2017-2018学年福建省厦门第一中学高二下学期期中考试数学(理)试题扫描版含答案
- 格式:doc
- 大小:929.00 KB
- 文档页数:8
人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
版)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省厦门第一中学2016-2017学年高二数学下学期开学考试试题理(扫描版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省厦门第一中学2016-2017学年高二数学下学期开学考试试题理(扫描版)的全部内容。
(扫描版)。
福建省厦门第一中学2023届高三下学期4月期中考试数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.已知一组样本数据1215,,,x x x L ,其中2i x i =(1i =,2,…,15),由这组数据得到另一组新的样本数据 1y , 2y ,…, 15y ,其中20i i y x =-,则( )A .两组样本数据的样本方差相同B .两组样本数据的样本平均数相同C .1y ,2y ,…,15y 样本数据的第30百分位数为10-D .将两组数据合成一个样本容量为30的新的样本数据,该样本数据的平均数为5.π23cos 30d t q æ=-+çè.π3sin 30d t q æö=++ç÷èø.大约经过38秒,盛水.大约经过22秒,盛水四、多选题12.已知抛物线C 的顶点为五、填空题13.写出曲线e 1x y =-与曲线()ln 1y x =+的公切线的一个方向向量______.14.已知函数()f x 的定义域为R ,若()12f x +-为奇函数,且()()13f x f x -=+,则()2023f =_________.15.已知甲、乙两人三分球投篮命中率分别为0.4和0.5,则他们各投两个三分球,至少有一人两球都投中的概率为______.16.足球是一项很受欢迎的体育运动.如图,某标准足球场的B底线宽72AB=码,球门宽8EF=码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P,使得EPFÐ最大,这时候点P就是最佳射门位置.当攻方球员甲位于边线上的点O处(,)=^时,根据场上形势判断,有OA、OB两条进OA AB OA AB攻线路可供选择.若选择线路OB,则甲带球______码时,到达最佳射门位置.(2)若ABC V 内一点P 满足 AP AC =, BP CP =,求PACÐ.19.chatGPT 是由OpenAI 开发的一款人工智能机器人程序,一经推出就火遍全球, chatGPT 的开发主要采用RLHF (人类反馈强化学习)技术,训练分为以下三个阶段.第一阶段:训练监督策略模型.对抽取的prompt 数据,人工进行高质量的回答,获取<prompl , answer>数据对,帮助数学模型GPT-4更好地理解指令.第二阶段:训练奖励模型,用上一阶段训练好的数学模型,生成k 个不同的回答,人工标注排名,通过奖励模型给出不同的数值,奖励数值越高越好.奖励数值可以通过最小化下面的交叉损失函数得到:µ1Loss ln ni i i y y ==-å, ,其中{}0,1i y Î,µ()0,1i y Î,且µ1n i iy =å.第一阶段:实验与强化模型和算法.通过调整模型的参数,使模型得到最大奖以符合人工的选择取向.(1)若已知某单个样本,共真实分布[][]1210,,,0,0,0,0,1,0,0,0,0,0y y y y =×××=,共预测近似分布$[][]1210,,,0,0.2,0,0,0.7,0,0,0.1,0,0y y y y =×××=,计算该单个样本的交叉损失函数Loss 的值;(2)某次测试输入的问题中出现语法错误的概率为5%,如果输入问题没有语法错误,chatGPT 的回答被采纳的概率为90%,如果出现语法错误,chatGPT 的回答被采纳的概率为50%.①求chatGPT 的回答被采纳的概率;②已知chatGPT 的回答被采纳,求该测试输入的问题没有语法错误的概率.参考数据:ln 0.69Z =.ln 5 1.609»,ln 7 1.946»20.如图,在四棱锥 P ABCD -中, AB CD ∥, AB AP ^,3AB =,4=AD ,5BC =,6CD =,过AB 的平面a 分别交线段PD ,PC 于E ,F .q =,得,1122PF F F c ==,据椭圆的定义有2122PF a PF a =-=212a =,筒车的角速度2ππ6030w==,令∴πcos cos()30t OB POBOPqÐ=+=∴π23cos30d t qæö=-+ç÷èø,其中又πππ23cos230d t qæö=-+=-ç÷èø2)CD∥,ABË平面PCD,CDÌ平面PCD a,平面a I平面PCD EF=,∴AB∥连接AQ,∵AB CD∥,3AB=,DQ=。
福建省厦门市第一中学2025届高三第二次调研数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在260202x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩条件下,目标函数()0,0z ax by a b =+>>的最大值为40,则51a b +的最小值是( )A .74B .94C .52D .22.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为( ). A .432 B .576 C .696D .9603.如图,在中,点M 是边的中点,将沿着AM 翻折成,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的( )A .重心B .垂心C .内心D .外心4.已知函数()(0x f x m m m =->,且1)m ≠的图象经过第一、二、四象限,则|2)|a f =,384b f ⎛⎫= ⎪⎝⎭,|(0)|c f =的大小关系为( ) A .c b a << B .c a b << C .a b c <<D .b a c <<5.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是( ).A .与2016年相比,2019年不上线的人数有所增加B .与2016年相比,2019年一本达线人数减少C .与2016年相比,2019年二本达线人数增加了0.3倍D .2016年与2019年艺体达线人数相同 6.已知复数z 534i=+,则复数z 的虚部为( ) A .45B .45-C .45iD .45-i 7.设m ∈R ,命题“存在0m >,使方程20x x m +-=有实根”的否定是( ) A .任意0m >,使方程20x x m +-=无实根 B .任意0m ≤,使方程20x x m +-=有实根 C .存在0m >,使方程20x x m +-=无实根 D .存在0m ≤,使方程20x x m +-=有实根8.已知m ,n 是两条不重合的直线,α是一个平面,则下列命题中正确的是( ) A .若//m α,//n α,则//m n B .若//m α,n ⊂α,则//m n C .若m n ⊥,m α⊥,则//n αD .若m α⊥,//n α,则m n ⊥9.某人2018年的家庭总收人为80000元,各种用途占比如图中的折线图,2019年家庭总收入的各种用途占比统计如图中的条形图,已知2019年的就医费用比2018年的就医费用增加了4750元,则该人2019年的储畜费用为( )A .21250元B .28000元C .29750元D .85000元10.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是 A .2()(2)3-∞+∞,,B .2(2)3, C .22()33-,D .22()()33-∞-+∞,, 11.已知双曲线2222:1(0,0)x y C a b a b-=>>的渐近线方程为34yx ,且其右焦点为(5,0),则双曲线C 的方程为( ) A .221916x y -=B .221169x y -= C .22134x y -= D .22143x y -= 12.由实数组成的等比数列{a n }的前n 项和为S n ,则“a 1>0”是“S 9>S 8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。
2017—2018学年第二学期第二次月考高二理科数学考试时间120分钟。
满分150分。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 是虚数单位,则()201832i i z =-所对应的点位于复平面内的A .第一象限B .第二象限C .第三象限D .第四象限2.已知P 是曲线θρsin 2=上一点,则点P 到直线cos()24ρθπ+=距离的最小值为 A .123- B .1223- C .12- D .221-3.下列四个散点图中,相关系数xy r 最大的是4.已知随机变量X ~2(3,)N σ,且(4)0.15P X >=,则()P X =≥2 A .0.15B .0.35C .0.85D .0.35.两个实习生每人加工一种零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A .12 B .512 C .14 D .166.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为a x b y ˆˆˆ+=.已知240101=∑=i ix,1700101=∑=i iy,5ˆ=b,若该班某学生的脚长为25,据此估计其身高为 A. 160B. 165C. 170D. 175D C BA0123123xy y x 32132100123123x y y x32132107.已知X 的分布列如图:则32Y X =+的数学期望E (Y)等于A .32 B .1 C .3629 D . 61- 8.函数2sin y x x x =-的图象大致为O yx O yxO yx O yxA B CD9.抛掷红、蓝两颗骰子,设事件A 为“红色骰子点数为3”,事件B 为“蓝色骰子出现的点数是奇数”,则=)(A B P A .21 B .61 C . 365 D .12110.若(12)nx -*()n ∈N 的展开式中4x 的系数为80,则(12)nx -的展开式中各项系数的绝对值之和为A .32B .81C .243D .25611.5名教师分配到3个学校支教,每个学校至少分配1名教师,甲、乙两个老师不能分配到同一个学校,则不同的分配方案有A .60 种B .72种C .96 种D .114种 12.若对()0,x ∈+∞恒有ln e 2ax x x-+≥,则实数a 的取值范围为 A .2(,]e -∞- B .2(,)e-∞- C .(,2e]-∞- D .(,2e)-∞-二、填空题:本大题共4小题,每小题5分,共20分。
福建省师大附中2017-2018学年高二数学下学期期中试题 文(满分:150分,时间:120分钟)说明:试卷分第Ⅰ卷和第Ⅱ卷,请将答案填写在答卷纸上,考试结束后只交答卷。
第Ⅰ卷 共65分一、选择题(每小题5分,共65分;在给出的A,B,C,D 四个选项中,只有一项符合题目要求) 1.下列三句话按三段论的模式排列顺序正确的是( )① 2018能被2整除;②一切偶数都能被2整除;③ 2018是偶数; A .①②③ B .②①③ C .②③① D .③②①2.用反证法证明命题“三角形的内角中最多只有一个内角是钝角”时,应先假设( ) A .没有一个内角是钝角 B .有两个内角是钝角 C .有三个内角是钝角 D .至少有两个内角是钝角3.若实数a b ==则a 与b 的大小关系是( ) A .a b = B. a b < C. a b > D. 不确定4. 若复数2(4)(2)(),z x x i x R =-++∈则“2x =”是“z 是纯虚数”的( ) A .充分不必要条件 B. 必要不充分条件 C .充要条件 D. 既不充分也不必要条件 5.某工厂为了确定工效,进行了5次试验,收集数据如下:x 与加工时间y 这两个变量,下列判断正确的是( )A .负相关,其回归直线经过点()30,75B .正相关,其回归直线经过点()30,75C .负相关,其回归直线经过点()30,76D .正相关,其回归直线经过点()30,766.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…用你所发现的规律可得20182的末位数字是( ) A .2B .4C .6D .87.如图,在复平面内,复数12,z z 对应的向量分别是,OA OB ,则12||z z +=( )A .2B .3C ..8.给出下面四个类比结论:①实数b a ,,若0=ab ,则0=a 或0=b ;类比向量,a b ,若0a b ⋅=,则0a =或0b = ②实数b a ,,有222()2a b a ab b +=++;类比向量,a b ,有222()2a b a a b b +=+⋅+ ③向量a ,有22a a =;类比复数z 有22z z =④实数b a ,,有022=+b a ,则0==b a ;类比复数12,z z ,有22120z z +=,则120z z ==其中类比结论正确的命题的个数是( )A .0B .1 C. 2 D. 3 9.某程序框图如图所示,若输出的S=57,则判断框内填( ) A.4k > B.k >5 C.k >6 D.k >7 10. 下列不等式对任意的(0,)x ∈+∞恒成立的是( )A 、20x x -≥B 、sin 1x x >-+C 、ex e x≥ D 、ln x x >11.如图,可导函数)(x f y =在点P (0x ,)(0x f )处的切线为l :)(x g y =, 设)()()(x g x f x h -=,则下列说法正确的是( ) A.0)(0'=x h ,0x x =是)(x h 的极大值点 B.0)(0'=x h ,0x x =是)(x h 的极小值点 C.0)(0'≠x h ,0x x =不是)(x h 的极值点 D.0)(0'≠x h ,0x x =是)(x h 的极值点 12.已知函数()()21cos ,4f x x x f x '=+是函数()f x 的导函数,则()f x '的图象大致是( )13.设函数2()ln (2)f x x ax a x =---,若不等式()0f x >恰有两个整数解,则实数a 的取值范围是( ) A. 4ln 21,4+⎡⎫⎪⎢⎣⎭ B. 4ln 21,4+⎛⎤ ⎥⎝⎦ C. 6ln 34ln 2,126++⎡⎫⎪⎢⎣⎭ D. 6ln 34ln 2,126++⎛⎤⎥⎝⎦第Ⅱ卷 共85分二、填空题(每小题5分,共25分)14.已知复数z 满足i i z +=-1)1(,则z =_______.15.