当前位置:文档之家› 中频电炉无功补偿和谐波治理的成功案例(DOC)

中频电炉无功补偿和谐波治理的成功案例(DOC)

中频电炉无功补偿和谐波治理的成功案例(DOC)
中频电炉无功补偿和谐波治理的成功案例(DOC)

815V、5吨中频电炉无功补偿和谐波治理的成功案例

2007-4-27

天津市津开电气有限公司总经理盖福健高级工程师孙泽林

关键词:中频电炉、无功功率、无功补偿、谐波、间谐波、谐波治理、变流、变频、谐波电流、谐波电流

放大、博里叶级数

1.绪论:

随着电力电子技术的飞速发展,我国的工矿企业中,电力电子器件的大量应用,可控、全控晶

闸管作为为主要开关元件,电力电子器件的整流设备,变频、逆变等非线性负荷设备的广泛应用,谐波问题亦日益广泛的提出。诸如谐波干扰、谐波放大、无功补偿失效及谐波无功电流对供电系统的影响等。上述电力电子设备是谐波产生的源头。谐波电流的危害是严重的,主要有以下几个方面:

·谐波电流在变压器中,产生附加高频涡流铁损,使变压器过热,降低了变压器的输出容量,使变压器噪声增大,严重影响变压器寿命。

·谐波电流的趋肤效应使导线等效截面变小,增加线路损耗。

·谐波电流使供电电压产生畸变,影响电网上其它各种电器设备不能正常工作,导致自动控制装置误动作,仪表计量不准确。

·谐波电流对临近的通讯设备产生干扰。

·谐波电流使普通电容补偿设备产生谐波放大,造成电容器及电容器回路过热,寿命缩短,甚至损坏。·谐波电流会引起公用电网中局部产生并联谐振和串连谐振,造成严重事故及不良后果。

2.概述

2.1天津市某铸造公司(简称铸造公司)为生铁铸造企业,工厂主要设备为两台500HZ中频感应电炉以溶化生铁进行铸造,因采用中频电炉,故由于变流及变频等原因造成用电谐波超标,功率因数过低,为此进行设备改造以提高功率因数,治理谐波,节约能源,提高电网质量,降耗增容。

2.2中频电炉运行主要参数

①电炉为长期间断运行,运行时间每炉出铁冷炉约为2.5小时,热炉约2小时。

②在正常运行时高压侧工作电流为150~160A。整流变压器二次侧为六相十二脉波输出。

③现场仪表指示数据

一次测电压10.2KV 二次测电压815V×2

一次测电流157A 二次测电流992A×2

一次测功率因数COS?=0.6~0.7最低COS?=0.23最高COS?=0.79予升温COS?=0.49

保温COS?=0.23~0.49

加温COS?=0.72~0.79

2.3中频炉一次系统图

2.4 中频炉谐波测试

电流谐波含量

A相30.43%

B相27.81%

C相29.65%

电流谐波含量如棒图

电流谐波含量针对5、7、11、13次谐波数值

整流变压器侧电压和电流波形

①电压波形在电流谐波影响下发生畸变,但不失交流正弦波基本波形,其电压畸变率以严重超标。

②整流变压器侧电流畸变比较严重,其电流谐波畸变率达30%以上,由于中频炉全控整流系统调整,测控,晶闸管性能等因素,电流谐波中杂谐波(间谐波)存在量较多,故中频炉17次~63次谐波均有含量,但由于谐波率较小,对电网及设备均无太大影响。

3.FTFC动态无功补偿工作原理及特点

3.1 FTFC动态无功补偿工作原理

FTFC系列动态无功补偿滤波装置,主要由监控终端、开关模块、电容器、电抗器、断路器、机柜等构成,控制器采用前馈式检测(三相平衡负荷、采集单相信号;三相不平衡负荷,采集三相信号),以负载的实时无功功率为投切物理量,应用瞬时无功控制理论及网压支持算法,在20ms内完成信号数据采集、计算、及控制输出;投切开关接到投切指令后,在小于10ms内完成零电流投入,投切无涌流,对电网无冲击,并且在主电路和开关中采取措施,避免了投切电容的冲击,使运行更加稳定、安全、可靠。

对于标准5~7次谐波含量较大的用电设备中亦采用标准型的谐波滤波装置主要适用于含有少量谐波,负荷变化较快的系统中。一般情况下,在这种系统中,单纯投切电容器组的无功补偿装置是不能直接使用的,危害有三:一为并联电容器组对谐波的放大,电容器组与电网形成并联谐振使谐波电流放大,以致于电压及电流的畸变更为严重;二为谐波对并联电器的直接影响,谐波电流叠加在电容器的基波电流上,使电容器的电流有效值增大,温升增大,会降低电容器的使用寿命或使电容器损害;三为难以跟踪快速变化的负载,容易引起过补和欠补,导致网压波动。针对于此。在谐波含量小于30%的系统中无功补偿装置应该串接调谐电抗器,使此回路中的谐振频率调谐低于最低次谐波,使其在工频呈电容性,改善功率因数,在谐振频率时呈感性,防止谐振的发生,以防止谐波的放大,调谐型FTFC动补标准装置能吸收5次谐波大于40%

对于谐波含量比较大的系统中FTFC装置由电容器串联滤波电抗器组合而成,在工频呈电容性,改善功率因数,在所设计的谐振频率时形成串联谐振,使此L-C回路在此频率时形成非常低的阻抗,而能吸收大部分的谐波电流,从而改善系统中电压和电流的谐波畸变率。在实际工作中,负载特性和容量不尽相同,根据情况,设计不同的用途(单调谐、双调谐、高通、组合等),不同谐振频率(5次7次11次13次等),不同容量的谐波滤波器,滤波型FTFC一般需要非标准设计。

非标组合投切方式或独立投切方式允许再带多台滤波柜

3.2 FTFC动态无功补偿及谐波治理装置的主要特点:

①快速投切技术,无电流冲击,并且达到TCR同等补偿速率;

②占地面积小基建成本低,低压操作安全,维护容易;

③装置不产生谐波,铁心电抗器无射频干扰;

④可以有效减少供配电系统损耗,节能效果显著;

⑤可以解决用户的增容问题

⑥可以滤除用户谐波,净化电网,供配电系统及自动控制系统运行更为安全可靠;

⑦零电流投切,不会产生振荡现象。系统响应时间≤30ms。

⑧装置补偿故障时自动退出,不会影响整个供电系统。

⑨采用防暴、自愈、滤波型电容器。

4.谐波治理投切方式的分析

对于谐波治理的投切方式一般可分为两种形式:

对用户负载为连续操作运行,运行中负荷功率无较大的上、下波动,而在有较大波动变化时,其变化速率较慢,中频炉基本上属于这种形式,所以可以采用静态补偿方式,用普通接触器投切电容,此种方案制造成本低,易于被用户接受,但其缺点较多,分析如下:

a. 接触器投切,电容器涌流较大,一般为电容器额定电流180~200倍对电网冲击较大,就是加装限涌流手段,标准规定也在50倍额定电流以下,对电网和工厂用电设备有很大危害,尤其对有晶闸管变流设备的企业中易造成晶闸管损坏。

b. 装置易产生谐波振荡,和谐波放大,尤其采用空心电抗器易产生射频,直接影响附近设备的工作可靠性及寿命。

c. 接触器直接投切除产生涌流外,同时还应保证给予一定的电容器断电后的放电时间,一般在15~60秒左右否则容易造成操作过电压而损坏电容或其它电气原件,故此不能做到电容器的快速投切,同时由于接触器长期投入和切除一个大于几十倍电容器额定电流的涌流,此时接触器触头寿命下降,易熔焊从而造成电容器损坏和补偿精度下降。严重时会造成较重大事故。

d. 用接触器投切电容,一般为等容量电容器循环投切,很难按负载变化,和功率因数变化即时进行容量调节,而投入电容器。这样易产生电容器的投入,切除过程中COSΦ值在超前和滞后间的振荡,直接影响电网质量。

