换机是一种用于在计算机网络中连接多个设备并实现数据交换的设备。
它就像是一个交通枢纽,负责在不同的设备之间快速、准确地传输数据。
网络交换机的主要作用包括:1、提供网络连接:将多个计算机、服务器、打印机等设备连接在一起,形成一个局域网(LAN)。
2、提高网络性能:通过智能地转发数据,减少网络拥塞,提高数据传输速度和效率。
3、分割网络冲突域:有效地减少网络中的冲突,使每个连接到交换机端口的设备都能独立地进行数据传输。
4、增强网络安全性:可以对网络流量进行控制和管理,限制某些设备的访问权限,提高网络的安全性。
二、网络交换机的分类1、按网络覆盖范围分类局域网交换机:主要用于构建小型的局域网,如办公室、家庭网络等。
广域网交换机:用于连接不同地理区域的网络,如城域网、广域网等。
2、按传输速率分类10Mbps 交换机:适用于低速网络环境。
100Mbps 交换机:较为常见的中速交换机。
1000Mbps(1Gbps)交换机:能满足高速数据传输需求。
10Gbps 及以上交换机:用于对带宽要求极高的网络环境,如数据中心。
3、按工作层次分类二层交换机:基于 MAC 地址进行数据转发,是最常见的交换机类型。
三层交换机:除了具备二层交换机的功能外,还具有路由功能,可以基于 IP 地址进行数据包转发。
四层及以上交换机:能够基于更高层的协议信息(如端口号)进行数据处理和转发,通常用于大型企业网络和数据中心。
三、网络交换机的工作原理网络交换机通过学习连接到其端口的设备的 MAC 地址来工作。
当一个数据包到达交换机时,交换机会查看数据包的目的 MAC 地址,并根据其学习到的 MAC 地址表将数据包转发到相应的端口。
如果目的MAC 地址不在地址表中,交换机将把数据包广播到所有端口(除了接收端口),以查找目标设备。
交换机还采用了存储转发和直通转发两种数据转发方式。
存储转发方式会先接收整个数据包,进行错误检查后再转发;直通转发方式则在收到数据包的头部信息后就立即转发,提高了数据传输的速度,但可能会转发错误的数据包。
3.2以太网交换机3.2.1 以太网交换机的工作原理图3.7 以太网交换机交换机用以替代集线器将 PC、服务器和外设连接成一个网络。
因为集线器是一个总线共享型的网络设备,在集线器连接组成的网段中,当两台计算机通讯时,其它计算机的通讯就必须等待,这样的通讯效率是很低的。
而交换机区别于集线器的是能够同时提供点对点的多个链路,从而大大提高了网络的带宽。
图3.8 以太网交换机中的交换表交换机的核心是交换表。
交换表是一个交换机端口与MAC地址的映射表。
一帧数据到达交换机后,交换机从其帧报头中取出目标MAC地址,通过查表,得知应该向哪个端口转发,进而将数据帧从正确的端口转发出去。
如图3.13所示,当左上方的计算机希望与右下方的计算机通讯时,左上方主机将数据帧发给交换机。
交换机从e0端口收到数据帧后,从其帧报头中取出目标MAC地址0260.8c01.4444。
通过查交换表,得知应该向e3端口转发,进而将数据帧从e3端口转发出去。
我们可以看到,在e0、e3端口进行通讯的同时,交换机的其它端口仍然可以通讯。
例如e1、e2之间仍然可以同时通讯。
如果交换机在自己的交换表中查不到该向哪个端口转发,则向所有端口转发。
当然,广播数据报(目标MAC地址为FFFF.FFFF.FFFF的数据帧)到达交换机后,交换机将广播报文向所有端口转发。
因此,交换机有两种数据帧将会向所有端口转发:广播帧和用交换表无法确认转发端口的数据帧。
交换机的核心是交换表。
那么交换表是如何得到的呢?交换表是通过自学习得到的。
我们来看看交换机是如何学习生成交换表的。
交换表放置在交换机的内存中。
交换机刚上电的时候,交换表是空的。
当0260.8c01. 1111主机向0260.ec01.2222主机发送报文的时候,交换机无法通过交换表得知应该向哪个端口转发报文。
于是,交换机将向所有端口转发。
虽然交换机不知道目标主机0260.ec01.2222在自己的哪个端口,但是它知道报文是来自e0端口。
以太网交换机交换方
式学习
以太网交换机交换方式学习
在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。
AD
在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。
在实际使用时,一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。
交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的
始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。
交换机拥有一条很高带宽的背部总线和内部交换矩阵。
交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。
交换机在同一时刻可进行多个端口对之间的数据传输。