若根据10名儿童的年龄x (岁)和体重y (㎏)数据用最小二乘法得到用年龄预报体重的回归方程是y = 2 x + 7 ,已知这10名儿童的年龄分别是2、3、3、5、2、6、7、3、4、5,则这10名儿童的平均体重是__________㎏.16. 已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a = .17. 在一项田径比赛中,甲、乙、丙三人的夺冠呼声最高.观众A 、B 、C 做了一项预测:A 说:“我认为冠军不会是甲,也不会是乙”.B 说:“我觉得冠军不会是甲,冠军会是丙”.C 说:“我认为冠军不会是丙,而是甲”.比赛结果出来后,发现A 、B 、C 三人中有一人的两个判断都对,一人的两个判断都错,还有一人的两个判断一对一错,根据以上情况可判断冠军是_____________. 18.已知函数)(ln 1)(R a x a x xx f ∈+-=在其定义域上不单调,则a 的取值范围是__________.三、解答题(要求写出过程,共60分)19. (本小题满分12分)已知平行四边形OABC 的三个顶点C A O ,,对应的复数为4i 2-2i 30++,,(Ⅰ)求点B 所对应的复数0z ;(Ⅱ)若10=-z z ,求复数z 所对应的点的轨迹.20.(本小题满分12分)为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图:(1)根据已知条件完成2x2列联表;(2)并判断是否有的把握认为“阅读达人”跟性别有关?附:参考公式22()()()()()n ad bc K a c a b b d c d -=++++21.(本小题满分12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为π12000元.(1)将V 表示成r的函数)V(r ,并求该函数的定义域;(2)讨论函数)V(r 的单调性,并确定r 和h 为何值时该蓄水池的体积最大. 22.(本小题满分12分)设函数2)1()(ax e x x f x--= (Ⅰ)若21=a ,求)(x f 的极值;(Ⅱ)证明:当1≤a 且0>x 时, 0)(>x f .23.(本小题满分12分)设函数)(,)1(ln )(R a x a x x f ∈+-=(1)讨论函数)(x f 的单调性;(2)当函数)(x f 有最大值且最大值大于13-a 时,求a 的取值范围。
2024年普通高等学校招生全国统一考试模拟考数学满分:150分考试时间:120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知随机变量()23,X N σ ,且()24P x m<<=,()15P x n<<=,则()25P x <<的值为()A.2m n + B.2n m - C.12m - D.12n -【答案】A 【解析】【分析】由正态分布曲线的性质即可得解.【详解】()()()()()112523352415222m n P x P x P x P x P x +<<=<≤+<<=<<+<<=.故选:A.2.已知101mx A x mx ⎧⎫+=≤⎨⎬-⎩⎭,若2A ∈,则m 的取值范围是()A.1122m -≤< B.1122m -≤≤ C.12m ≤-或12m >D.12m ≤-或12m ≥【答案】A 【解析】【分析】将2x =代入101mx mx +≤-,然后转化为一元二次不等式求解可得.【详解】因为2A ∈,所以21021m m +≤-,等价于()()21210210m m m ⎧+-≤⎨-≠⎩,解得1122m -≤<.故选:A3.若抛物线2y mx =的准线经过双曲线222x y -=的右焦点,则m 的值为()A.4- B.4C.8- D.8【答案】C 【解析】【分析】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【详解】因为双曲线222x y -=的右焦点为()2,0,又抛物线2y mx =的准线方程为4mx =-,则24m -=,即8m =-.故选:C4.已知三棱锥A BCD -中,AB ⊥平面BCD ,2AB =,3BC =,4CD =,5BD =,则该三棱锥外接球的表面积为()A.29π4 B.19π2C.29πD.38π【答案】C 【解析】【分析】取BD 中点E ,根据已知可得E 为BCD △的外心,过E 作底面的垂线OE ,使12OE AB =,可得O 为三棱锥外接球的球心,计算球的半径,由球的表面积公式可得结果.【详解】在BCD △中,因为3BC =,4CD =,5BD =,所以222BC CD BD +=,所以BC CD ⊥,取BD 中点E ,则E 为BCD △的外心,且外接圆的半径为1522r BD ==,过E 作底面的垂线OE ,使12OE AB =,又AB ⊥平面BCD ,则O 为三棱锥外接球的球心,所以外接球的半径2222529144R OE BE =+=+=,所以三棱锥外接球的表面积为2294π4π29π4R =⨯=,故选:C.5.1024的所有正因数之和为()A.1023B.1024C.2047D.2048【答案】C 【解析】【分析】根据等比数列前n 项求和公式计算即可求解.【详解】由题意知,1010242=,则1024的所有正因数之和为11012101(12)2222204712⨯-++++==- .故选:C6.二维码与我们的生活息息相关,我们使用的二维码主要是2121⨯大小的特殊的几何图形,即441个点.根据0和1的二进制编码规则,一共有4412种不同的码,假设我们1万年用掉15310⨯个二维码,那么所有二维码大约可以用()(参考数据:lg20.301,lg30.477≈≈)A.11710万年 B.12010万年C.12310万年D.12510万年【答案】A 【解析】【分析】利用取对数法进行化简求解即可.【详解】1 万年用掉15310⨯个二维码,∴大约能用441152310⨯万年,设441152310x =⨯,则44144115152lg lg lg2(lg3lg10)441lg2lg3154410.3010.47715117310x ==-+=--≈⨯--≈⨯,即11710x ≈万年.故选:A .7.在一次数学模考中,从甲、乙两个班各自抽出10个人的成绩,甲班的十个人成绩分别为1210x x x 、、、,乙班的十个人成绩分别为1210,,,y y y .假设这两组数据中位数相同、方差也相同,则把这20个数据合并后()A.中位数一定不变,方差可能变大B.中位数可能改变,方差可能变大C.中位数一定不变,方差可能变小D .中位数可能改变,方差可能变小【答案】A 【解析】【分析】不妨设12101210,x x x y y y ≤≤≤≤≤≤ ,表达出两组数据的中位数,根据中位数相同得到5566x y y x ≤≤≤或5566y x x y ≤≤≤,则合并后的数据中位数是562x x +或者562y y +,中位数不变,再设第一组数据的方差为2s ,平均数为x ,第二组数据的方差为2s ,平均数为y ,根据公式得到合并后平均数为ω,方差为2s ',2222211(()22s s x y s ωω=+-+-≥',得到结论.【详解】不妨设12101210,x x x y y y ≤≤≤≤≤≤ ,则1210x x x 、、、的中位数为562x x +,1210y y y 、、的中位数为562y y +,因为565622x x y y ++=,所以5566x y y x ≤≤≤或5566y x x y ≤≤≤,则合并后的数据中位数是562x x +或者562y y +,所以中位数不变.设第一组数据的方差为2s ,平均数为x ,第二组数据的方差为2s ,平均数为y ,合并后总数为20,平均数为ω,方差为2s ',{}22222110()10(1010s s x s y ωω⎡⎤⎡⎤=+-++-⎣⎦'⎣⎦+222222221111((((.2222s x s y s x y s ωωωω⎡⎤⎡⎤=+-++-=+-+-≥⎣⎦⎣⎦如果均值相同则方差不变,如果均值不同则方差变大.故选:A.8.若曲线1exax y +=有且仅有一条过坐标原点的切线,则正数a 的值为()A.14B.4C.13D.3【答案】A 【解析】【分析】设切点0001(,)ex ax x +,利用导数的几何意义求得切线方程,将原点坐标代入,整理得20010ax x ++=,结合Δ0=计算即可求解.【详解】设1()e x ax y f x +==,则1()e xax a f x -+-'=,设切点为0001(,)e x ax x +,则0001()e x ax a f x -+-'=,所以切线方程为0000011()e e x x ax ax a y x x +-+--=-,又该切线过原点,所以00000110(0)e e x x ax ax a x +-+--=-,整理得2010ax x ++=①,因为曲线()y f x =只有一条过原点的切线,所以方程①只有一个解,故140a ∆=-=,解得14a =.故选:A【点睛】关键点点睛:本题主要考查导数的几何意义,切点未知,设切点坐标,由导数的几何意义求出切线方程,确定方程的解与根的判别式之间的关系是解决本题的关键.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若1b c >>,01a <<,则下列结论正确的是()A.a a b c <B.log log b c a a >C.a a cb bc <D.log log c b b a c a>【答案】BC 【解析】【分析】由已知可得,由幂函数性质可判断A;由对数函数性质可判断B;由幂函数性质可判断C;由不等式的性质可判断D.【详解】对于A :∵01a <<,幂函数a y x =在(0,)+∞上单调递增,且1b c >>,∴a a b c >,故选项A 错误;对于B :∵01a <<,∴函数log a y x =在(0,)+∞上单调递减,又∵1b c >>,∴log log log 10a a a b c <<=,∴110log log b c c a>>,即0log log b c a a >>,故B 正确;对于选项C :∵01a <<,则10a -<, 幂函数1a y x -=在(0,)+∞上单调递减,且1b c >>,∴11a a b c --<,∴a a cb bc <,故选项C 正确;对于选项D :由选项B 可知:0log log b c a a >>,∴0log log b c a a <-<-,∵1b c >>,∴(log )(log )b c c a b a -<-,∴log log c b b a c a <,故D 错误.故选:BC.10.已知圆22:1O x y +=,圆22:()(1)4,R C x a y a -+-=∈,则()A.两圆的圆心距OC 的最小值为1B.若圆O 与圆C 相切,则a =±C.若圆O 与圆C 恰有两条公切线,则a -<<D.若圆O 与圆C 相交,则公共弦长的最大值为2【答案】AD 【解析】【分析】根据两点的距离公式,算出两圆的圆心距1d ≥,从而判断出A 项的正误;根据两圆相切、相交的性质,列式算出a 的取值范围,判断出B,C 两项的正误;当圆O 的圆心在两圆的公共弦上时,公共弦长有最大值,从而判断出D 项的正误.【详解】根据题意,可得圆22:1O x y +=的圆心为(0,0)O ,半径1r =,圆22:()(1)4C x a y -+-=的圆心为(,1)C a ,半径2R =.对于A ,因为两圆的圆心距1d OC ==≥,所以A 项正确;对于B ,两圆内切时,圆心距||1d OC R r ==-=1=,解得0a =.两圆外切时,圆心距||3d OC R r ==+=3=,解得a =±.综上所述,若两圆相切,则0a =或a =±,故B 项不正确;对于C ,若圆O 与圆C 恰有两条公切线,则两圆相交,||(,)d OC R r R r =∈-+,(1,3),可得13<<,解得a -<<0a ≠,故C 项不正确;对于D ,若圆O 与圆C 相交,则当圆22:1O x y +=的圆心O 在公共弦上时,公共弦长等于22r =,达到最大值,因此,两圆相交时,公共弦长的最大值为2,故D 项正确.故选:AD .11.已知函数()f x 的定义域为R ,()()()eeyxf x f y f x y +=+,且()11f =,则()A.()00f =B.()21ef -=C.()e xf x 为奇函数D.()f x 在()0+∞,上具有单调性【答案】AC 【解析】【分析】根据题意,令0x y ==即可判断A ,令1x =,1y =-,即可判断B ,令y x =-结合函数奇偶性的定义即可判断C ,令y x =即可判断D 【详解】对A :令0x y ==,则有()()()0000eef f f =+,即()00f =,故A 正确;对B :1x =,1y =-,则有()()()1111e 11e f f f -+--=,即()()()1e 1e0f f f =-+,由()00f =,()11f =,故()01e ef =-+,即()21e f -=-,故B 错误;对C :令y x =-,则有()()()eexx f x f f x x x --=+-,即()()()e 0e x x x f f x f -=+-,即()()e exxf x f x --=-,又函数()f x 的定义域为R ,则函数()e x f x 的定义域为R ,故函数()e xf x 为奇函数,故C 正确;对D :令y x =,则有()()()eexxf x f x f x x +=+,即()()22exf x f x =,即有()()22e x f x f x =,则当ln 2x =时,有()()ln 22ln 221ln 2e f f ==,即()()2ln 2ln 2f f =,故()f x 在()0,∞+上不具有单调性,故D 错误.故选:AC三、填空题:本题共3小题,每小题5分,共15分.12.已知复数()2cos isin 1iz θθθ+=∈+R 的实部为0,则tan2θ=______.【答案】43【解析】【分析】利用复数()2cos isin 1iz θθθ+=∈+R 的实部为0,求出tan 2θ=-,再利用二倍角公式得出结论.【详解】 复数()()()()()()2cos isin 1i 2cos sin sin 2cos i2cos isin 1i 1i 1i 2z θθθθθθθθθ+-++-+===∈++-R 的实部为0,2cos sin 0,tan 2θθθ∴+=∴=-.22tan 44tan21tan 143θθθ-∴===--.故答案为:43.13.已知空间中有三点()0,0,0O,()1,1,1A -,()1,1,0B ,则点O 到直线AB 的距离为______.【答案】305【解析】【分析】求出,OA AB 的坐标,求出cos ,OA AB,根据点O 到直线AB 的距离为sin ,OA OA AB 即可求解.【详解】因为()0,0,0O ,()1,1,1A -,()1,1,0B ,所以()()1,1,1,0,2,1OA AB =-=-,所以OA AB == ,()()1012113OA AB ⋅=⨯+-⨯+⨯-=-.所以cos ,OA ABOA AB OA AB⋅==-所以10sin ,5OA AB === .所以点O 到直线AB的距离为sin ,55OA OA AB ==.