形式二:

即用晶闸管投切装置进行投切,电容器的投入与切除均在电容器电流过零时进行,无涌流,对电网无干扰,电容器的投切容量完全由控制器对电压电流等参数运算后给出,控制器给出信号按1、2、4、8、二进制编码运算得出,而直接控制晶闸管,投切速度快,可以做到毫秒级,从信号采集,运算,控制输出全过

程≤30ms,晶闸管投切速度一般为≤10ms,其方案原理图见前面线路示意图。

针对铸造公司的现场情况,按形式二选用天津市津开电气有限公司生产的FTFC智能型动态无功补偿晶闸管滤波装置进行无功补偿和谐波治理。

5.补偿容量的计算和确定

5.1 计算依据

①变压器一次侧实测数据

电压10KV~10.4KV

电流:157A(运行满负荷时)

功率因数COSΦ= 0.49~0.79

②变压器二次侧电压815V*2

功率因数COSΦ= 0.23~0.79

③谐波含量(5、7、11、13次谐波)见前谐波含量表

5.2功率计算

5.2.1变压器视在功率2800KVA

视在电流(高压侧额定满载工作电流)157A

中频炉视在功率2500KVA

变压器高压侧功率因数(平均值)COSΦ=0.65

中频炉有功功率P= S*COSΦ= 2800*0.65 = 1820KW

中频炉无功功率Q= S2-P2 = 25002-18202 = 1700kvar

中频炉功率因数COSΦ= P/S= 1820/2500 = 0.728

5.2.2设计补偿容量的确定

设计补偿容量

Q=675*2=1350kvar

补偿步数为三步1.2编码投切

1步投入322uf 201kvar×2

2步投入778uf 487kvar×2

1+2步投入1088uf 688kvar×2

总补偿量1376 kvar

注:设计补偿切入点在整流变压器二次侧(815V侧)进行

6.补偿效果及谐波治理效果

6.1节能情况:(见表)

6.2谐波治理效果

6.2.1电流谐波棒图

电流含量

A相10.76%

B相9.8%

C相10.42%

6.2.2电压谐波下降率(平均值)

6.2.3电流谐波下降率(平均值)

说明:治理前后电流谐波下降率效果是明显的,尤其对于5、7次谐波,针对铸造公司选用的是12脉波整流变压器,理论证明,对12脉波整流变反映到一次侧10KV电网时其5、7次电流谐波应为零。只有11、13次谐波在电网侧可以记录,但从上表记录可以看出其值已很小。

7.设计依据标准

GB/T14549-93 《电能质量,公用电网谐波》;

GB/T15576-1995 《低压无功功率静态补偿装置总技术条件》

GB3983.1-89 《低电压并联电容器》;

GB7251.1-2005 低压成套开关设备和控制设备

GB4208-93 外壳防护等级(IP代码)

GB3797-89 电控设备第二部分装有电子器件的电控设备

GB4720-84 电控设备第一部分低压电器电控设备

GB12747-91 自愈式低压并联电容器

8.结论

8.1无功功率动态补偿谐波治理的理论是可行的。

8.2FTFC智能型动态无功补偿晶闸管滤波装置整体设计是合理的,设计参数是基本正确的,并能保证可靠运行。装置结构先进,技术含量高,产品符合有关国家标准要求。

8.3装置投入后节能效果明显,视在功率下降20.9%,变压器及电网系统线损下降≥40%,变压器增容≥20%。

8.4装置投入后谐波治理效果明显,电压及电流谐波指数均能满足GB/T14549-93“电能质量公用电网谐波”国标要求。

附件一

应用运算公式

(1) 感抗X L=(Ω)

(2) 容抗X C=(Ω)

(3) 阻抗Z=(Ω)

(4) 有功功率P=U I COSФ (W KW)

(5) 无功功率Q=U I SINФ (var kvar)

(6) 视在功率S=U I= (V A KV A)

(7) 功率因数COSФ=

(8) 三相有功功率P=U I COSФ(KW)

(9) 三相无功功率Q=U I SINФ(kvar)

(10) 三相视在功率S=UI (KVA)

(11) 电容器电容值C=(F uf PF)

(12) 电容器的无功功率Q C==(var kvar)

(13) 电容器的电流I C==0.314CU (A)

(14) 三相电容器电流I C=(A)

(15) 博里叶级数分解谐波电流(计算机运算)

i1=

谐波次数K=5、7、11、13..........=6n±1 n=正整数=1、2、3、4………..

(16) 频率计算f=(HZ)

谐波与无功补偿技术原理

波功功率补偿术谐波和无功功率补偿技术 基本原理 基本原 1

目录 第1章绪论 1.1电能质量控制技术简介 谐波与无功简介 第2章谐波和无功功率 2.1谐波和谐波分析 无功功率和功率因数 谐波和无功功率的产生 2.4无功功率的影响和谐波的危害

第1章绪论 1.1电能质量控制技术简介 11 1.2谐波与无功简介 12 3/

111.1 电能质量控制技术简介 电能质量问题 1.1.2电能质量问题的典型危害和影响电能质量控制技术分类 1.1.4电力电子技术与电力系统、电能质量 控制的关系 1.1.5用于电能质量控制的新型电力电子装置用能质控制新力子装 4/

111 1.1.1 电能质量问题z 频率的问题z 幅值的问题 –稳态过电压、欠电压及电压波动–闪变(flicker ) –幅值凹陷(sag ,dip )、凸升(swell )、短时中断(interruption ) z 波形和对称度的问题 –三相不对称(imbalance )–谐波(harmonics )–缺口(notching ) –暂态脉冲(impulsive transient )、暂态振荡( oscillatory transient )5/ p y

112 1.1.2 电能质量问题的典型危害和影响电压频率不稳,不对称,以及稳态过电压、欠电压及电压波动、闪变等的危害。z 谐波 –使产生、传输和利用电能的效率降低; 使电气设备过热振动产生噪音或绝缘老化缩短–使电气设备过热、振动、产生噪音或绝缘老化,缩短其寿命,甚至发生故障、烧毁;–使继电保护和自动装置误动作;–对通信和电子设备产生干扰。z 电压骤降 对精密仪器设备的危害 6/ –对精密仪器设备的危害;–给高产值的连续生产过程造成的损失。