每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。
当节点A向节点D发送数据时。
节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。
和
HUB的一点小区别假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于 2 X
10Mbps=20Mbps而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出10Mbps。
HUB集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数
据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。
也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。
这种方式就是共享网络带宽
从广义上来看,交换机分为两种:广域网交换机和局域网交换机。
广域网交换机主要应用于电信领域,提供通信用的基础平台。
局域网交换机则应用于局域网络,用于连接终端设备,如PC机及网络打印机等。
从传输介质和传输速度上可分为以太网交换机、快速以太网交换机、千兆以太网交换机、FDDI交换机、ATM交换机和令牌环交换机等。
从规模应用上又可分为企业级交换机、部门级交换机和工作组交换机等。
各厂商划分的尺度并不是完全一致的,一般来讲,企业级交换机都是机架式,部门级交换机可以是机架式
(插槽数较少),也可以是固定配置式,而工作组级交换机为固定配置式(功能较为简单)。
另一方面,从应用的规模来看,作为骨干交换机时,支持500个信息点以上大型企业应用的交换机为企业
级交换机,支持300个信息点以下中型企业的交换机为部门级交换机,而支持100个信息点以内的交换机
为工作组级交换机。
交换机的主要功能包括物理编址、网络拓扑结构、错误校验、帧序列以及流控。
目前交换机还具备了一些
新的功能,如对VLAN(虚拟局域网)的支持、对链路汇聚的支持,甚至有的还具有防火墙的功能。
交换机除了能够连接同种类型的网络之外,还可以在不同类型的网络(如以太网和快速以太网)之间起到互连作用。
如今许多交换机都能够提供支持快速以太网或FDDI等的高速连接端口,用于连接网络中的其它
交换机或者为带宽占用量大的关键服务器提供附加带宽。
FDDI(Fiber Distributed Data Interface ,光纤分布式数据接口)指由ANSI X3T9.5定义的局域网标准,
规定了使用光纤电缆100-Mbps的令牌传递网络,其最大传输距离可达到2公里。
FDD I使用双环结构来提供冗余。
与CDDI和FDD I II相对一般来说,交换机的每个端口都用来连接一个独立的网段,但是有时为了提供更快的接入速度,我们可以把一些重要的网络计算机直接连接到交换机的端口上。
这样,网络的关键服务器和重要用户就拥有更快的接入速度,支持更大的信息流量。
交换机的交换方式:
交换机通过以下三种方式进行交换
1. 直通式:
直通方式的以太网交换机可以理解为在各端口间是纵横交叉的线路矩阵电话交换机。
它在输入端口检测到一个数据
包时,检查该包的包头,获取包的目的地址,启动内部的动态查找表转换成相应的输岀端口,在输入与输岀交叉处接通,把数据包直通到相应的端口,实现交换功能。
由于不需要存储,延迟非常小、交换非常快,这是它的优点。
它的缺点是,因为数据包内容并没有被以太
网交换机保存下来,所以无法检查所传送的数据包是否有误,不能提供错误检测能力。
由于没有缓存,不能将具有不同速率的输入/输岀端口直接接通,而且容易丢包。
2. 存储转发:
存储转发方式是计算机网络领域应用最为广泛的方式。
它把输入端口的数据包先存储起来,然后进行
CRC循环冗余码校验)检查,在对错误包处理后才取岀数据包的目的地址,通过查找表转换成输岀端口送岀包。
正因如此,存储转发方式在数据处理时延时大,这是它的不足,但是它可以对进入交换机的数据包进行错
误检测,有效地改善网络性能。
尤其重要的是它可以支持不同速度的端口间的转换,保持高速端口与低速端口间的协同工作。
3. 碎片隔离:
这是介于前两者之间的一种解决方案。
它检查数据包的长度是否够64个字节,如果小于64字节,说明是
假包,则丢弃该包;如果大于64字节,则发送该包。
这种方式也不提供数据校验。
它的数据处理速度比存储转发方式快,但比直通式慢。
以太网交换机的应用如果你的以太网络上拥有大量的用户、繁忙的应用程序和各式各样的服务器,而且你
还未对网络结构做岀任何调整,那么整个网络的性能可能会非常低。
解决方法之一是在以太网上添加一个
10/100Mbps的交换机。
它不仅可以处理10Mbps的常规以太网数据流,而且还可以支持100Mbps的快速以太网连接。
如果网络的
利用率超过了40%并且碰撞率大于10%交换机可以帮你解决一点问题。
带有100Mbps快速以太网和10Mbps以太网端口的交换机可以全双工方式运行,可以建立起专用的20Mbps 到200Mbps连接。