故答案为:305.14.设函数2()f x x ax b =++,对于任意的实数a ,b ,总存在0[0,4]x ∈,使得()f x t ≥成立,则实数t 的取值范围是________.【答案】2t ≤【解析】【分析】分情况讨论a 不同取值时函数2()u x x ax b =++在[0,4]上的范围,从而确定()f x 的最大值,将对任意实数a ,b ,总存在实数0[0x ∈,4]使得不等式0()f x t 成立,转化为min ][()max t f x ≤恒成立,即可解决.【详解】因为存在0[0,4]x ∈,使得()f x t ≥成立,所以max ()t f x ≤,因为对于任意的实数a ,b ,max ()t f x ≤,所以min ][()max t f x ≤恒成立,设()f x 的最大值为M (b ),令2()u x x ax b =++,二次函数的对称轴为2a x =-,当<02a-,即a>0时,()u x 单调递增,此时()16+4+b u x a b ,当28b a ≥--时,M (b )16+4+a b =,当28b a <--时,M (b )b =-,从而当0a >时,28b a =--时M (b )取最小值,M (b )2+8>8min a =,当40a -<£时,()u x 在[0,)2a -上单调递减,在[2a-,4]上单调递减,2()1644a b u x a b -+≤≤++,所以当21288b a a =--时,2min 1()2888M b a a =-++≥.当84a -≤≤-时,()u x 在[0,2a -上单调递减,在[2a-,4]上单调递减,2()4a b u x b -+≤≤,所以当218b a =时,2min 1()28M b a =≥.当a <-8时,()u x 单调递减,16+4a+()b u x b ≤≤,当28b a ≤--时,M (b )164a b =---,当28b a >--时,M (b )b =,从而当a <-8时,28b a =--时M (b )取最小值,M (b )28>8min a =--.综合得min ()2M b =.所以2t ≤.故答案为:2t ≤【点睛】本题主要考查函数的图象和性质的应用,考查函数的单调性和最值,考查恒成立和存在性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.用1,2,3,4,5这五个数组成无重复数字的五位数,则(1)在两个偶数相邻的条件下,求三个奇数也相邻的概率;(2)对于这个五位数,记夹在两个偶数之间的奇数个数为X ,求X 的分布列与期望.【答案】(1)12(2)分布列见解析,()1E X =【解析】【分析】(1)设A =“数字2,4相邻”,设B =“数字1,3,5相邻”,利用排列数公式求出()n A ,()n AB ,最后根据古典概型的概率公式计算可得;(2)依题意X 的所有可能取值为0,1,2,3,求出所对应的概率,即可得到分布列与数学期望.【小问1详解】设A =“数字2,4相邻”,设B =“数字1,3,5相邻”,则数字2,4相邻时的五位数有2424A A 48=个,数字2,4相邻,数字1,3,5也相邻的五位数的个数为232232A A A 24=,则()()()241482n AB P B A n A ===;【小问2详解】依题意X 的所有可能取值为0,1,2,3,由题意知“X 0=”表示2个偶数相邻,则()242455A A 20A 5P X ===,“1X =”表示2个偶数中间共插入了1个奇数,则()21323355A C A 31A 10P X ===,“2X =”表示2个偶数中间共插入了2个奇数,则()22223255A A A 12A 5P X ===;“3X =”表示2个偶数中间共插入了3个奇数,则()232355A A 13A 10P X ===,所以X 的分布列为X0123P2531015110则X 的期望为()231101231510510E X =⨯+⨯+⨯+⨯=.16.已知在正三棱柱111ABC A B C -中,2AB =,11AA =.(1)已知E ,F 分别为棱1AA ,BC 的中点,求证://EF 平面11A B C ;(2)求直线1A B 与平面11A B C 所成角的正弦值.【答案】(1)证明见解析(2)1510【解析】【分析】(1)G 为1B C 中点,通过证明1//EF A G ,证明//EF 平面11A B C ;(2)以A 为坐标原点,建立空间直角坐标系,向量法求线面角的正弦值.【小问1详解】取1B C 中点G ,连接1A G ,FG .G ,F 分别为1B C ,BC 中点,1//GF BB ∴且112GF BB =,又E 为1AA 中点,11//A E BB ∴且1112A E BB =,1//GF A E ∴且1GF A E =,故四边形1A EFG 是平行四边形,1//EF A G ∴.而EF ⊄平面11A B C ,1A G ⊂面11A B C ,//EF ∴平面11A B C .【小问2详解】如图以A 为坐标原点,AC ,1AA 分别为y ,z 轴建立空间直角坐标系,则()10,0,1A ,)3,1,0B,)13,1,1B ,()0,2,0C ,则())1110,2,1,3,1,0A C AB =-= .设平面11A B C 的法向量为(),,n x y z = ,则1112030A C n y z A B n x y ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令1x =,得3y =,3z =-,(1,3,3n ∴=-.又)13,1,1A B =- ,1332315cos ,1054A B n ∴=⨯.即直线1A B 与平面11A B C 所成角的正弦值是1510.17.三角学于十七世纪传入中国,此后徐光启、薛风祚等数学家对此深入研究,对三角学的现代化发展作出了巨大贡献,三倍角公式就是三角学中的重要公式之一,类似二倍角的展开,三倍角可以通过拆写成二倍角和一倍角的和,再把二倍角拆写成两个一倍角的和来化简.(1)证明:3sin 33sin 4sin x x x =-;(2)若11sin101n n ⎛⎫︒∈⎪+⎝⎭,,*n ∈N ,求n 的值.【答案】(1)证明见解析(2)5n =【解析】【分析】(1)利用两角和的正弦公式及倍角公式证明即可;(2)将sin10︒转为方程314302x x -+=的一个实根,通过函数的单调性及零点存在性定理即可求解.【小问1详解】因为()sin 3sin 2sin 2cos cos 2sin x x x x x x x=+=+()22sin cos cos 12sin sin x x x x x=⋅+-()2332sin 1sin sin 2sin 3sin 4sin x x x x x x =-+-=-;【小问2详解】由(1)可知,31sin 303sin104sin 102︒︒︒=-=,即sin10︒是方程314302x x -+=的一个实根.令()31432f x x x =-+,()()()212332121f x x x x '=-=+-,显然10sin10sin 302︒︒<<=,当102x <<时,()0f x <′,所以()31432f x x x =-+在10,2⎛⎫⎪⎝⎭上单调递减,又3114066f ⎛⎫⎛⎫=⨯> ⎪ ⎪⎝⎭⎝⎭,31111174305552250f ⎛⎫⎛⎫=⨯-⨯+=-< ⎪ ⎪⎝⎭⎝⎭,所以11sin10,65︒⎛⎫∈ ⎪⎝⎭,即5n =.18.已知圆22:(1)16A x y ++=和点()1,0B ,点P 是圆上任意一点,线段PB 的垂直平分线与线段PA 相交于点Q ,记点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)点D 在直线4x =上运动,过点D 的动直线l 与曲线C 相交于点,M N .(ⅰ)若线段MN 上一点E ,满足ME MD ENDN=,求证:当D 的坐标为()4,1时,点E 在定直线上;(ⅱ)过点M 作x 轴的垂线,垂足为G ,设直线,GN GD 的斜率分别为12,k k ,当直线l 过点()1,0时,是否存在实数λ,使得12k k λ=若存在,求出λ的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)12λ=【解析】【分析】(1)根据中垂线的性质可得42QA QB AB +=>=,由椭圆的定义可知动点Q 的轨迹是以,A B 为焦点,长轴长为4的椭圆,从而求出轨迹方程;(2)(ⅰ)设直线l 的方程为y kx m =+,设112200(,),(,),(,)M x y N x y E x y ,与椭圆联立韦达定理,把线段长度比转化为坐标比,代入韦达定理化简即可得点E 在定直线330x y +-=上;(ⅱ)利用坐标表示两个斜率,然后作商,将韦达定理代入即可判断.【小问1详解】由题意知圆心(1,0)A -,半径为4,且QP QB =,2AB =,则42QA QB QA QP PA AB +=+==>=,所以点Q 的轨迹为以,A B 为焦点的椭圆,设曲线的方程为()222210x y a b a b+=>>,则24,22a c ==,解得2,1a c ==,所以2223b a c =-=,所以曲线C 的方程为22143x y +=;【小问2详解】(ⅰ)因为直线l 的斜率一定存在,设直线l 的方程为y kx m =+,因为D ()4,1在l 上,所以41k m +=,由22143y kx m x y =+⎧⎪⎨+=⎪⎩得()()222348430k x kmx m +++-=,()()()()22222Δ81634348430km k m k m =-+-=-+>,设112200(,),(,),(,)M x y N x y E x y ,则()21212224383434m km x x x x k k--+==++,,由ME MD EN DN =得10102244x x x x x x --=--,化简得()()1212120428x x x x x x x ⎡⎤+-=-+⎣⎦,则()202224388428343434m km km x k k k --⎛⎫⎛⎫⨯-⨯=+ ⎪ ⎪+++⎝⎭⎝⎭,化简得00330kx m x ++-=,又因为00y kx m =+,所以00330x y +-=,所以点E 在定直线330x y +-=上.(ⅱ)因为直线y kx m =+过()1,0,所以0k m +=,直线方程为y kx k =-,从而得()4,3D k ,1(,0)G x ,由(ⅰ)知,()221212224383434k k x x x x k k-+==++,2122113,4y k k k x x x ==--,所以()()()()12121212122121214444333x kx k k y x x x x x k x x k x x k x x -----+=⨯==---()()()22222222222222224384434413434282344334k k x x k x k k k k k x k x x k ---+-+-++===⎡⎤⎡⎤⎛⎫+-⎣⎦--⎢⎥ ⎪+⎝⎭⎣⎦,所以存在实数12λ=,使得1212k k =.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.19.对于数列{}n a ,数列{}1n n a a +-称为数列{}n a 的差数列或一阶差数列.{}n a 差数列的差数列,称为{}n a 的二阶差数列.一般地,{}n a 的k 阶差数列的差数列,称为{}n a 的1k +阶差数列.如果{}n a 的k 阶差数列为常数列,而1k -阶差数列不是常数列,那么{}n a 就称为k 阶等差数列.(1)已知20,24,26,25,20是一个k 阶等差数列{}n a 的前5项.求k 的值及6a ;(2)证明:二阶等差数列{}n b 的通项公式为()()()()()121321111222n b b n b b n n b b b =+--+---+;(3)证明:若数列{}n c 是k 阶等差数列,则{}n c 的通项公式是n 的k 次多项式,即0kin ii c nλ==∑(其中iλ(01i k = ,,,)为常实数)【答案】(1)3k =,610a =(2)证明见解析(3)证明见解析【解析】【分析】(1)根据定义直接进行求解,得到3k =,并根据二阶差数列的第4项为5-,求出一阶差数列的第5项为10-,得到方程,求出610a =;(2)令1n n n d b b +=-,根据二阶等差数列的定义得到112213212n n n n d d d d d d b b b ----=-==-=-+ ,再利用累加法求出()()()()()321211112212n b n n b b b n b b b =---++--+;(3)数学归纳法证明出()1,nmi S m n i==∑为n 的1m +次多项式,利用引理可证出结论.【小问1详解】{}n a 的一阶差数列为4,2,1-,5-;二阶差数列为2-,3-,4-;三阶差数列为1-,1-,1-为常数列,故{}n a 为三阶等差数列,即3k =,二阶差数列的第4项为5-,故一阶差数列的第5项为10-,即6510a a -=-,故610a =.【小问2详解】令1n n n d b b +=-,因为{}n b 是二阶等差数列,所以112213212n n n n d d d d d d b b b ----=-==-=-+ ,因此()()()()()()1122113212112n n n n n d d d d d d d d n b b b b b ---=-++++-+=--++- ,所以()()()112211n n n n n b b b b b b b b ---=-++++-+ 1211n n d d d b --=++++ ()()()()()()321211231021n n b b b n b b b =-+-+++-++--+ ()()()()()321211112212n n b b b n b b b =---++--+,命题得证.【小问3详解】证明:先证一个引理:记()1,nmi S m n i==∑,(),S m n 是n 的1m +次多项式,数学归纳法:当1m =时,()()11,12312S n n n n =++++=+ 是n 的2次多项式,假设(),S k n 是n 的1k +次多项式,对0,1,,1k m =- 都成立,由二项式定理,()11101C mm m k k m k n nn +++=+-=∑,规定001=,将n 取0,1,2,…,n ,得101-=,()110111C 1mm k km k ++=+-=∑,()111212C2mm m kkm k +++=+-=∑,……,()11101C mm m k km k n nn +++=+-=∑,求和可得()()111110011C1C2CC ,mmmmm k kk kk k k m m m m k k k k n n S k n +++++====+=++++=∑∑∑∑ ,则()()()()()111101C ,1C ,,m m k m m k mn n S k S m n n m S m -+++=+-=+=∑,故()()()11101C ,,1m m k m k n S k n S m n m -++=+-=+∑是n 的1m +次多项式,引理得证.回到本题,由(2)可知,2阶等差数列的通项是n 的2次多项式,假设k 阶等差数列{}n c 的通项公式是n 的k 次多项式,对于1k +阶等差数列,它的差数列{}n c '是k 阶等差数列,即0kin i i c n λ='=∑,故1111101n k nn i iii i jc c c c jλ--===⎛⎫'=+=+ ⎪⎝⎭∑∑∑,由引理可知,此为n的k次多项式,命题得证.【点睛】数列新定义问题,主要针对于等差,等比,递推公式和求和公式等综合运用,对常见的求通项公式和求和公式要掌握牢固,同时涉及数列与函数,数列与解析几何,数列与二项式定理,数列与排列组合等知识的综合,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.。