谐波干扰问题分析与谐波治理方法建议

谐波干扰问题分析与谐波治理方法建议 一、存在的谐波干扰问题介绍 某科技发展有限公司主要从事先进陶瓷材料相关技术、产品和系统的研发,涉及生物医学材料、新能源材料、电子信息材料、化工陶瓷材料、以及多功能结构陶瓷材料等领域。 该公司目前新安装的300KW中频烧结炉,可控硅控制功率加热,出现功率因数低0.3-0.5,谐波大,造成共用的容量1250Kvar供电变压器配置的容量为600Kvar无功补偿电容装置产生过热保护无法正常投切运行等问题。 二、谐波干扰状况分析 随着我国制造业的蓬勃发展和人民生活水平的不断提高,电力电子技术在电网设备中得到广泛应用,大量的非线性负荷广泛应用在工业、商业和民用电网中,给电网造成的污染问题越来越得到重视。如在一般工业领域使用的中频炉、变频器、软启动器、电弧炉、轧机、电解槽、电镀槽等负荷,商业和民用领域如节能灯、气体灯具、变频空调、电脑、冰箱等,都产生大量的谐波,尤其是近几年在我国节能技术产业的发展过程中出现了各种类型的专用节电装置,这些节电装置采用的均是电力电子控制技术如变频控制和可控硅调压原理,属典型的谐波源,大量使用导致谐波的产生,轻者影响供电质量使制造工艺较为精细的产品质量受到影响,或者由于在节电过程中使用的节电器具产生的谐波导致谐振,而使无功得不到满意补偿甚至不补偿影响节电效果,重者导致电气设备长期发热,降低使用寿命甚至损坏、火灾,危害电网安全。 为了便于对北京某科技发展有限公司新安装使用的中频烧结炉产生谐波危害进行分析,特地借鉴下列两组关联数据

用以推断可能产生谐波的含量。 借鉴测试数据一:2014年5月9日浙江某公司新安装使用的中频烧结炉的现场测试数据显示,该中频烧结炉运行时电源进线上基波电流在17-391A有功功率在7.8-118.5KW,谐波电压总畸变率5.7-6.3%,谐波电流总畸变率42-72.9%,功率因数在0.33-0.64范围内波动。 借鉴测试数据二:2014年6月22日领步公司应邀对某新型材料(江苏)有限公司生产线300KW中频烧结炉的谐波测试数据如下:运行电流在250A时谐波参数,谐波电压总畸变率4.4%,谐波电流总畸变率29.9%;运行电流在365A时谐波参数,谐波电压总畸变率6.7%,谐波电流总畸变率30.1% 运行电流 在250A时 谐波参数

浅谈谐波的含义及为什么必须治理

浅谈谐波的含义及为什么必须治理 安科瑞王长幸 江苏安科瑞电器制造有限公司江苏江阴214405 1引言 随着科技发展,电子产品大量应用,电网中谐波大量产生,作为设计人员需要了解谐波的成因及危害,以便更好地防御及治理,提高电能质量。 近年来,电气产品行业出于节能和生产的需要,积极运用新技术,大量地运用了可控变流装置、变频调速装置等非线性负荷设备。其所产生的谐波问题直接影响到了公用电网的电能质量,已引起人们的广泛重视。 2谐波产生的原因及影响 2.1谐波的成因 电网中的谐波主要指频率为工频(基波频率)整数倍成分的谐波及工频非整数成分的间谐波,它们都是造成电网电能质量污染的重要原因。根据大量现场测试的分析结果证实,电力变压器也是电力系统中谐波的一个重要谐波源。电力变压器的激磁电流、铁心饱和及三相电路和磁路的不对称,致使在变压器三角绕组的线电压和线电流中也仍然存在三次谐波分量,尤其在负荷低谷时,随着电网电压的升高,变压器铁心饱和程度加剧,产生的谐波含量也随之增大。随着电网大量电容装置的投运,通过对现场谐波实测发现,谐波并不是只有零序分量可被变压器三角绕组所环路,而是波及全网,并给电容装置及电网的正常运行带来影响和威胁。 在民用建筑中,UPS电源、电子调速装备、节能型灯具及家用电器中的计算机、微波炉等电力电子设备和电器设备应用的大量增加,以及医院等特殊场合的放射X光机、CT机等大型医疗设备等,使各类非线性负荷注入电网的谐波日益增多,造成电网电能质量的污染的影响也越来越大。在这些设备集中使用的地区,如医院、大型商场、居民小区、写字楼、酒店公寓等,谐波污染已相当严重。谐波污染的影响使电能质量明显下降,因此,对电能质量谐波污染的抑制和治理已刻不容缓。 2.2谐波源的分析 2.2.1电力电子设备 电力电子设备主要包括整流器、变频器、开关电源、静态换流器、晶闸管系统及其它SCR控制系统等。由于工业与民用电力设备常用到这类电力电子设备和电路,如整流和变频电路,其负载性质一般分为感性和容性两种,感性负载的单相整流电路为含奇次谐波的电流型谐波源。而容性负载的单相整流电路,由于电容电压会通过整流管向电源反馈,属于电压型谐波源,其谐波含量与电容值的大小有关,电容值越大,谐波含量越大。变频电路谐波源由于采用的是相位控制,其谐波成分不仅含有整数倍数的谐波,还含有非整数倍数的间谐波。 2.2.2可饱和设备 可饱和设备主要包括变压器、电动机、发电机等。可饱和设备是非线性设备,与电力电子设备和电弧设备相比,可饱和设备上的谐波在未饱和的情况下,其谐波的幅值往往可以忽略。 2.2.3电弧炉设备及气体电光源设备 ①电弧炉在熔炼金属过程中的非线性影响将产生大量的谐波 ②气体电光源包括荧光灯、霓虹灯、卤化灯。根据这类气体放电光源的伏安特性。其非线

谐波抑制与无功功率补偿

《谐波抑制与无功功率补偿》第二次作业 题目要求: 对于晶闸管可控整流电路,主电路为:1)三相桥式全控整流电路,变压器Yd11 联结(1:3) ;变压器一次侧相电压有效值U1=220V;阻感负载,R=30Ω,L=800mH,α=60°。 试设计LC 滤波器和电容补偿(如果需要的话),对上述负载的谐波和无功进行有效的补偿,使电源电流为与电源电压近似同相的正弦波(网测功率因数>0.96)。 要求: 1. 设计无源滤波器,并计算相应的参数。 2. 如果需要的话,设计计算无功补偿电容器。 3. 对建立的仿真电路进行仿真,给出有关的仿真波形,并对仿真结果进行分析。 4. 对设计步骤给出必要的文字说明。 按照要求,先进行滤波。对5、7、11、13次谐波采用单谐调滤波器,对13次以上谐波采用二阶高通滤波器。 所要确定的参数有:各单调谐滤波器与电阻R,电容C,电感L。 首先求最小补偿电容C min:在不加滤波和无功补偿的情况下,基波与各主要谐波情况如下图所示: 图1 基波与各次谐波电流 从图中可以看出, I f5≈1.411A I f7≈0.937A I f11≈0.626A I f13≈0.508A 根据教材给出的公式,按照最小安装容量求出最小电容器 C min=I f(n) (1)s × n2?1 nn2 将数据带入式(1),可以分别求出最小电容器分别为: C5=4.978μF C7=2.916μF C11=1.576μF

C13=1.126μF 调谐在n次谐波频率的单调谐滤波器电容器和电抗器关系是 n w s L= 1 nw s C (2) 据此可以求出各滤波器对应的电感L L5=81.14mH L7=70.89mH L11=53.1mH L13=49.4mH 取Q=45,分别求出对应的电阻值: R5=2.827Ω R7=3.46Ω R11=4.10Ω R11=5.06Ω对于高通滤波器,定义Q值为 Q=R X0 (2) 接下来,设计能滤掉13次以上谐波的高通滤波器,高通滤波器的特性可以由以下两个参数来描述: f0=1 (3) m= L R2C (4) 式(3)中,f0称为截止频率,高通滤波器的截止频率一般选为略高于所装设的单调谐滤波器的最高特征谐波频率。式(4)中的m是一个与Q直接有关的参数,直接影响着滤波器调谐曲线的形状,一般Q值取为0.7~1.4,相应的m值在2~0.5之间。电容按照无功补偿计算,设高通滤波器同时补偿容量为Q C=400var。 Q C= U2 C1L1 (5) 由式(5)与式(2)可以求出,C≈48μF。带入式(3)(4),取m=0.5可以求出,R≈5Ω,L≈6.25mH。 在滤波完成后,尚有较大无功,功率因数不满足题目要求,故对电路进行无功补偿。剩余的无功为Q≈232var Q=U2 C (6) 解得C≈28μF。 经过滤波与无功补偿,对所得的电路进行谐波分析,如下图所示。