课时作业53排列与组合一、选择题的解集为1.(2021学年高中数学模块综合检测)方程C x14=C2x-414()A.{4} B.{14}C.{4,6} D.{14,2}解析:∵C x14=C2x-414,∴x=2x-4或x+2x-4=14,∴x=4或x=6,经检验知x=4或x=6符合题意,故方程C x14=C2x-414的解集为{4,6}.应选C.答案:C2.(2021年河北省武邑中学高三下学期期中考试)北京某大学为第十八届四中全会招募了30名志愿者(编号分别是1,2,…,30号),现从中任意选取6人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一厅的选取种数是() A.25 B.32C.60 D.100解析:6号、15号与24号放在一组,那么其余三个编号要么都比6小,要么都比24大,比6 小时,有C35=10种选法,都比24大时,有C36=20种选法,合计30种选法,6号、15号与24在选厅时有两种选法,所以选取的种数共有(10+20)×2=60种,故正确选项为C.答案:C3.(2021学年福建省厦门外国语学校高二下学期期中考试)将编号为1,2,3,4的四个小球放入A,B,C三个盒子中,假设每个盒子至少放一个球,且1号球和2号球不能放在同一个盒子,那么不同的放法种数为()A.30 B.24C.48 D.72解析:由题意知4个小球有2个放在一个盒子里的种数是C24,把这两个作为一个元素同另外两个元素在三个位置排列,有A33种结果,而①②号小球放在同一个盒子里有A33=6种结果,所以编号为①②的小球不放到同一个盒子里的种数是C24A33-6=30,应选A.答案:A4.(2021学年福建省厦门第一中学高二下学期期中考试)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,那么不同的放球方法有()A.10种B.20种C.36种D.52种解析:由题意得,把4个颜色不相同的球分为两类:一类是:一组1个,一组3个,共有C14C33=4种,按要求放置在两个盒子中,共=3种不同有4种不同的放法;另一类:两组各两个小球,共有C24C22A22的放法,按要求放置在两个盒子中,共有3×A22=6种,所以共有4+6=10种不同的放法,应选A.答案:A5.我市正在建设最具幸福感城市,原方案沿渭河修建7个河滩主题公园,为提升城市品位、升级公园功能,打算减少2个河滩主题公园,两端河滩主题公园不在调整方案之列,相邻的两个河滩主题公园不能同时被调整,那么调整方案的种数为()A.12 B.8C.6 D.4解析:从中间5个选2个共有10种方法,去掉相邻的4种方法,共有6种方法,选C.答案:C6.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学三所大学就读,那么每所大学至少保送一人的不同保送的方法数为()A.150种B.180种C.240种D.540种解析:先将5个人分成三组,(3,1,1)或(1,2,2),分组方法有C35+C15C24C22A22=25种,再将三组全排列有A33=6种,故总的方法数有25×6=150种.答案:A7.将除颜色外完全相同的一个白球、一个黄球、两个红球分给三个小朋友,且每个小朋友至少分得一个球的分法种数为() A.15 B.21C.18 D.24解析:将四个小球分成(2,1,1)组,其中2个球分给一个小朋友的分法有(红红),(红白),(红黄),(白黄)四种.假设(红红),(红白),(红黄)分给其中一个小朋友,那么剩下的分给其余两个小朋友,共有3×3×A22=18种;假设(黄白)分给其中的一个小朋友,那么剩下的分给其余两个小朋友,只有一种分法,共有1×3=3种.由分类计数原理可得所有分法种数为18+3=21,应选B.答案:B8.旅游体验师小李受某旅游网站的邀约,决定对甲、乙、丙、丁这四个景区进行体验式旅游,假设甲景区不能最先旅游,乙景区和丁景区不能最后旅游,那么小李旅游的方法数为()A.24 B.18C.16 D.10解析:第一类,甲在最后一个体验,那么有A33种方法;第二类,甲不在最后一个体验,那么有A12A22种方法,所以小李旅游的方法共有A33+A12A22=10种.应选D.答案:D9.(2021年湖南师范大学附属中学高三月考)把7个字符a,a,a,b,b,α,β排成一排,要求三个“a〞两两不相邻,且两个“b〞也不相邻,那么这样的排法共有()A.144种B.96种C.30种D.12种解析:现排列b ,b ,α,β,假设α,β不相邻,有C 23A 22=6种,假设α,β相邻,有C 13A 22=6种,共有6+6=12种,从所形成的5个空位中选3个插入a ,a ,a ,共有12×C 35=120种,假设b ,b 相邻时,从所形成的4个空中选3个插入a ,a ,a ,共有A 33C 34=24种,所以三个“a 〞两两不相邻,且两个“b 〞也不相邻,这样的排法共有120-24=96种,应选B.答案:B10.(2021年安徽省宿州市高三上学期第一次教学质量检测)将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,那么每个小组恰好有1名教师和1名学生的概率为( )A.13B.25C.12D.35解析:由题意得将3名教师和3名学生共6人平均分成3组,安排到三个社区参加社会实践活动的方法共有C 26C 24=90种,其中每个小组恰好有1名教师和1名学生的安排方法有(C 13C 12)(C 13C 12)=36种,故所求的概率为P =3690=25.选B.答案:B11.(2021年宁夏吴忠市高三下学期联考)一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,那么不同的安排方案共有()A.24种B.36种C.48种D.72种解析:此题的难度主要是来自分类,按“问题元素〞优先的原那么,对甲进行分类:甲照看第一道工序(甲1丙4)、甲照看第四道工序(甲4乙1)、甲“休息〞(乙1丙4)三种.C11C11A24+C11C11A24+C11C11A24=36.答案:B12.(2021学年江西省抚州市临川区第一中学期中)几只猴子在一棵枯树上玩耍,它们均不慎失足下落.(1)甲在下落的过程中依次撞击到树枝A,B,C;(2)乙在下落的过程中依次撞击到树枝D,E,F;(3)丙在下落的过程中依次撞击到树枝G,A,C;(4)丁在下落的过程中依次撞击到树枝B,D,H;(5)戊在下落的过程中依次撞击到树枝I,C,E.那么这9根树枝从高到低不同的次序有()A.23种B.24种C.32种D.33种解析:不妨设A,B,C,D,E,F,G,H,I代表树枝的高度,五根树枝从上至下共九个位置,根据甲依次撞击到树枝A,B,C;乙依次撞击到树枝D,E,F;丙依次撞击到树枝G,A,C;丁依次撞击到树枝B,D,H;戊依次撞击到树枝I,C,E.可得G>A>B,且在前四个位置,C>E>F,D>E>F,且E,F一定排在后四个位置,(1)假设I排在前四个位置中的一个位置,前四个位置有4种排法,假设第五个位置排C,那么第六个位置一定排D,后三个位置共有3种排法,假设第五个位置排D,那么后四个位置共有4种排法,所以I排在前四个位置中的一个位置时,共有4×(3+4)=28种排法;(2)假设I不排在前四个位置中的一个位置,那么G,A,B,D按顺序排在前四个位置,由于I>C>E>F,所以后五个位置的排法就是H的不同排法,共5种排法,即假设不排在前四个位置中的一个位置共有5种排法,由分类计数原理可得,这9根树枝从高到低不同的次序有28+5=33种,应选D.答案:D二、填空题13.(2021年福建省厦门外国语学校高二下学期期中考试)现安排甲、乙、丙、丁、戊5名同学参加厦门市华侨博物院志愿者效劳活动,每人从事礼仪、导游、翻译、讲解四项工作之一,每项工作至少有一人参加. 甲、乙不会导游但能从事其他三项工作,丙、丁、戊都能胜任四项工作,那么不同安排方案的种数是________(用数字作答).解析:根据题意,分情况讨论:①甲乙一起参加除了导游的三项工作之一,有C13×A33=18种;②甲乙不同时参加一项工作,进而又分为2种小情况:a.丙、丁、戌三人中有两人承当同一份工作,有A23×C23×A22=3×2×3×2=36种;b.甲或乙与丙、丁、戌三人中的一人承当同一份工作,有A23×C13×C12×A22=72种.由分类计数原理,可得共有18+36+72=126种.答案:12614.(2021年福建省三明市三地三校联考)将5名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,那么共有x种不同的方案;假设每项比赛至少要安排一人时,那么共有y种不同的方案,其中x+y的值为________.解析:5名同学报名参加跳绳、接力,投篮三项比赛,每人限报一项,每人有3种报名方法,根据分步计数原理,x=35=243种,当每项比赛至少要安排一人时,先分组有C15·C14·C33A22+C25·C23·C11A22=25种,再排列有A33=6种,所以y=25×6=150种,所以x+y=393.答案:39315.(2021年福建省厦门第一中学期中考试)?中国诗词大会?亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.假设?将进酒??山居秋暝??望岳??送杜少府之任蜀州?和另确定的两首诗词排在后六场,且?将进酒?排在?望岳?的前面(可以不相邻),?山居秋暝? 与?送杜少府之任蜀州?不相邻且均不排在最后,那么后六场的排法有________.解析:根据题意,分2步进行分析:将?将进酒??望岳?和另两首诗词的四首诗词全排列,共有A44=24种顺序,由于?将进酒?排在?望岳?前面,那么这四首诗词的排法有24=12种,这四首诗词排好后,2不含最后有四个空位,在四个空位中任选两个,安排?山居秋暝?与?送杜少府之任蜀州?,有A24=12种安排方法,那么后六场的排法有12×12=144种.答案:14416.(2021年北京东城二中高二下学期期末)学校安排6名同学参加两项不同的志愿活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,那么不同的安排方法有________种.(用数字作答)解析:由题意知此题是一个分类计数问题,∵每项活动最多安排4人,∴可以有三种安排方法,即(4,2),(3,3),(2,4),当安排(4,2)时,共有C46=15种结果,当安排(3,3)时,共有C36=20种结果,当安排(2,4)时,共有C26=15种结果,∴根据分类计数原理知共有15+20+15=50种结果,故答案为50.答案:50三、解答题17.(2021学年江苏省南通市启东中学中考试)在班级活动中,4名男生和3名女生站成一排表演节目.(写出必要的数学式,结果用数字作答)(1)三名女生不能相邻,有多少种不同的站法?(2)四名男生相邻有多少种不同的排法?(3)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?(4)甲乙丙三人按上下从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)解:(1)A44A35=1 440;(2)A44A44=576;(3)A66+A15A15A55=3 720;(4)A77÷A33=840.18.(2021年陕西省咸阳市高二下学期期末教学质量检测)求满足以下条件的方法种数:(1)将4个不同的小球,放进4个不同的盒子,且没有空盒子,共有多少种放法?(2)将4个不同的小球,放进3个不同的盒子,且没有空盒子,共有多少种放法?(最后结果用数字作答)解:(1)没有空盒子的放法有:A44=24种.(2)放进3个盒子的放法有:C24·A33=36种.19.(2021年黑龙江省伊春市第二中学期中考试)(1)由数字1、2、3、4、5、6、7组成无重复数字的七位数,求三个偶数必相邻的七位数的个数及三个偶数互不相邻的七位数的个数.(2)六本不同的书,分为三组,求在以下条件下各有多少种不同的分配方法?①每组2本;②一组1本,一组2本,一组3本.解:(1)将三个偶数捆绑和4个奇数排列有A55种;再将有三个偶数松绑有A33种,所以共有A55·A33=720个;4个奇数全排列有A44种,在5个空中插入3个偶数,每空插入一个有A35种,所以共有A44·A35=1 440个.(2)①分组与顺序无关,是组合问题.分组数是C26C24C22=90(种),这90种分组实际上重复了6次.我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:(1,2),(3,4),(5,6)与(3,4),(1,2),(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法.以上的分组方法实际上参加了组的顺序,因此还应取消分组的顺序,即除以组数的全排列=15(种).②先分组,方法是C16C25C33,那么数A33,所以分法是C26C24C22A33还要不要除以A33?我们发现,由于每组的书的本数是不一样的,因此不会出现相同的分法,即共有C16C25C33=60(种)分法.。
四川省绵阳市南山中学2017-2018学年高二数学下学期期中试题理本试卷分试题卷和答题卡两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,共4页;答题卡共4页.满分100分,考试时间100分钟.第Ⅰ卷(选择题,共48分)一、选择题:本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上。