中频炉谐波治理

中频炉滤波器----中频感应炉节能熔炼技术 摘要铸造企业是耗能大户,其中以中频炉耗电最多,同时也存在巨大的节能潜力。本文从企业用电环境入手,同时结合中频炉自身的节电空间,简要说明了中频炉节电的一些基本途径,这些办法已经在部分企业中实际应用,值得在铸造和其他使用中频炉的企业推广。中频炉节能熔炼技术对降低企业成本、提高企业生产竞争力有积极的作用,同时符合国家低碳经济政策,有较好的社会效益。 关键词中频炉无功补偿节能基本电费力调电费 1.前言 中频感应炉-采用变流技术,把50Hz电源变成150Hz—10kHz,然后利用感应涡流加热原理对金属进行加热熔炼,适合用于冶炼优质钢与合金。中频炉具有维护方便,操作简单可靠,可准确地控制且具有调整熔化速度快,溶液温度均匀等优点。 与冲天炉对比中频炉有节能、环保、工人作业环境好、劳动强度小等优点;与工频感应炉相比中频炉有融化速度快、生产效率高、适应性强、使用灵活、电磁搅拌效果好、启动操作方便等优点。 中频炉熔炼金属时需要消耗大量电能,其节能降耗也是一个受到企业和社会各方都关注的问题。现在笔者从企业用电环境入手,同时结合中频炉自身的节电空间,阐述一些中频炉节能降耗的基本途径。 2.新增中频炉设备时需了解尽量多的用电信息,从源头节约开支。 2.1到供电局电力确认现有线路容量能否满足中频炉用电要求

2.2了解当地供电政策,确认是否允许使用中频炉。 例如:广州部分地区禁止新增中频炉,如果在报装变压器前隐瞒情况,最后可能无法通过验收,即使设备安装上也无法送电。 2.3确认允许用电时间。 有些地方虽然供电局同意安装中频炉,但对这类用电大户的用电时间有限制,只允许在平、谷(或夜间)时间使用。 2.4各地峰、谷、平用电时间不同,不能照搬。 中山-高峰:14:00-17:00;19:00-22:00 平段:8:00-14:00;17:00-19:00; 22:00-24:00 低谷:0:00-8:00 佛山-高峰:9:00-12:00;19:00-22:00; 平段:8:00-9:00; 12:00-19:00; 22:00-24:00 低谷:0:00-8:00; 考虑错开用电高峰时间,连续生产时间中山比佛山长5个小时,用电政策优惠一些。 中山-22:00-24:00(平)0:00-8:00(谷)8:00-14:00(平) 佛山-22:00-24:00(平)0:00-8:00(谷)8:00-9:00(平) 2.5各地电价也不同。佛山比中山多了2.2分/kWh的燃气燃油加工费(平均增加3%用电成本)。 2.6中频炉对电网的谐波干扰比较大,新厂选址尽量远离医院、学校、精密加工企业。否则可能会遭到供电部门强行要求用电电能质量达国标要求。 3.计划新增电气设备时,哪些可以节约投资 3.1用电计量点 尽量集中全厂的用电计量点,最好单点高压计量,这样可以减少无功补偿设备的投资。 3.2中频炉专用变压器供电电压,建议如下表:

谐波抑制和无功补偿

绪论 电能质量的好坏,直接影响到工业产品的质量,评价电能质量有三方面标准。首先是电压方面,它包含电压的波动、电压的偏移、电压的闪变等;其次是频率波动;最后是电压的波形质量,即三相电压波形的对称性和正弦波的畸变率,也就是谐波所占的比重。我国对电能质量的三方面都有明确的标准和规范。 随着科学技术的发展,随着工业生产水平和人民生活水平的提高,非线性用电设备在电网中大量投运,造成了电网的谐波分量占的比重越来越大。它不仅增加了电网的供电损耗,而且干扰电网的保护装置与自动化装置的正常运行,造成了这些装置的误动与拒动,直接威胁电网的安全运行。举个常见的例子来说,电子节能灯在使用量所占比重较小的电网中运行,的确比常用的白炽灯好,不仅亮度高又省电,而且使用寿命也长。但是相反,在大量投运节能灯后,就会发现节能灯的损坏率大大提高。这是由于节能灯是非线性负荷,它产生较大的谐波污染了这一片电网,造成三相负荷基本平衡情况下,中心线电流居高不下,造成了该片电网供电质量下降,用电设备发热增加,电网线损增加,使得该区的配变发热严重,严重影响其使用寿命。因此我们对非线性用电设备产生的谐波必须进行治理,使谐波分量不超过国家标准。

第一章 基础概念 1.1 电力系统的组成 电力系统是由发电、输电、用电三部分组成。其中过程为发电厂发电经升压变压器升压并网,再由输电网络输送的各个变电站,变电站进行降压后输送给各个用户,用户经过再一次降压后给用电设备供电。主要设备为发电机、升压变压器、输电网络、降压变压器、用电设备及二次保护系等组成。 发电机的电压等级一般为6KV 、10KV ,输电网络为110KV 、220KV 、500KV ,配电网络为10KV 、35KV ,用电设备一般为380V 、220V 。 我国电力系统采用三相50HZ 交流供电。 1.2 功率的概念 在供电系统中,通常总是希望交流电压和交流电流时正弦波形(不含有谐波的情况下),正如电压为: ()ωt U t U sin 2= 式中 U ------电压有效值 ω--------角频率 f πω2= f ---------频率 (50HZ) 正弦电压施加在线性无源负载上如电阻、电容、电感上时,其电流的表达式为: ()()?-= ωt I t I sin 2 I --------电流有效值 φ--------相位角 电压和电流的关系从相位图上看如:(绿色为电压,红色为电流)

10kV高压谐波治理兼无功补偿治理方案(模板示例)