1. 已知命题p :“x R ∀∈, 20x > ”,则p ⌝ 是( )A. x R ∀∈, 20x ≤B. 0x R ∃∈, 200x >C. 0x R ∃∈, 200x <D. 0x R ∃∈, 200x ≤2.对于空间任意一点O 和不共线得三点A 、B 、C ,有如下关系:213161++= ,则( )A. 四点O 、A 、B 、C 必共面B. 四点P 、A 、B 、C 必共面C. 四点O 、P 、B 、C 必共面D. 五点O 、P 、A 、B 、C 必共面3.已知p :5≠+y x ,q :3≠x 或2≠y ,则p 是q 的( ) A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.在某次学科知识竞赛中(总分100分),若参赛学生成绩ξ服从N (80, σ2)(σ>0),若ξ在(70,90)内的概率为0.8,则落在[90,100]内的概率为( )A. 0.05B. 0.1C. 0.15D. 0.25.设函数()⎩⎨⎧≤<≤≤=21,110,2x x x x f , 则定积分()dx x f ⎰20等于( )A. 83B. 2C. 43D. 136.设函数()f x 在R 上可导,其导函数f ′(x ),且函数()f x 在x =﹣2处取得极小值,则函数y =xf ′(x )的图象可能是( )A. B. C. D.7.袋中有大小完全相同的2个白球和3个黄球,逐个不放回地摸出两球,设“第一次摸得白球”为事件A ,“摸得的两球同色”为事件B ,则()P B A 为( )A.110B. 15C. 14D. 258.有3位男生, 3位女生和1位老师站在一起照相,要求老师必须站中间,与老师相邻的不能同时为男生或女生,则这样的排法种数是( )A. 144B. 216C. 288D. 432 9.记()()()()77221071112x a x a x a a x ++⋅⋅⋅+++++=+,则0126a a a a ++++的值为( )A. 2187B. 2188C. 127D. 12810.四棱柱1111A B C D A B C D -中, 1160A AB A AD DAB ∠=∠=∠=︒,1A A AB AD ==,则1CC 与1DB 所成角为( )A. 30︒B. 45︒C. 60︒D. 90︒11.已知()f x 为定义在()0,+∞上的可导函数,且()()'f x xf x >恒成立,则不等式()210x f f x x ⎛⎫-> ⎪⎝⎭的解集为( )A. ()1,+∞B. (),1-∞C. ()2,+∞D. (),2-∞ 12.当0>x 时,函数()a x k y -=()1>k 的图象总在曲线xe xy 2=的上方,则实数a 的最大整数值为( )A. -1B. -2C. -3D. 0第Ⅱ卷(非选择题,共52分)二、填空题:本大题共4小题,每小题3分,共12分。
福建省厦门第一中学2012—2013学年度第二学期期中考试高二年理科物理试卷本试卷分题卷和答卷两部分,共8页。
满分为120分,考试用时为120分钟。
考试结束只交答题卡和答卷。
题 卷 第Ⅰ卷(选择题,共60分)一、本题共15小题;每小题3分,在每小题给出的四个选项中,只有一个选项正确,选对的得4分,有选错或不答的得0分。
1.下列说法中正确的是A .物体的影子边缘发虚,是由于光的干涉造成的B .拍摄日落时水面下的景物时,可在照相机镜头前装一个偏振片来减少反射光C .照相机镜头在阳光下看上去呈淡紫色,是由于光的衍射造成的D .凸透镜把阳光会聚成边缘带彩色的光斑,“彩色边缘”是由于光的干涉造成的 2.在相对论中,下列说法错误..的是 A .一切运动物体相对于观察者的速度都不能大于真空中的光速 B .物质的引力使光线弯曲C .引力场的存在使得空间不同位置的时间进程出现差别D .惯性系中的观察者观察一个相对他做匀速运动的时钟时,会看到这个时钟的示数与相对他静止的同样的时钟的示数相同3.一只单摆,在第一个星球表面上的振动周期为T 1;在第二个星球表面上的振动周期为T 2。
若这两个星球的质量之比M 1∶M 2=4∶1,半径之比R 1∶R 2=2∶1,则T 1∶T 2等于 A .1∶1 B .2∶1 C .4∶1 D .22∶1 4.下列说法正确的是A .在观察光的衍射实验中,右图所示的图样是不透明的小圆板的衍射图样B .紫外线的波长比伦琴射线的波长长,有很强的热效应和荧光效应C .光纤通信是应用激光亮度高的特点对信号进行调制来传递信息D .当日光灯启动时,旁边的收音机会发出“咯咯”声,这是由于电磁波的干扰造成的 5.两波源S 1、S 2在水槽中形成的波形如图所示,其中实线表示波峰,虚线表示波谷,则 A .在两波相遇的区域中会产生干涉 B .在两波相遇的区域中不会产生干涉 C .a 点的振动始终加强 D .a 点的振动始终减弱6.如图图所示,白炽灯的右侧依次放置偏振片P 和Q ,A 点位于P 、Q 之 间,B 点位于Q 右侧,旋转偏振片P ,A 、B 两点光的强度变化情况是 A .A 、B 均不变 B .A 、B 均有变化 C .A 不变,B 有变化 D .A 有变化,B 不变7.LC 振荡电路中,某时刻磁场方向如图所示,则下列说法中正确的是 A .若磁场正在减弱,则电容器上极板带负电 B .若电容器正在放电,则电容器上极板带负电 C .若电容器上极板带正电,则线圈中电流正在增大 D .若电容器正在充电,则自感电动势正在阻碍电流增大 8.一列简谐波沿x 轴正方向传播,在t =0时波形如图1所示,已知波速度为10m/s 。
福建省福州福清市2017-2018学年学年高二下学期期中考试数学(理)试题一、单选题1. =()A.1+2i B.1-2iC.2+i D.2-i2. 已知函数,若,则等于()ArrayA .B .C.D .3. 下列各式的运算结果为纯虚数的是A.(1+i)2B.i2(1-i)C.i(1+i)2D.i(1+i)4. 若,Q= (a≥0),则P,Q的大小关系是( )A.P=Q B.P>Q C.P<Q D.由a的取值确定5. 已知t∈R,i为虚数单位,复数z1=3+4i,z2=t+i,且z1·z2是实数,则t等于( )A.B.C.D.6. 下列四个推导过程符合演绎推理三段论形式且推理正确的是()A.大前提——无限不循环小数是无理数,小前提——π是无限不循环小数,结论——π是无理数B.大前提——无限不循环小数是无理数,小前提——π是无理数,结论——π是无限不循环小数C.大前提——π是无限不循环小数,小前提——无限不循环小数是无理数,结论——π是无理数D.大前提——π是无限不循环小数,小前提——π是无理数,结论——无限不循环小数是无理数7. 定义运算,则符合条件的复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限8. 定积分的值为( )A.B.C.D.9. 已知函数,若是的导函数,则函数的图象大致是()A.B.C.D.10. 设有下面四个命题:若复数满足,则;:若复数满足,则;二、填空题:若复数满足,则;:若复数,则.其中的真命题为A .B .C .D .11. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )A .乙可以知道两人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩12. 对于数25,规定第1次操作为,第2次操作为,如此反复操作,则第2018次操作后得到的数是( )A .25B .250C .55D .13313. 用反证法证明“若,则或”时,应假设____________.14. 已知实数,满足,则复数的模为________________.15. 已知是可导函数,如图,直线是曲线在处的切线,令,是的导函数,则________.16. 曲线y=x2与y=x所围成的封闭图形的面积为______.三、解答题求函数的单调递增区间.17.18. 从边长为的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子.盒子的高为多少时,盒子的容积最大?最大容积是多少?19. 已知函数,其中,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线(1)求a的值;(2)求函数f(x)的单调区间.20. 用数学归纳法证明等式.21. 求函数,的零点个数.22.已知函数.讨论函数在定义域内的极值点的个数;。
2020年领军高考数学一轮复习(文理通用)专题17定积分与微积分基本定理最新考纲1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.基础知识融会贯通1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃba f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在ʃb a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 2.定积分的性质(1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ;(3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )|b a ,即ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).【知识拓展】1.定积分应用的常用结论当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零. 2.若函数f (x )在闭区间[-a ,a ]上连续,则有(1)若f (x )为偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d x .(2)若f (x )为奇函数,则ʃa -a f (x )d x =0.重点难点突破【题型一】定积分的计算【典型例题】函数为奇函数,则()A.2 B.1 C.D.【解答】解:由于函数为奇函数,则,得a=1,因此,.故选:D.【再练一题】计算(cos x+e x)dx为()A.e B.e 2 C.e D.e【解答】解:(cos x+e x)dx=(sin x+e x)()﹣(sin0+e0)=11.故选:A.思维升华运用微积分基本定理求定积分时要注意以下几点:(1)对被积函数要先化简,再求积分.(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和.(3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分.【题型二】定积分的几何意义命题点1利用定积分的几何意义计算定积分【典型例题】(π)dx=.【解答】解:依题意,(π)dx()dx(﹣π)dx()dx﹣πx|()dx﹣4π.而()dx的几何意义为圆x2+y2=4(y≥0)在x轴上方的面积,所以()dx﹣4π4π=﹣2π.故填:﹣2π.【再练一题】,则T的值为()A.B.C.﹣1 D.1【解答】解:根据题意,M dx的几何意义为半径为1的圆的的面积,则M dx,则T sin2xdx cos2x;故选:A.命题点2求平面图形的面积【典型例题】由直线与曲线y=sin x所围成封闭图形的面积为()A.B.C.D.【解答】解:作出对应的图象,则封闭区域的面积S=﹣∫sin xdx+∫sin xdx﹣∫sin xdx=﹣(﹣cos x)|(﹣cos x)|(﹣cos x)|=cos0﹣cos()﹣cosπ+cos0+cos cosπ=11+11=4,故选:B.【再练一题】如图是函数y=x与函数在第一象限的图象,则阴影部分的面积是()A.B.C.D.【解答】解:由,得两函数的交点为(0,0),(1,1).所以阴影部分的面积S()|.故选:A.思维升华(1)根据定积分的几何意义可计算定积分.(2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示成若干个定积分的和;④计算定积分,写出答案.【题型三】定积分在物理中的应用【典型例题】汽车以V=3t+1(单位:m/s)作变速直线运动时,在第1s至第2s间的1s内经过的位移是()A.4.5m B.5m C.5.5m D.6m【解答】解:根据题意,汽车在第1s至第2s间的1s内经过的位移S(3t+1)dt=(t) 5.5;故选:C.【再练一题】一物体在变力F(x)=5﹣x2(力单位:N,位移单位:m)作用下,沿与F(x)成30°方向作直线运动,则由x=1运动到x=2时F(x)作的功为()A.1J B.J C.J D.2J【解答】解:由于F(x)与位移方向成30°角.如图:F在位移方向上的分力F′=F•cos30°,W=∫12(5﹣x2)•cos30°dx∫12(5﹣x2)dx(5x x3)|12故选:C .思维升华 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃb a v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃb a F (x )d x .基础知识训练1.【吉林省白城市通榆县第一中学2018-2019学年高二下学期第三次月考(期中)】已知函数,则( )A .16B .8C .2cos2D .2cos2-【答案】A 【解析】,故选:A2.【河南省焦作市2018-2019学年高二下学期期中考试】已知图中的三条曲线所对应的函数分别为,2y x =,314y x =,则阴影部分的面积为( )A .1ln2+B .ln 2C .1D .2【答案】B 【解析】由1y x y x ⎧=⎪⎨⎪=⎩得1x =;由14y xx y ⎧=⎪⎪⎨⎪=⎪⎩得2x =. 阴影部分的面积.故选:B3.【河南省豫南六市2018-2019学年高二下学期期中测试】已知11em dx x=⎰,函数()f x 的导数,若()f x 在xa 处取得极大值,则a 的取值范围是( )A .1a <B .10a -<<C .1a >或0a <D .01a <<或0a <【答案】C 【解析】,即1m =则当0a =或1a =时,()f x 不存在极值,不合题意 当0a <时或时,()0f x '<,此时()f x 单调递减时,()0f x '>,此时()f x 单调递增则()f x 在x a 处取得极大值,满足题意当01a <<时或时,()0f x '>,此时()f x 单调递增时,()0f x '<,此时()f x 单调递减则()f x 在x a 处取得极小值,不满足题意当1a >时或()1,x ∈-+∞时,()0f x '>,此时()f x 单调递增 时,()0f x '<,此时()f x 单调递减则()f x 在xa 处取得极大值,满足题意综上所述:1a >或0a <4.【辽宁省沈阳铁路实验中学2018-2019学年高二下学期期中考试】下列积分值最大的是( ) A .B .C .D .11edx x【答案】 A 【解析】 A :,函数y=2sin x x 为奇函数,故,,B:,C:表示以原点为圆心,以2为半径的圆的面积的14,故,D:,通过比较可知选项A 的积分值最大, 故选:A5.【福建省宁德市高中同心顺联盟校2018-2019学年高二下学期期中考试】由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( )A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 22【答案】B 【解析】由题意,联立方程组41y xy x =⎧⎪⎨=⎪⎩,解得12x =, 所以曲线4y x =,1y x=,2x =围成的封闭图形的面积为 ,故选B .6.【湖南省醴陵市第一中学2018-2019学年高二下学期期中考试】如图所示,在边长为1的正方形OABC 内任取一点P,用M 表示事件“点P 恰好取自曲线2y x =与直线1y =及y 轴所围成的曲边梯形内”,N 表示事件“点P 恰好取自阴影部分内”,则P(N | M)等于( )A .14B .15C .16D .71 【答案】A 【解析】根据条件概率的公式得到()P MN 表示落在阴影部分的概率,故答案为:A.7.【福建省福州市2018-2019学年高二下学期期中联考】设1d a x x =⎰,,12d c x x =⎰,则,,a b c 的大小关系A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C 【解析】 ∵,由定积分的几何意义可知,表示单位圆在第一象限部分与x 轴、y 轴所围成的封闭曲线的面积,等于4π, ,∴b a c >>,故选C.8.【广东省佛山市第二中学2018-2019学年第二学期第三次月考高二级】已知,则22()d f x x -⎰的值为( )A .等于0B .大于0C .小于0D .不确定【答案】A 【解析】由题意,.故选A9.【云南省昭通市云天化中学2018-2019学年高二下学期5月月考】射线与曲线3y x =所围成的图形的面积为( ) A .2 B .4C .5D .6【答案】B 【解析】将射线方程与曲线方程联立34y xy x=⎧⎨=⎩,解得:1100x y =⎧⎨=⎩,2228x y =⎧⎨=⎩ 即射线与曲线3y x =有两个公共点所围成的图形的面积为本题正确选项:B10.【吉林省长春市九台区师范高中、实验高中2018-2019学年高二下学期期中考试】( )A .πB .2πC .2D .1【答案】A 【解析】 因为定积分表示直线与曲线24y x =-围成的图像面积,又24y x =-表示圆224x y +=的一半,其中0y ≥;因此定积分表示圆224x y +=的14,其中,故.故选A11.【福建省厦门第一中学2018-2019学年高二下学期期中考试】已知区域,区域,在Ω内随机投掷一点M,则点M落在区域A内的概率是()A.1112e⎛⎫-⎪⎝⎭B.1114e⎛⎫-⎪⎝⎭C.1118e⎛⎫-⎪⎝⎭D.11e-【答案】B【解析】由题意,对应区域为正方形区域,其面积为224S==;对应区域如下图阴影部分所示:其面积为,所以点M落在区域A内的概率是.故选B12.【湖南省衡阳市第一中学2018-2019学年高二下学期期中考试】如图,矩形中曲线的方程分别是,在矩形内随机取一点,则此点取自阴影部分的概率为 ( )A.B.C.D.【答案】B【解析】由题意可得,当时,由可得;所以,又,所以在矩形内随机取一点,则此点取自阴影部分的概率为.故选B13.【福建省晋江市南侨中学2018-2019学年高二下学期第二次月考】若是偶函数,则______.【答案】【解析】由题意,函数是偶函数,则,即,所以,又由定积分的几何意义可知,积分,表示所表示的半径为2的半圆的面积,即,所以,故答案为:.14.【广西南宁市第三中学、柳州市高级中学2018-2019学年高二下学期联考(第三次月考)】二项式的展开式中,第三项系数为2,则11adx x=⎰_______ 【答案】ln 2 【解析】展开式的通项为,第三项系数为,因为0a >,所以2a =,,故答案为ln 2.15.【新疆乌鲁木齐市第七十中学2018-2019学年高二下学期期中考试】__________.【答案】8π 【解析】 由题表示的几何意义为:以(0,0)为圆心,4为半径的圆在第一第二象限的面积,所以=,440xdx -=⎰所以故答案为8π16.【福建省泉州市泉港区第一中学2018-2019学年高二下学期期中考】如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为_________.【答案】14【解析】由图象可知,直线OB 方程为:y x = 则阴影部分面积为:∴所求概率本题正确结果:1417.【云南省曲靖市会泽县茚旺高级中学2018-2019学年高二下学期期中考试】定积分______. 【答案】2 【解析】.18.【四川省树德中学2018-2019学年高二5月阶段性测试】定积分__________.【答案】2π+ 【解析】 因为表示圆224x y +=面积的14,所以;又,所以.故答案为2π+19.【安徽省六安市第一中学2018-2019学年高二下学期第二次段考】二项式的展开式的第四项的系数为-40,则21ax dx -⎰的值为__________.【答案】3 【解析】二项式(ax ﹣1)5 的通项公式为: T r +15rC =•(ax )5﹣r •(﹣1)r , 故第四项为35C -•(ax )2=﹣10a 2x 2, 令﹣10a 2=﹣40, 解得a =±2, 又a >0, 所以a =2. 则故答案为:3.20.【辽宁省沈阳铁路实验中学2018-2019学年高二下学期期中考试】曲线22y x =-与曲线y x =所围成的区域的面积为__________. 【答案】92【解析】由曲线y =x 与y =2-x 2,得2-x 2=x ,解得x =-2或x =1, 则根据积分的几何意义可知所求的几何面积(2x-231123x x -)1-2| ==78+4+2-63= 92; 故答案为:92.能力提升训练1.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】如图,在正方形OABC 内任取一点M ,则点M 恰好取自阴影部分内的概率为( )A .14 B .13 C .25D .37【答案】B 【解析】由图可知曲线与正方形在第一象限的交点坐标为(1,1),由定积分的定义可得:S 阴1=⎰(1x -)dx =(x 3223x -)101|3=,设“点M 恰好取自阴影部分内”为事件A , 由几何概型中的面积型可得:P (A ),故选:B .2.【甘肃省兰州市第一中学2019届高三6月最后高考冲刺模拟】如图,在矩形OABC 内随机撒一颗黄豆,则它落在空白部分的概率为( )A .e3B .43e- C .33e- D .13e - 【答案】B 【解析】由题意,阴影部分的面积为,又矩形OABC 的面积为=3OABC S 矩形,所以在矩形OABC 内随机撒一颗黄豆,则它落在空白部分的概率为.故选B3.【江西省新八校2019届高三第二次联考】如图,在半径为π的圆内,有一条以圆心为中心,以2π为周期的曲线,若在圆内任取一点,则此点取自阴影部分的概率是( )A .1πB .21πC .22πD .无法确定【答案】B【解析】由题意知:圆的面积为:周期为2π可得:22ππω= 1ω∴=设圆的圆心为:(),0πϕπ⇒=∴曲线为:∴阴影部分面积∴所求概率本题正确选项:B4.【河南省开封市2019届高三第三次模拟】如图,在矩形中的曲线是的一部分,点,在矩形内随机取一点,则此点取自阴影部分的概率是( )A .B .C .D .【答案】B 【解析】阴影部分面积为矩形的面积为则此点落在阴影部分的概率故选B。
参考答案与试题解析一.选择题(共10小题)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣【分析】由相反数的定义即可得到答案.【解答】解:2019的相反数是﹣2019.故选:B.2.(﹣7)6的意义是()A.﹣7×6 B.6﹣7相加C.6个﹣7相乘D.7个﹣6相乘【分析】根据有理数乘方的定义解答即可.【解答】解:(﹣7)6的意义是6个﹣7相乘.故选:C.3.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:16亿=1600000000=1.6×109,故选:C.4.下列各组数中,运算结果相同的是()A.﹣(﹣2)和|﹣2| B.(﹣2)2和﹣22C.()2和D.(﹣2)3和(﹣3)2【分析】选项A根据相反数以及绝对值的定义判断;选项B、C、D根据有理数的乘方的定义判断.【解答】解:A.﹣(﹣2)=2,|﹣2|=2,∴﹣(﹣2)=|﹣2|,故本选项符合题意;B.(﹣2)2=4,﹣22=﹣4,故本选项不合题意;C.,,故本选项不合题意;D.(﹣2)3=﹣8,(﹣3)2=9,故本选项不合题意.故选:A.5.单项式的系数和次数分别是()A.B.﹣C.D.﹣2,2【分析】单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,由此可得出答案.【解答】解:单项式的系数和次数分别是﹣π、3.故选:C.6.下列化简正确的是()A.4a﹣2a=2 B.3xy﹣4yx=﹣xyC.﹣2m+6n=4mn D.3ab2﹣5ba2=﹣2ab2【分析】根据合并同类项的法则计算即可.【解答】解:A、4a﹣2a=2a,故不符合题意;B、3xy﹣4yx=﹣xy,故符合题意;C、﹣2m+6n,不是同类项,不能合并;故不符合题意;D、3ab2﹣5ba2,不是同类项,不能合并;故不符合题意;故选:B.7.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1 C.ax=﹣ay D.3•ax=3•ay 【分析】根据等式的性质,逐项判断即可.【解答】解:∵ax=ay,a=0时,x、y不一定相等,∴选项A不符合题意;∵ax=ay,∴ax+1=ay+1,∴选项B不符合题意;∵ax=ay,∴ax=﹣ay不一定成立,∴选项C不符合题意;∵ax=ay,∴3•ax=3•ay,∴选项D符合题意.故选:D.8.在算式3﹣|﹣4□5|中,要使计算出来的值最小,填入□的运算符号应为()A.+ B.﹣C.×D.÷【分析】利用运算法则计算即可确定出相应的运算符号.【解答】解:在算式3﹣|﹣4□5|中的“□”所在的位置中,要使计算出来的值最小,则应填入的运算符号为×,故选:C.9.已知x<0,x+y>0,那么x,y,x+y这三个数中最小的数是()A.x B.y C.x+y D.无法确定【分析】根据有理数的加法运算法则判断出y>0,然后根据有理数的大小比较方法判断出最小的数为x.【解答】解:∵x<0,x+y>0,∴y>0,∴x,y,x+y这三个数中最小的数是x.故选:A.10.将一个两位数的十位和个位调换位置后得到一个新数,将新数与原数相加,所得的结果不可能是以下的()A.99 B.132 C.145 D.187【分析】可设一个两位数的十位是a,个位是b,表示出该两位数和的调换位置后得到一个新数,得到所得的结果是11的倍数,再找到不是11的倍数的数即为所求.【解答】解:设一个两位数的十位是a,个位是b,则10a+b+10b+a=11a+11b=11(a+b),则所得的结果是11的倍数,在99,132,145,187中,只有145不是11的倍数.故选:C.二.填空题(共8小题)11.直接写出结果:(1)﹣1+2= 1 ;(2)﹣1﹣1=﹣2 ;(3)(﹣3)3=﹣27 ;(4)6÷(﹣1)=﹣4 ;(5)(﹣1)2n﹣(﹣1)2n﹣1= 2 (n为正整数);(6)方程4x=0的解为x=0 ;(7)方程﹣x=2的解为x=﹣6 .【分析】依据有理数的运算法则正确计算即可,利用一元一次方程的解法求解即可.【解答】解:(1)﹣1+2=+(2﹣1)=1;(2)﹣1﹣1=﹣(1+1)=﹣2;(3)(﹣3)3=(﹣3)(﹣3)(﹣3)=﹣27;(4)6÷(﹣1)=6×(﹣)=﹣4;(5))(﹣1)2n﹣(﹣1)2n﹣1=1﹣(﹣1)=2;(6)方程4x=0的两边都除以4得:x=0,故解为x=0;(7)方程﹣x=2的两边都乘以(﹣3)得:x=﹣6;故答案为:(1)1,(2)﹣2,(3)﹣27,(4)﹣4,(5)2,(6)x=0,(7)x=﹣6.12.在所给数:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有 3 个.【分析】根据负有理数的定义得出即可.【解答】解:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有:﹣2,﹣2019,﹣5.,一共3个.故答案为:3.13.图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是等式的基本性质1 .【分析】根据等式的性质判断即可.【解答】解:图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是等式的基本性质1.故答案为:等式的基本性质1.14.写出一个只含字母x的二次三项式,使得常数为﹣1,并按降幂排列:x2﹣2x﹣1 .【分析】根据二次三项式和多项式的系数、常数项的有关概念以及只含字母x,即可得出答案,(答案不唯一).【解答】解:这个二次三项式的常项是﹣1,只含字母x,∴这个二次三项式是:x2﹣2x﹣1;故答案为:x2﹣2x﹣1.15.a3x+1b与﹣2a3b y﹣1是同类项,则x y的值为.【分析】根据同类项的定义中相同字母的指数也相同,可求得x和y的值.同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项.【解答】解:∵a3x+1b与﹣2a3b y﹣1是同类项,∴3x+1=3,y﹣1=1,解得,y=2.∴.故答案为:16.已知x=﹣1是关于x的方程5x﹣a=﹣2的解,则a=﹣3 .【分析】把x=﹣1代入方程即可得到一个关于a的方程,解方程求得a的值.【解答】解:把x=﹣1代入方程得:﹣5﹣a=﹣2,解得:a=﹣3.故答案是:﹣3.17.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是﹣4 .【分析】由B,O两点之间的距离等于A,B两点间的距离,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:根据题意得:0﹣(x+2)=x+2﹣x,解得:x=﹣4.故答案为:﹣4.18.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是4n﹣2(或2+4(n﹣1))个.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:由图可知:第一个图案有阴影小三角形2个.第二图案有阴影小三角形2+4=6个.第三个图案有阴影小三角形2+8=10个,那么第n个就有阴影小三角形2+4(n﹣1)=4n﹣2个,故答案为:4n﹣2(或2+4(n﹣1))个.三.解答题(共11小题)19.画出数轴并把下列各数标在数轴上:﹣2.5,,3,0.【分析】把各点在数轴上表示出来即可.【解答】解:如图所示:20.计算下列各题:(1)(﹣3)﹣(﹣5)﹣(+7)(2)﹣8×+14÷(﹣7)(3)()×(﹣30)(4)﹣24+(1)×|3﹣(﹣3)2|【分析】(1)先化简再计算;(2)先算乘除,最后算加法;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘法,最后算加减;如果有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(1)(﹣3)﹣(﹣5)﹣(+7)=﹣3+5﹣7=﹣5;(2)﹣8×+14÷(﹣7)=﹣4﹣2=﹣6;(3)()×(﹣30)=×(﹣30))﹣×(﹣30)+×(﹣30)=﹣3+4﹣25=﹣24;(4)﹣24+(1)×|3﹣(﹣3)2|=﹣16+×|3﹣9|=﹣16+×6=﹣16+4=﹣12.21.