10kV高压谐波治理兼无功补偿治理方案 1 系统概述 根据某铜业厂提供的现有配电系统情况可知,工厂现有35KV进线一条,该线非该厂专线。厂内主要负荷为电解铜生产线及大功率电机等用电设备。因电解铜生产线采用的是可控硅整流装置。由于可控硅整流装置的六脉及12脉整流特性,在运行过程中将产生以6N±1和12N±1(N为正整数)为主的谐波电流注入电网,危及到其它用电设备及电网的用电安全。同时因系统功率因数比较低,故用户在10KV母线上安装了一套高压电容补偿柜,但由于电解铜等用电设备在运行时产生了较大的谐波注入系统,而电容补偿柜在投入后又与系统发生并联谐振,对系统谐波进一步放大,造成电容补偿装置在谐波环境下运行因过载而发生较大的异常声音,甚至造成部分电容柜无法正常投入,经常造成高压补偿电容器的熔丝爆炸烧毁。 用户配电系统一次示意图如图1所示。 图1用户配电系统示意图 2系统用电参数分析 根据对厂内变电站10KV I段母线的谐波测试数据分析,可将运行时有功功率、无功功率、功率因数及谐波的变化可归纳为: (1)10KV母线平均功率因数约为0.92左右, (2)母线协议容量10MVA, (3)主要谐波源类型:热电解铜及大功率电机等, (4)10KV线路三相功率数据分析 段10KV I段母线正常运行时负荷基本相等,且负载相对较稳定。有功功率基本都8000kW左右,功率因数相对较低,约0.92左右,无功功率也基本在2800kVar~3300kVar之间变化。 3谐波分析 因负载大部分采用的是六脉波及12脉波整流,产生的主要谐波为:6N±1次及12N±1(N为工频频率倍数)。故10KV段谐波的特征次为5、7、11、13......。其中5、7、11次谐波相对较大,故滤波装置应考虑以滤除5、7、11次谐波为主的滤波方式。根据我司于2007/09/21日对配电系统10KV母线 I段的谐波测试数据分析,将设备运行时产生的各次谐波值分析如下: 35kV侧用户协议容10MVA,设备容量90MVA,正常方式下短路容量为689MVA。 为了对滤波装置的滤波效果要求更为严格,故各次谐波电流注入允许值可按最小短路容量为689MVA的标准来考核,见表1。

中频炉谐波治理

中频炉谐波治理: 中频炉谐波治理装置中频感应炉的电源系统是电力系统中数量最大的谐波源,常见的为中频炉和高频感应炉电源等。 简介: 一般6脉冲中频炉,主要产生5、7次特征谐波;对于12脉冲换流装置,主要为5、11、13次特征谐波。一般情况下,小型换流装置采用6脉冲,较为大型采用12脉冲,如炉变压器双副边成Y/△型接线,达成30度的移相;或者两台炉变压器高压侧采外延三角或曲折型接线等移相措施加次级双副边星角接线形成24脉动中频电源,以降低谐波对电网的影响程度。 中频炉在使用时产生大量的谐波,导致电网中的谐波污染非常严重。谐波使电能传输和利用的效率降低,使电气设备过热,产生振动和噪声,并使其绝缘老化,使用寿命降低,甚至发生故障或烧毁;谐波会引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容补偿设备等设备烧毁。在无功补偿不能使用的情况下,会发生无功罚款,导致电费增加。谐波还会引起继电器保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波会对通信设备和电子设备产生严重干扰,因而,改善中频炉电力品质成为应对的主要着力点。 参数: 频率:50Hz; 电压:400V-750V;

负载:GW系列0.5T、0.75T、1T、1.5T、3T中频熔炼炉; 变压器容量:315kva、500kva、630kva、800kva、1000kva; 效果与特点: 1、以吸收谐波为第一功能,经过谐波治理,注入PCC点电流、电压满足GB/T14549-1993标准允许值。 2、滤波效果明显,5、7、11次谐波电流吸收率达75%以上。 3、提高变压器利用率,改善变压器温升和噪音。 4、降低系统损耗,提高生产效率。 5、平稳投切,改善三相不平衡。

电力系统谐波抑制及无功补偿方法的研究文献综述报告

电力系统谐波抑制及无功补偿方法的研究文献综述报告辽宁工业大学硕士研究生 研究方向: 电力系统谐波抑制 及无功补偿方法的研究 +++ 研究生: 11+++ 学号: +++ 指导教师: 专业: 电气工程 辽宁工业大学研究生学院 文献综述 21 世纪能源与环境问题成为人类发展必须面对的重要问题,如何在保证可持续发展和保持良好环境的前提下为人类提供安全可靠、优质经济的电能,是电力系统面临的主要问题。国家“十一五”规划《纲要》提出推进国民经济和社会信息化,切实走新型工业化道路,坚持节约发展、清洁发展、安全发展,实现可持续发展。纲要明确指出:通过开发推广节能技 [1]术,实现技术节能。为电力工业的建设提出了明确要求。电力系统也是一种“环境”,面临着污染,各种电力电子装置所消耗的无功功率使电网的供电质量恶化,公用电网中的谐波电 [2]流和谐波电压是对电网环境影响最严重的一种污染。一方面是因为电力电子装置自身的非线性使得电网电压、电流发生畸变,产生了严重的谐波污染;另一方面是因为大多数电力电 [3]子装置本身功率因数很低,其无功需求给电网带来额外负担,会严重影响电网供电质量。

无功、谐波给电力系统和用户带来的负面影响主要有增大各类电气设备的额定电压和额定电流,引起额外的功率损耗,导致设备用电效率降低;“谐波影响各种电气设备的正常工作,导致继电保护和自动控制装置的误动作;对通信系统产生干扰,使其无法正常工作;谐波会 [4]引起公用电网中局部的并联和串联谐振”电网的谐波和无功问题日益突出,整个供配电系统的安全运行存在较大的隐患。世界各国电力系统近年来纷纷采用了动态无功补偿装置和谐 [5]波治理装置来提高电网的电能质量。电力电子装置的广泛应用,不但要消耗大量的无功功率,还有产生大量的谐波电流。因此,进一步深入无功补偿和谐波抑制的研究具有非常重要的意 [6]义,对无功补偿和谐波抑制的方法研究是今后一个重大研究课题。 1.国内外无功补偿和谐波抑制的研究 1.1国内外无功补偿的研究 无功功率补偿技术随着电力系统的出现而出现,并随着电力工业的发展和电力负荷的多样性而不断进步。电力系统发展到现在已出现三代无功补偿技术:同步发电机补偿、同步调相机补偿、并联电容器补偿、并联电抗器补偿等属于第一代补偿技术;基于自然关断晶闸管技术的SVC(相控电抗器(TCR)、磁控电抗器(MCR))属于第二代无功补偿技术;基于IGBT、IGCT等大功率可控器件的补偿装置SVG(Static VAR Genarator)属于第三代无功补偿技术。SVG是当前世界上最先进也是最复杂的补偿技术产品,它不再采用大容量的电容器、电抗器,而是通过大功率电力电子器件的高频开关实现无功补偿的变换,在响应速度、稳定电网电压、降低系统损耗、增加传输能力、提高瞬变电压极限、降低谐波和减少占地面积等多方面具有更 [7]加优越的性能。

无功补偿与谐波治理技术(铜业协会)

无功补偿与谐波治理技术
报告人:许强 全国电压电流等级和频率标准化技术委员会 中国电工技术学会电力电子学会 委员 理事
报告日期:2009年4月

一、功率因数为什么会变低?什么是无功功率?
我们知道,通常我们所 用的交流电压是50Hz的正 弦波,在电压的两端接上 负载就会产生电流,如我 们在220伏(或380V)的 电源上接一个电灯,电灯 中流过电流,灯就亮了。 当负载是电阻时,电压波 形的相位与电流波形的相 位完全相同,即电压波形 与电流波形重叠在一起。 这时电网送出的功率也与 消耗的功率相等。

而现实生活中电阻负载使用 的较少,大多数负载都有一定 的电感,如变压器、电动机、 洗衣机、冰箱、空调等都是带 有电感性的负载,这样就使电 压波形的相位与电流波形的相 位不能重叠,电流的波形(红 色)就会比电压波形(蓝色) 迟后△T的时间,△T时间越 大,功率因数越低,消耗的无 功功率也越大。那么电网送出 的功率(视在功率)也与消耗 的功率(有功功率)就不再相 等了,电网送出的功率是如下 表达式: 电网送出的功率(视在功率)=实际消耗的功率(有功功率)+无功功率

什么是无功功率:
无功功率决不是无用功率,它是另外一种能量消耗的表达形 式,如电动机需要建立和维持旋转磁场,使转子转动,从而 带动机械运动,电动机的旋转磁场就是靠从电源取得无功功 率建立的。变压器也同样需要无功功率,才能使变压器的一 次线圈产生磁场,在二次线圈感应出电压。因此没有无功功 率的话,电动机不会转动,变压器不会变压等。 因此在正 常情况下,用电设备不但从电网中取得有功功率,同时还需 要从电网中取得无功功率。如果电网中的无功功率供不应 求,用电设备就没有足够的无功功率来建立正常的电磁场, 那么这些用电设备就不能维持在额定情况下的工作。能反映 无功功率被使用的指标是用电的功率因数,即COS?。

中频电炉无功补偿和谐波治理的成功案例(DOC)

815V、5吨中频电炉无功补偿和谐波治理的成功案例 2007-4-27 天津市津开电气有限公司总经理盖福健高级工程师孙泽林 关键词:中频电炉、无功功率、无功补偿、谐波、间谐波、谐波治理、变流、变频、谐波电流、谐波电流 放大、博里叶级数 1.绪论: 随着电力电子技术的飞速发展,我国的工矿企业中,电力电子器件的大量应用,可控、全控晶 闸管作为为主要开关元件,电力电子器件的整流设备,变频、逆变等非线性负荷设备的广泛应用,谐波问题亦日益广泛的提出。诸如谐波干扰、谐波放大、无功补偿失效及谐波无功电流对供电系统的影响等。上述电力电子设备是谐波产生的源头。谐波电流的危害是严重的,主要有以下几个方面: ·谐波电流在变压器中,产生附加高频涡流铁损,使变压器过热,降低了变压器的输出容量,使变压器噪声增大,严重影响变压器寿命。 ·谐波电流的趋肤效应使导线等效截面变小,增加线路损耗。 ·谐波电流使供电电压产生畸变,影响电网上其它各种电器设备不能正常工作,导致自动控制装置误动作,仪表计量不准确。 ·谐波电流对临近的通讯设备产生干扰。 ·谐波电流使普通电容补偿设备产生谐波放大,造成电容器及电容器回路过热,寿命缩短,甚至损坏。·谐波电流会引起公用电网中局部产生并联谐振和串连谐振,造成严重事故及不良后果。 2.概述 2.1天津市某铸造公司(简称铸造公司)为生铁铸造企业,工厂主要设备为两台500HZ中频感应电炉以溶化生铁进行铸造,因采用中频电炉,故由于变流及变频等原因造成用电谐波超标,功率因数过低,为此进行设备改造以提高功率因数,治理谐波,节约能源,提高电网质量,降耗增容。 2.2中频电炉运行主要参数 ①电炉为长期间断运行,运行时间每炉出铁冷炉约为2.5小时,热炉约2小时。 ②在正常运行时高压侧工作电流为150~160A。整流变压器二次侧为六相十二脉波输出。 ③现场仪表指示数据 一次测电压10.2KV 二次测电压815V×2 一次测电流157A 二次测电流992A×2 一次测功率因数COS?=0.6~0.7最低COS?=0.23最高COS?=0.79予升温COS?=0.49 保温COS?=0.23~0.49 加温COS?=0.72~0.79 2.3中频炉一次系统图

电能质量及谐波标准

电能质量及谐波标准 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

电能质量及谐波标准 内容提纲 1.电能质量基本概念 2.电能质量的影响 3.电能质量国家标准综述 4.电能质量国家标准摘要 5.电能质量国外标准简介 6.谐波国家标准基本内容 7.国外谐波标准介绍 1 电能质量的基本概念 (1)电力系统概况:结构、有功和无功平衡,各种干扰 (2)电能质量——关系到电气设备工作(运行)的供电电压指标。 (3)电能质量指标:电压偏差、频率偏差、谐波、电压波动和闪变、三相电压不平衡度、暂时过电压和瞬态过电压、电压暂降、波形缺口、…… (4)电能质量指标特点: a. 空间上、时间上不断变化 b. 需要供、用电双方共同合作维护 (5)电能质量问题的由来 随电力工业诞生而存在的一个传统问题; 现代用电负荷结构发生了质的变化。电力电子技术广泛应用,家用电器普及,炼钢电弧炉和轧机的发展等,由于其非线性、冲击性以及不平衡的用电特性引起电能质量的恶化。 计算机的普及、IT产业的发展、微电子控制技术应用导致对电能质量要求越来越高。 例如:一个计算中心失电2s就可能破坏几十个小时数据处理结果,导致几十万美元产值损失; 1~2周波供电电压暂降,就可能破坏半导体生产线,导致上百万美元损失。 据统计美国因电能质量问题造成的损失每年高达260亿美元。 2005年由国际铜业协会(中国)的一次“中国电能质量行业现状与用户行为调研报告”中,调查了32个行业,共92个企业中有49个企业,因电能质量问题,在经济上损失~亿元(人民币),每个企业年经济损失约10万~100万(人民币)(其中有四家年损失1000万元以上)。 (6)关于电能质量的定义 Power Quality——电能质量(电源质量、电力质量、电力品质) 导致用户设备故障或不能正常工作的电压、电流或频率偏差。 合格电能质量的概念是指给敏感设备提供的电力和设置的接地系统是都适合于该设备正常工作的。 在电力系统中某一指定点上电的特性,这些特性可根据预定的基准技术参数来评价。 电压质量、电流质量、供电质量、用电质量。 实际上电能质量就是供电电压特性,即关系到用电设备工作(或运行)的供电电压各种指标偏离理想值(额定值或标称值)的程度。 2 电能质量的影响 各种指标的影响: (1)供电电压偏差 照明设备的发光和寿命;电动机的力矩、转速、发热、工效以及产品质量;变压器的发热、温升、损耗;并联

无功补偿谐波治理方案

…..公司 低压动态无功补偿及谐波治理方案 北京XXXXXXX有限公司 2014年8月15日

目录 一、绪论 (3) 二、概述 (3) 三、采用标准 (4) 四、动态无功补偿滤波技术方案设计 (5) 4.1、设备总体概述 (5) 4.2、无功补偿消谐装置整体描述 (6) 4.3、系统设计 (7) 补偿系统补偿效果仿真图: (11) 4.4功能描述 (13) 4.5 控制策略 (14) 4.6后台数据管理系统及控制特性 (14) 4.7系统组成 (15) 五、供货清单 (15)

一、绪论 随着电力电子技术的飞速发展,我国的工矿企业中,电力电子器件的大量应用,可控、全控晶闸管作为为主要开关元件,电力电子器件的整流设备,变频、逆变等非线性负荷设备的广泛应用,谐波问题亦日益广泛的提出。诸如谐波干扰、谐波放大、无功补偿失效及谐波无功电流对供电系统的影响等。上述电力电子设备是谐波产生的源头。谐波电流的危害是严重的,主要有以下几个方面: ?谐波电流在变压器中,产生附加高频涡流铁损,使变压器过热,降低了变压器的输出容量,使变压器噪声增大,严重影响变压器寿命。 ?谐波电流的趋肤效应使导线等效截面变小,增加线路损耗。 ?谐波电流使供电电压产生畸变,影响电网上其它各种电器设备不能正常工作,导致自动控制装置误动作,仪表计量不准确。 ?谐波电流对临近的通讯设备产生干扰。 ?谐波电流使普通电容补偿设备产生谐波放大,造成电容器及电容器回路过热,寿命缩短,甚至损坏。 ?谐波电流会引起公用电网中局部产生并联谐振和串连谐振,造成严重事故及不良后果。 二、概述 根据贵公司提供的相关资料分析、计算和仿真(附件5配合仿真图),结合我公司多年来对轧机进行动态无功功率补偿及谐波抑制技术的经验和对轧机电气系统、生产工艺的透彻掌握,综合提出本方案,确保补偿装置投运后接入点的功率因数在0.92(含0.92)以上,各次谐波含量达到国标要求。