化简下列各题:(1)2ab﹣3ab+(﹣ab)(2)3(x﹣1)﹣(x﹣5)(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项即可求解;(3)先去括号,然后合并同类项即可求解.【解答】解:(1)2ab﹣3ab+(﹣ab)=(2﹣3﹣1)ab=﹣2ab;(2)3(x﹣1)﹣(x﹣5)=3x﹣3﹣x+5=2x+2;(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]=3a2﹣[a﹣5a+a2+a2﹣1]=3a2﹣a+5a﹣a2﹣a2+1=a2+4a+1.22.解下列方程:(1)2x=x﹣5(2)5x﹣2=1+9x【分析】(1)移项、合并同类项,依此即可求解;(2)移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)2x=x﹣52x﹣x=﹣5,x=﹣5;(2)5x﹣2=1+9x,5x﹣9x=1+2,﹣4x=3,x=﹣.23.先化简,再求值(3a2﹣ab﹣1)﹣(5ab+4a2﹣3),其中a=﹣2,b=.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:原式=3a2﹣ab﹣1﹣5ab﹣4a2+3=﹣a2﹣6ab+2,当a=﹣2,b=时,原式=﹣(﹣2)2﹣6×(﹣2)×+2=2.24.某校七(1)班学生的平均身高是160厘米,如表给出了该班6名学生的身高情况(单位:厘米)学生A B C D E F身高157 162 158 154 163 165 身高与平均身高的差值﹣3 +2 ﹣2 a+3 b(1)计算得出表中的数据a=﹣6 ;b=+5 ;(2)这6名学生的平均身高是多少厘米?(结果精确到0.1)【分析】(1)根据学生的平均身高为160厘米,即可填写出表格中的数值;(2)求出6名学生的平均身高.【解答】解:(1)由题意:a=154﹣160=﹣6,b=165﹣160=+5;故答案为:﹣6,+5;(2)6名学生的平均身高=160+≈159.8cm,∴这6名学生的平均身高是159.8厘米.25.“囧”(jiong)曾经是风靡网络的流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的小长方形边长为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积;(2)当x、y互为倒数时,求此时“囧”的面积.【分析】(1)阴影部分的面积=长方形的面积﹣小长方形的面积﹣两个直角三角形的面积;(2)由图可知,20=3y,则可分别求出x、y的值,将x、y的值代入S=40x﹣2xy即可求解.【解答】解:(1)阴影部分的面积=长方形的面积﹣小长方形的面积﹣两个直角三角形的面积,∴S=20(x+x)﹣xy﹣2××xy=40x﹣2xy;(2)由图可知,20=3y,∴y=,当xy=1时,x=,∴S=40x﹣2=6﹣2=4.26.列一元一次方程解决问题:在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为24?如果能,这三个日期数分别是多少?【分析】设中间的数为x,其它两个为(x﹣7)与(x+7),表示出之和,根据三个日期数之和为24,列出方程,如果求出的解符合题意,那么相邻三行里同一列的三个日期数之和能为24,否则不能.【解答】解:设中间的数为x,其它两个为(x﹣7)与(x+7),根据题意得:x﹣7+x+x+7=24,解得:x=8,∴x﹣7=1,x+7=15,答:这三个日期数分别是1,8,15.27.定义:若a+b=ab,则称a、b是“相伴数”例如:3+1.5=3×1.5,因此3和1.5是一组“相伴数”(1)﹣1与是一组“相伴数”;(2)若m、n是一组“相伴数”,2mn﹣[3m+2(n﹣m)+3mn﹣6]的值.【分析】(1)设﹣1与m是一组“相伴数”,根据“相伴数”的定义列式计算,得到答案;(2)根据“相伴数”的定义得到m+n=mn,根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:(1)设﹣1与m是一组“相伴数”,由题意得,﹣1+m=﹣m,解得,m=,故答案为:;(2)∵m、n是一组“相伴数”,∴m+n=mn,则2mn﹣[3m+2(n﹣m)+3mn﹣6]=2mn﹣m﹣(n﹣m)﹣mn+3=2mn﹣m﹣n+m﹣mn+3=mn﹣(m+n)+3=3.28.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.阅读下列材料:问题:利用一元一次方程将0.化成分数.解:设0.=x.方程两边都乘以10,可得10×0.=10x由0.=0.777…,可知10×0.=7.777…=7+0.即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.=.(1)填空:将0.写成分数形式为.(2)请你仿照上述方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.,②0.43.【分析】(1)根据0.化成分数的方法,设0.=x,仿照例题的解法即可得出结论;(2)①根据0.化成分数的方法,设0.=m,仿照例题的解法(×10换成×100)即可得出结论;②根据0.化成分数的方法,设0.43=n,仿照例题的解法即可得出结论.【解答】解:(1)设0.=x,方程两边都乘以10,可得10×0.=10x即4+x=10x解得x=,即0.=(2)①设0.=m,方程两边都乘以100,可得100×0.=100m即15+m=100m解得m=,即0.=,②设0.43=n,方程两边都乘以10,可得10×0.43=10n由0.43=0.43222…可知10×0.43=4.3222…=3.89+0.43,即3.89+n=10n解得n=,即0.43=,29.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c ﹣9)2=0.若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2AB.(1)a=﹣3 ,b= 1 ,c=9 ;(2)若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x= 1 ,最小值为12 .(3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点A.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由.【分析】(1)利用绝对值及偶次方的非负性可求出a,c的值,结合BC=2AB可求出b 值;(2)当﹣3≤x≤9时,|x﹣a|+|x﹣c|取得最小值,结合当x=1时|x﹣b|=0,即可得出结论;(3)用含t的代数式表示出点M,N表示的数,结合MN=2,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵a、c满足|a+3|+(c﹣9)2=0,∴a+3=0,c﹣9=0,∴a=﹣3,c=9.又∵点B在点A、C之间,且满足BC=2AB,∴9﹣b=2[b﹣(﹣3)],∴b=1.故答案为:﹣3;1;9.(2)当﹣3≤x≤9时,|x﹣a|+|x﹣c|取得最小值,最小值为9﹣(﹣3)=12.∵|x﹣b|≥0,b=1,∴当x=b=1时,|x﹣b|取得最小值,最小值为0,∴当x=1时,|x﹣a|+|x﹣c|+|x﹣b|取得最小值,最小值为12.故答案为:1;12.(3)12÷2=6(秒),4+6=10(秒).当0≤t≤12时,点M表示的数为t﹣3;当t>12时,点M表示的数为9;当4≤t≤10时,点N表示的数为2(t﹣4)﹣3=2t﹣11;当10<t≤16时,点N表示的数为9﹣2(t﹣10)=29﹣2t.①当4≤t≤10时,MN=|t﹣3﹣(2t﹣11)|=2,解得:t=6或t=10,∴t﹣3=3或7;②当10<t≤12时,MN=|t﹣3﹣(29﹣2t)|=2,解得:t=10(舍去)或t=,∴t=3=;③当12<t≤16时,MN=|9﹣(29﹣2t)|=2,解得:t=9(舍去)或者t=11(舍去).综上所述:当t的值为6,10或时,M、N两点之间的距离为2个单位,此时点M表示的数为3,7或.。
四川省凉山木里中学2017-2018学年高二数学下学期期中试题文(含解析)一、选择题(共12小题,每小题5分,共60分)1.1.已知集合A={1,2,3},B={x|x2<9},则A∩B等于( )A. {-2,-1,0,1,2,3}B. {-2,-1,0,1,2}C. {1,2,3}D. {1,2}【答案】D【解析】【分析】求出集合中的范围确定出,再求和的交集即可【详解】则故选【点睛】本题主要考查了集合的运算法则及其交集运算,求出集合中的范围确定出是解题的关键,属于基础题。
2.2.设是向量,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】D【解析】试题分析:由无法得到,充分性不成立;由,得,两向量的模不一定相等,必要性不成立,故选D.【考点】充要条件,向量运算【名师点睛】由向量数量积的定义(为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近几年高考中出现的频率很高,应熟练掌握其解法.视频3.3.下列函数中,在区间上为减函数的是A. B. C. D.【答案】D【解析】试题分析:在区间上为增函数;在区间上先增后减;在区间上为增函数;在区间上为减函数,选D.考点:函数增减性视频4.4.设则()A. 1B.C.D. 2【答案】B【解析】由已知得,所以,解得,,故选B.视频5.5.设,则=()A. B. C. D.【答案】C【解析】试题分析:,所以,故选C.考点:函数的表示.6.6.在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A. 58B. 88C. 143D. 176【答案】B【解析】试题分析:等差数列前n项和公式,.考点:数列前n项和公式.视频7.7.某程序框图如图所示,则该程序运行后输出的值是()........................A. 0B. -1C. -2D. -8【答案】B【解析】根据流程图可得:第1次循环:;第2次循环:;第3次循环:;第4次循环:;此时程序跳出循环,输出 .本题选择B选项.8.8.在椭圆内,通过点,且被这点平分的弦所在的直线方程为()A. B.C. D.【答案】A【解析】试题分析:设以点为中点的弦的端点分别为,则,又,两式相减化简得,即以点为中点的弦所在的直线的斜率为,由直线的点斜式方程可得,即,故选A. 考点:直线与椭圆的位置关系.9.9.某四棱锥的三视图如上图(右)所示,该四棱锥最长棱棱长为A. 1B.C.D. 2【答案】C【解析】四棱锥的直观图如图所示:由三视图可知,平面,是四棱锥最长的棱,,故选C.考点:三视图.视频10. 从三个红球、两个白球中随机取出两个球,则取出的两个球不全是红球的概率是( )A. B. C. D.【答案】C【解析】试题分析:全是红球的概率为,所以对立事件不全是红球的概率为考点:古典概型概率点评:古典概型概率的求解首先要找到所有基本事件种数与满足题意的基本事件种数,然后求其比值即可,求解过程中常结合对立事件互斥事件考虑11.11.若tanα=,则cos2α+2sin 2α等于( )A. B. C. 1 D.【答案】A【解析】【分析】利用同角三角函数的基本关系,二倍角的正弦公式,求得结果【详解】故选【点睛】本题主要考查了三角函数的化简求值,将所求的关系式的分母“1”化为,再将“弦”化“切”求解。
福建省厦门第一中学2024—2025学年度第一学期10月学业调研评估初一年数学学科练习第Ⅰ卷说明:(1)考试时间60分钟.满分120分.(2)所有答案都必须写在答题卡指定方框内,答在框外一律不得分.(3)选择题用2B铅笔填涂,其余一律用黑色水笔做答;不能使用涂改液/带.第Ⅰ卷(选择题)一、选择题(每题3分,共30分)1. 如果收入100元记作+100元.那么−80元表示()A. 支出20元B. 支出80元C. 收入20元D. 收入80元【答案】B【解析】【分析】根据正负数的意义进一步求解即可.【详解】∵收入100元记作+100元,∴−80元表示支出80元,故选:B.【点睛】本题主要考查了正负数的意义,熟练掌握相关概念是解题关键.2. –2017的相反数是()A. -2017B. 2017C.12017− D.12017【答案】B【解析】【分析】一个数的相反数就是在这个数前面添上“-”号,据此可得.【详解】解:–2017的相反数是2017,故选B.【点睛】本题考查了相反数的概念.解题的关键是掌握相反数的概念.只有符号不同的两个数互为相反数.3. 数轴上的点A到原点的距离是5,则点A表示的数为()A. -5B. 5C. 5或-5D. 2.5或-2.5【答案】C【解析】【详解】根据题意知:到数轴原点的距离是5的点表示的数,即绝对值是5的数,应是±5.故选C .4. 化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足的部分记为负数,它们中质量最接近标准的是( )A. B. C. D.【答案】B【解析】【分析】求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.本题考查正数与负数以及绝对值,熟练掌握绝对值的意义是解题的关键.【详解】解:通过求4个排球的绝对值得:| 1.1| 1.1−=,|0.6|0.6−=,|0.9|0.9+=,|1|1+=.0.6−的绝对值最小,所以这个砝码是最接近标准的球.故选:B .5. 数轴上的点M 对应的数是2−,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )A. 6−B. 2C. 6−或2D. 6 【答案】B【解析】【分析】本题考查了数轴上数的表示以及数轴上点的变化规律,熟练掌握点在数轴上移动的规律是解题的关键.根据点在数轴上移动的规律,左减右加;列出算式,计算即可;【详解】解:242−+=故选:B .6. 3x =,4y =,则x y −的值是( )A. 7−B. 1C. 1−或7D. 1或7−【答案】C【解析】【分析】本题考查绝对值的意义,有理数的减法;求出y 的值,然后代入x y −中即可求出答案.【详解】解:由题意可知:3x =,4y =±,当4y =时,341x y −=−=−,当4y =−时,347x y −=+=,故选:C .7. 魏晋时期数学家刘徽在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),图(1)表示的是()()235431++−=−的计算过程,则图(2)表示的计算过程是( )A. ()()22231−++=B. ()()223210−++=C. ()()223210++−=−D. ()()22231++−=−【答案】B【解析】 【分析】由白色算筹表示正数,灰色算筹表示负数,即可列式计算.