需要中频炉设计

青岛骑士(加纳)中频炉烟气除尘项目 除 尘 系 统 设 计 方 案 建设单位:青岛骑士玻璃有限公司

(一)熔铝炉除尘系统设计方案 一、项目概况 青岛骑士玻璃有限公司,加纳生产线,建有5T中频炉6台,三开三闭。在熔炼过程中,产生大量烟尘,含CO、氟化物等有害气体,对大气的污染危害较为严重,是大气环境的主要污染源之一;同时有大量粉尘散发出来,严重污染车间工人的操作环境,影响工人的身心健康及车间周围的环境空气质量。贵公司现计划对6台中频炉做除尘系统。结合贵公司厂区布置情况,我公司对该套除尘项目的提出以下设计方案。 二、设计依据及原则 2.1、设计依据 1、《中华人民共和国大气污染物综合排放标准》(GB16297-1996); 2、《工业窑炉污染物排放标准》(GB16171-1996); 3、《工企业设计卫生标准》(TJ36-90); 4、《采暖通风与空气调节设计规范》(GBJ19-87); 5、《袋式除尘器技术要求及验收规范》(JB/T8471-96); 6、《钢结构工程施工及验收规范》(GB50205-86); 7、厂方提供的工艺参数及相关资料 ①中频炉数量:6套。 ②熔炉使用:三开三闭,人工进料。 8、《中华人民共和国环境保护法》; 9、《中华人民共和国大气综合防治法》; 2.2、设计原则 1、系统配套设备设计及选型遵循“技术先进、经济实用”的原则;

2、设计合理、实用、先进、具有运行平稳、低能耗、占地面积小; 3、设计要做到投资省,运行费用低; 三、设计范围及设计目标 3.1、设计范围 1、烟气处理工艺设计; 2、烟气处理系统平面布置设计; 3、烟气处理系统设备(含烟罩、烟管、除尘系统及辅助设施)。 3.2、设计目标 1、捕集率:≥90% 2、排放浓度:≤50mg/Nm3 四、除尘系统设计方案 4.1、设计规模 根据实践经验及技术资料,中频炉烟气温度出口均为<300℃,入除尘系统的温度<200℃,除尘与废气处理总量:40000M3/H,单台处理风量:13000M3/H。现设计24小时工作制的中频炉除尘系统一套。 4.2、工艺流程 ⑴中频炉投料口产生的烟气被吸尘罩收集后,经调节碟阀。粉尘由吸尘管道进入旋风除尘器,此时烟尘中的大颗粒在旋风除尘器离心力作用下进行分离,大颗粒粉尘由旋风除尘器排出,细小颗粒粉尘进入布袋除尘器。经过滤袋过滤,通过脉冲吹打将粘附在布袋表面的粉尘先集中在除尘器的灰斗内,利用下料控制器进行回收或利用。经布袋除尘器处理过后的净气通过风机排出。最后由烟囱排入大气。袋式除尘器收集的粉尘经卸灰阀进入贮灰仓回收利用。系统工艺流程如下:

无功补偿与谐波治理知识

无功功率的影响有那些? 1、增加设备容量。 2、增加设备及线路损耗。 3、使线路及变压器的电压降增大,如果是冲击性无功功率负载,还会使电压产生剧烈波动,使供电质量严重降低。 什么是无功补偿? 电力系统中大量的负荷是电感性的,因此我们将吸收感性无功功率的负荷称为“无功负荷”,而将吸收容性无功功率的设备称为“无功电源”。无功补偿就是吸收或供给适度可变的无功功率,以改善交流电力系统的供电质量。 大多数网络元件消耗无功功率,大多数负载也需要消耗无功功率。网络元件和负载所需要的无功功率必须从网络中某个地方获得。显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。合理的方法即是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。 常用的无功补偿的方法有几种? 1、同步补偿机 2、同步电动机 3、同步发电机 4、并联电容器 5、静止无功补偿装置 6、静止无功发生器 无功补偿的作用有那些? 1、提高供电系统及负载的功率因数,降低设备容量,减少功率损耗。 2、稳定受电端及电网的电压,提高供电质量。在长距离输电线中合适的地点设置动态无功补偿装置还可以改善输电系统的稳定性,提高输电能力。 3、在电弧炉炼钢、电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。

什么是同步补偿机? 同步补偿机又称同期调相机,它实际上是不带机械负荷,空载运行的同步电动机。 什么是同步电动机? 同步电动机过激运行时,发出无功功率,相当于无功电源;欠激运行时吸收无功功率,相当于无功负荷。通常电网的负荷为感性的,所以一般使同步电动机处于正常励磁或过励磁的情况下运行,以改善电网的功率因数。 什么是同步发电机? 发电机除发出有功功率,实现机械能转变为电能,作为电力系统的有功电源外,同时又是最基本的无功功率电源。 什么是并联电容器? 并联电容器广泛应用于改善负荷的功率因数,是电力系统一种重要的无功补偿设备。并联电容器的主要缺点:一是电压调节效应低,二是不能连续调节和吸收滞后(感性)的无功功率。 什么是静止无功补偿装置? 运用电力电子技术的可调节无功补偿装置。其重要特性是能调节补偿装置的无功功率。 什么是静止无功发生器? 运用电力电子技术的可调节无功发生装置。即可以使其发出无功功率,呈电容性;也可以使其吸收无功功率,呈电感性。采用PWM控制,可使其输入电流接近正弦波。 无功补偿方式有几种? 1、集中补偿 2、分散就地补偿 3、单机就地补偿 什么是集中补偿?

中频炉谐波电流的危害

中频炉的核心是电源系统,其“交-直-交”变换,中频炉逆变出固定频率(静止变频方式)或可调节频率的中频输出。可控硅(晶闸管)整流,可调节直流输出电压,但其电压、电流的相位特性使电源装置的功率因数降低。 逆变以可控硅进行换流,可控硅导通和关断形成大量高次谐波(5、7、11、13次谐波,6n±1),整流调节时,整流可控硅的非过零点导通,也是谐波产生的根源。因此,中频炉系统谐波治理是非常重要的。 中频炉系统谐波治理的传统方法是LC滤波器,LC滤波器是传统的无源谐波抑制装置,由滤波电容器、电抗器和电阻器适当组合而成,与谐波源并联(在谐波频率附近成低阻),除起滤波作用外,还兼顾无功补偿的需要。 这种滤波器出现最早,成本比较低,但同时存在一些较难克服的缺点,比如只能针对单次谐波,容易产生谐波共振(即谐波放大),导致设备损毁,随着时间谐振点会漂移,导致谐波滤除效果越来越差。同时,这一方式无法应对瞬变、浪涌和高次谐波。谐波电流的危害主要有以下几个方面: 1.谐波电流会引起公用电网中局部产生并联谐振和串连谐振,造成严重事故及不良后果。 2.谐波电流的趋肤效应使导线等效截面变小,增加线路损耗。 3.谐波电流在供电变压器中,产生附加高频涡流铁损,使变压器过热,降低了变压器的输出容量,使变压器噪声增大,严重影响变压器寿命。

4.谐波电流使普通电容补偿设备产生谐波放大,造成电容器及电容器回路过热,绝缘老化,寿命缩短,甚至损坏。 5.谐波电流对临近的通讯设备产生干扰。 6.谐波电流使供电电压产生畸变,影响电网上其它各种电器设备不能正常工作,导致自动控制装置误动作,仪表计量不准确。 由于谐波畸变严重以及变压器长时间超负荷运行,变压器损耗较大;谐波致使电容补偿屏不能正常工作,功率因数较低;同时谐波功率和畸变功率都将造成较大的功率浪费。

电网的无功补偿与谐波治理

电网的无功补偿与谐波治理 发表时间:2017-08-25T09:28:11.070Z 来源:《探索科学》2017年1期作者:吴文志 [导读] 处理好无功补偿和谐波管理一系列问题,具有十分重要的含义。 广东光达电气有限公司 528329 摘要:电力体系的无功优化及补偿和谐波管理是前进体系运转电压,减小网损,前进体系安稳水平的有用手法,对电网安稳及电力设备安全运转、工农业安全生产、产品质量、用电单耗和人民生活用电都有直接影响。处理好无功补偿和谐波管理一系列问题,具有十分重要的含义。介绍了影响功率因数的关键因素,并对现在无功补偿和谐波管理进行了必定的讨论和研讨。 关键词:无功优化补偿;功率因数;谐波管理 处理好电网的无功功率因数补偿和谐波滤波一系列问题关于前进电能质量、安全运转、下降损耗、节能及充沛利用电气设备的功率等具有十分重要的含义。国内外有关规程规则,为了下降网损、节省能源、前进变压器的功率和安稳电压,请求电力体系设备适当容量的无功功率补偿设备。 1无功补偿的必要性 跟着电网装机容量的飞速提升,对电网无功功率的需求也与日俱增。无功功率同有功功率一样,是确保电能质量不可分割的一部分,电力体系中应坚持无功功率的平衡,否则将会导致功率因数反常、电压动摇、设备损坏等状况,严峻时会使体系电压溃散、解列,形成大面积停电事端。因而,处理电网的无功功率平衡,加装无功补偿设备,前进网络的功率因数对电网的降损、节省用电、安全可靠运转和确保电能质量有着极为重要的含义。在并联设备中,除了超高压并联电抗器以外,关键用来对电网的容性或理性无功功率进行调理。就电力网而言,无功补偿既能够补高压侧,也能够补低压侧。对通常用户而言,在低压侧补偿将能够下降出资、削减能量损耗、有用前进负载端电压,所以电容器补偿设备通常设备在挨近负载端,以前进无功补偿的经济效益。据统计,无功补偿在合理规划和设备后,能够使电网增容15%-30%,与其他补偿办法相比,低压并联电容器组的办法是一种出资少、见效快、收益高、切实可行、且能较大起伏下降线损和前进电能质量的有用途径。从无功补偿的内容来看,又可分为两个大类,一类是按照负荷巨细只是主动补偿无功重量;另一类则是除了补偿无功重量以外,还兼有谐波按捺或脱谐功用,这是由于无功补偿与谐波搅扰通常是一起出现的。高频负荷和非线性负载会使电网中的谐波含量剧增,装在电网低压侧的电力电容器极易因变压器感抗及剩下电网的电感发生谐振而发生很高的电流,形成供电回路过载、电容器烧毁和投切开关损坏等事端。所以,在无功补偿的一起,有必要思考谐波管理的办法。 2配电网无功优化补偿的基本原理 由于电网的线损关键是线路损耗与变压器损耗,所以配电网的降损节能,也即是对电网中所有的电力线路和变压器进行优化。无功优化的意图是经过调整无功潮流的分布下降网络的有功功率损耗,并坚持最佳的电压水平。无功优化补偿通常有变电所无功负荷的最优补偿、配电线路最优补偿以及配电变压器低压侧最优补偿。在电力网的运转中,功率因数反映了电源输出的视在功率被有用利用的程度,咱们希望的是功率因数越大越好。这么电路中的无功功率能够降到最小,视在功率将大多数用来供应有功功率,然后前进电能运送的功率。当线路所需无功功率不满足功率因数请求时,可选用有载配电变压器主动调压和合理的无功主动补偿,能确保配电网供电电压质量,改善功率因数,到达无功就地平衡的意图,前进电力体系的供电才干,使配电网体系在经济合理、安稳安全的状态下运转。 3谐波的发生与危害性 电力体系所指的谐波是稳态的工频整数倍数的波形,其频率为基波频率的整数倍。电网暂态改变比方涌流、各种搅扰或毛病导致的过电压、欠电压等均不归于谐波的领域。谐波关键由谐波电流源发生,当正弦基波电压施加于非线性设备上时,设备吸收的电流与施加的电压波形不一样,电流因而发生了畸变,由于负荷与电网相连,故谐波电流注入到电网中,这些设备就成了电力体系的谐波源,如电力电子设备、电弧炉、传统变压器和铁心电抗器等。在电力电子设备许多运用之前,最关键的谐波源是电力变压器的励磁电流,其次是发电机;而在电力电子设备许多运用以后,后者便变成最关键的谐波源。电力电子设备包含变频器、软起动器和整流器等,其间整流设备所占的比重最大,现在常用的整流电路大都选用晶闸管相控整流电路或二极管整流电路。比方直流侧选用电容滤波的二极管整流电路,这种电路输入电流的基波重量的相位与电源电压相位大体一样,因而基波功率因数挨近,但其输入电流的谐波重量却很大,并且整流器在沟通侧和直流侧都要发生高次谐波,给电网形成严峻污染,也使得总的功率因数很低。 4影响功率因数的关键因素及无功补偿的通常办法 4.1影响功率因数的关键因素 许多用电设备均是依据电磁感应原理作业的,如配电变压器、电动机等,它们都是依托建立交变磁场才干进行能量的变换和传递。为建立交变磁场和感应磁通而需求的电功率称为无功功率,因而,所谓的“无功”并不是“无用”的电功率,只不过它的功率并不转化为机械能、热能罢了;因而在供用电体系中除了需求有功电源外,还需求无功电源,两者缺一不可。功率因数的发生关键是由于沟通用电设备在其作业过程中,除耗费有功功率外,还需求无功功率。当有功功率P必守时,如削减无功功率Q,则功率因数便能够前进。在极点状况下,当Q=0时,则其功率因数=1。因而前进功率因数一系列问题的本质即是削减用电设备的无功功率需求量。 4.2无功补偿的通常办法 无功补偿通常选用的办法关键有3种:低压单个补偿、低压会集补偿、高压会集补偿。下面简略介绍这3种补偿办法的适用范围及运用该种补偿办法的优缺点。 4.2.1低压单个补偿低压单个补偿即是依据单个用电设备对无功的需求量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。经过控制、保护设备与电机一起投切。随机补偿适用于补偿单个大容量且接连运转(如大中型异步电动机)的无功耗费,以补励磁无功为主。低压单个补偿的长处是:用电设备运转时,无功补偿投入,用电设备停运时,补偿设备也退出,因而不会形成无功倒送。具有出资少、占位小、设备简略、装备便利灵敏、保护简略、事端率低一级长处。 4.2.2低压会集补偿低压会集补偿是指将低压电容器经过低压开关接在配电变压器低压母线侧,以无功补偿投切设备作为控制保护设备,

相关主题
文本预览
相关文档 最新文档