详解】解:由题意可得:图(2)表示的计算过程是()()223210−++=, 故选B .【点睛】本题考查正负数的表示,关键是明白白色算筹表示正数,灰色算筹表示负数.8. 有理数a 、b 在数轴上的位置如图所示,则下列各式运算结果符号为正的是( )A. a b −B. a bC. abD. a b +【答案】D【【解析】 【分析】本题考查了数轴,有理数的加减乘除运算法则,根据数轴可得0,a b a b <<<,进而逐项分析判断,即可求解. 【详解】解:根据数轴可得0,a b a b <<<,∴0a b −<,0a b<,0ab <,0a b +>, 故选:D .9. 体育课上全班女生进行百米测验,达标成绩为18秒,第一小组8名女生的成绩如下:30.500.11 2.6 1.60.3−+−−−+−,,,,,,,其中“+”表示成绩小于18秒,“﹣”表示成绩大于18秒,则这个小组的达标率是( )A. 25%B. 37.5%C. 50%D. 62.5%【答案】B【解析】【分析】根据正负数的意义可得达标的有3人,然后计算即可.【详解】解:由题意得,达标的有3人, 则这个小组达标率是3100%37.5%8×=, 故选:B .【点睛】本题考查了正负数的意义,有理数的除法,根据正负数的意义得出达标的人数是解题的关键. 10. 已知整数1234a a a a ……,,,,满足下列条件:12101a a a ==−+,,324323a a a a ++……-,=,=-依此类推,则2023a 的值为( )A. 1011−B. 1010−C. 2022−D. 2023−【答案】A【解析】【分析】分别求出234567a a a a a a ,,,,,的值,观察其数值的变化规律,进而求出2023a 的值.【详解】解:根据题意可得, 10a =,2111a a +=-=-,3221a a +=−=-,的4332a a =−+=−,5442a a =−+=−,6553a a =−+=−,7663a a =−+=−,…观察其规律可得,202312022−=,202221011÷=,20231011a ∴=−,故选:A .【点睛】本题考查了数的变化规律,通过计算前面几个数的数值观察其规律是解本题的关键,综合性较强,难度适中.第Ⅱ卷(非选择题)二、填空题(第11题每空2分,其余每空3分,共25分)11. (1)化简:2−−=______;()2−−=______;2128−=______; (2)9−的倒数是______; (3)比较大小:32−______43−(填“>”或“<”). 【答案】 ①. 2− ②. 2 ③. 34−##0.75− ④. 19− ⑤. < 【解析】【分析】本题主要考查了求一个数的绝对值,化简多重符号,有理数大小的比较,求一个数的倒数,根据相关的定义进行计算即可.(1)根据绝对值的意义,相反数定义进行计算即可;(2)根据“乘积为1的两个数互为倒数”进行计算即可;(3)根据两个负数比较大小的方法:绝对值大的反而小,进行比较大小即可.【详解】解:(1)2=2−−−;()2=2−−;213284−=−; 故答案为:2−;2;34−;(2)9−的倒数是19−; 故答案为:19−;(3)3322−=,4433−=, ∵3423>, ∴3423−<−, 故答案为:<.12. 比3−小8的数是________.【答案】11−【解析】【分析】本题主要考查了有理数减法计算,只需要求出38−−的结果即可得到答案.【详解】解:3811−−=−,∴比3−小8的数是11−,故答案为:11−.13. 如图,数轴上的两个点分别表示3−和m ,请写出一个符合条件的m 的整数值:______________.【答案】4−(答案不唯一). 【解析】【分析】本题主要考查数轴,解题关键是熟知当数轴方向朝右时,右边的数总比左边的数大.由题图可知,3m <−,写出一个符合条件的m 值即可.【详解】解:由题图可知,3m <−,∴符合条件的m 的整数值可以为4−(答案不唯一).故答案为:4−(答案不唯一). 14. 绝对值小于3的所有整数的和是______.【答案】0【解析】【分析】根据绝对值的性质得出绝对值小于3的所有整数,再求和即可.【详解】解:绝对值小于3的所有整数有:21012−−,,,,,它们的和为:0,故答案为:0.【点睛】本题考查了绝对值的性质,解题的关键是熟知绝对值的概念及性质,并正确求一个数的绝对值.15. 若320x y ++−=,则x y +=_________________ . 【答案】1−【解析】【分析】本题主要考查绝对值的非负性,熟练掌握绝对值的非负性是解题的关键.根据绝对值的非负性求出x y 、的值即可得到答案.【详解】解: 320x y ++−=, 30x ∴+=,20y −=, 3,2x y ∴=−=,321x y ∴+=−+=−,故答案为:1−.16. 在一条可以折叠的数轴上,点A ,B 表示的数分别是10−,3,(如图1)以点C 为折点,将此数轴向右对折,折叠后若点A 落在点B 的右边(如图2),且A 、B 两点距离是1,则点C 表示的数是______.【答案】3−【解析】【分析】本题主要考查数轴,熟练掌握数轴上两点的距离与点表示的数的运算关系是解答的关键.先根据A B 、表示的数求得的长,再由折叠后AB 的长求得BC 的长,进而可确定点C 表示的数.【详解】解:A B ,表示的数分别是10−,3,()31013AB ∴=−−=,∵折叠后点A 在点B 的右边,且1AB =,131162BC +∴=−=, C ∴点表示的数是363−=−,故答案为:3−.三、解答题(本大题共8题,共65分)17. 把下列各数的序号填在相应的集合里:①35−,②0.2,③47−,④0,⑤122−,⑥π,⑦ 2.3 ,⑧320+. 整数集合:{_________________________}⋅⋅⋅;负分数集合:{_________________________}⋅⋅⋅;正有理数集合:{_________________________}⋅⋅⋅.【答案】①④⑧;③⑤⑦;②⑧【解析】【分析】本题考查了实数的分类,掌握有理数的概念和实数的分类方法是解题的关键.按照实数的分类填写,实数分为有理数和无理数,无理数是无限不循环小数,有理数分为整数和分数,整数分为正整数,0和负整数,分数分为正分数和负分数.【详解】解:整数集合{①35−,④0,⑧320+…}负分数集合{③47−,⑤122−,⑦ 2.3 …} 正有理数集合{②0.2,⑧320+…}., 故答案为:①④⑧;③⑤⑦;②⑧.18. 将下列各数在数轴上表示出来,并用“<”把这些数连接起来.5+,0.5−,4−,0,112,123− 【答案】11420.501532−<−<−<<<+,数轴见解析 【解析】【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【详解】解:如图所示,11420.501532−<−<−<<<+; 19. 计算(1)()()4282924−−−−+−;(2)()11324864 −−+×−;(3)()()()2584−×+−÷−;(4)()1481227349−÷×−−−÷.【答案】(1)27−(2)11−(3)8−(4)7−【解析】【分析】本题主要考查了有理数混合运算,解题的关键是熟练掌握有理数混合运算法则,“先算乘方,再算乘除,最后算加减,有小括号的先算小括号里面的”.(1)根据有理数加减混合运算法则进行计算即可;(2)根据乘法分配律进行计算即可;(3)根据有理数四则混合运算法则进行计算即可;(4)先计算绝对值,然后根据有理数四则混合运算法则进行计算即可.【小问1详解】解:()()4282924−−−−+−4282924=−−+−32292432427=−;【小问2详解】 解:()11324864−−+×−()()()113242424864=−×−−×−+×−3418=+−11=−;【小问3详解】解:()()()2584−×+−÷−102=−+8=−;【小问4详解】 解:()1481227349−÷×−−−÷ ()4481999=−××−− 169=−+7=−.20. 出租车沿东西方向的道路上来回行驶,早上从A 地出发,中午到达B 地,约定向东为正方向,当天行驶路程记录如下:4+,6−,8+,5−,4,6+,10+,9−.(单位:千米) (1)B 地在A 地什么方向?距离A 地多远?(2)若汽车每千米耗油0.1升,出发前汽车油箱有油10升,求到达B 地后汽车油箱还剩多少升油?【答案】(1)B 地在A 地的正东方向,距离A 地12千米(2)到达B 地后汽车还剩4.8升油【解析】【分析】本题考查有理数四则混合运算应用、正负数的应用,关键是理解题意,正确列出算式. (1)将记录数据相加,根据和的符号可作出判断;(2)求得记录数据绝对值的和,即为行驶的路程,进而列式计算即可.【小问1详解】解:∵()()()46854610912++−++−++++−=(千米), ∴B 地在A 地的正东方向,距离A 地12千米.小问2详解】 解:这一天走的总路程为:46854610952+−++−++++−=(千米), 应耗油520.1 5.2×=(升), 10 5.2 4.8−=(升), 答:到达B 地后汽车还剩4.8升油.21. 食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负来表示,记录如下表: 与标准质量的差值(单位:克) 5− 2− 0 1 3 6的【袋数1 4 3 4 5 3(1)这批样品的平均质量比标准质量是超过还是不足?平均每袋超过或不足多少克?(2)若每袋标准质量为450克,求抽样检测的样品总质量是多少?【答案】(1)这批样品的平均质量比标准质量多,平均每袋多1.2克(2)抽样检测的样品总质量是9024克【解析】【分析】本题主要考查了正负数的实际应用,有理数混合计算的实际应用,熟知相关计算法则是解题的关键.(1)根据有理数的加法,可得总质量比标准质量多,根据平均数的意义,可得答案;(2)根据标准质量加上比标准质量多的,可得答案.【小问1详解】解:根据题意,得:()()512403143563−×+−×+×+×+×+×()5841518=−+−+++24=(克), 平均质量为2420 1.2÷=(克), 答:这批样品的平均质量比标准质量多,平均每袋多1.2克;【小问2详解】45020249024×+=(克), 答:抽样检测的样品总质量是9024克.22. 已知有理数x 、y 满足||9x =,||5y =.(1)若0x <,0y >,求+x y 的值;(2)若||x y x y +=+,求x y −的值.【答案】(1)4−(2)4或14【解析】【分析】(1)先根据绝对值的定义和0x <,0y >求出x 和y 的值,再代入+x y 计算;(2)先根据绝对值的定义和||x y x y +=+求出x 和y 的值,再代入x y −计算【小问1详解】解:∵||9x =,||5y =,∴x =±9,y =±5.∵0x <,0y >∴x =−9,y =5,∴x +y =−9+5=−4.【小问2详解】解:∵||9x =,||5y =,∴x =±9,y =±5.∵||x y x y +=+,∴x +y ≥0,∴x =9,y =5或x =9,y =−5,∴x y −=9−5=4或x y −=9−(−5)=14.【点睛】本题考查了绝对值的定义和有理数的加减运算,正确求出x 和y 的值是解答本题的关键. 23. 定义新运算:11a b a b ∗=−,1a b ab⊗=(右边的运算为平常的加、减、乘、除). 例如:114373721∗=−=,11373721⊗==×. 若a b a b ⊗=∗,则称有理数,a b 为“隔一数对”.例如:1123236⊗==×,11123236∗=−=,2323⊗=∗,所以2,3就是一对“隔一数对”. (1)下列各组数是“隔一数对”的是 (请填序号) ①1,2a b ==; ②1,1a b =−=; ③41,33a b =−=−. (2)计算:(3)4(3)4(31415)(31415)−∗−−⊗+−∗−(3)已知两个连续的非零整数都是“隔一数对”.计算:1223344520202021⊗+⊗+⊗+⊗++⊗ .【答案】(1)①③;(2)12−;(3)20202021 【解析】【分析】(1)按照题干定义进行计算,判断是否满足条件即可;(2)直接根据题目定义分别计算各项,然后再合并求解即可;(3)根据定义进行变形和拆项,然后根据规律求解即可.【详解】解:(1)①1,2a b ==; ∵111122a b ∗=−=,11122a b ⊗==×, ∴a b a b ⊗=∗,则①是“隔一数对”;②1,1a b =−=; ∵11211a b ∗=−=−−,1111a b ⊗==−−×, ∴a b a b ⊗≠∗,则②不是“隔一数对”; ③41,33a b =−=−; ∵94131143a b −−∗=−=,1941433a b ⊗== −×−, ∴a b a b ⊗=∗,则③是“隔一数对”;故答案为:①③;(2)根据定义,原式()1111134343141531415−−+−−−×−− 111034(3)4−−+−−× 711212=−+ 12=−; (3)根据定义,原式1223344520202021=∗+∗+∗+∗++∗1111111111()()()()()1223344520202021=−+−+−+−++− 112021=− 20202021=. 【点睛】本题考查有理数的定义新运算,仔细审题,理解题干中的新定义,熟练掌握有理数的混合运算法则是解题关键.24. 数轴上有A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例:如图1所示,数轴上点A ,B ,C 所表示的数分别为1,3,4,因为3124312AB BC AB BC =−==−==,,,所以称点B 是点A ,C 的“关联点”.图1(1)如图2所示,点A 表示数2−,点B 表示数1,下列各数2,4,6所对应的点分别是C 1,C 2,C 3其中是点A ,B 的“关联点”的是 ;图2(2)如图3所示,点A 表示数10−,点B 表示数15,P 为数轴上一个动点:①若点P 在点B 的左侧,且P 是点A ,B 的“关联点”,求此时点P 表示的数;②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“关联点”, 请求出此时点P 表示的数.图3【答案】(1)C 2 (2)①点P 35−,520,33−;②点P 表示的数为5540652,, 【解析】【分析】(1)分别求出点C 1,C 2,C 3到,A B 两点间的距离,再进行验证即可;(2)①分类讨论点P 在AAAA 之间和点P 在A 点左侧时的情况即可;②分类讨论点P 为点,A B 的“关联点”、点B 为点,A P 的“关联点”、点A 为点,B P 的“关联点”即可求解.【小问1详解】解:∵()11224,211AC BC =−−==−=∴点C 1不是点A ,B 的“关联点”∵()22426,413AC BC =−−==−=∴222AC BC =即:点2C 是点A ,B 的“关联点”∵()33628,615AC BC =−−==−=∴点3C 不是点A ,B 的“关联点”故答案为:2C【小问2详解】解:解:设点P 在数轴上表示的数为p①(i )当点P 在AAAA 之间时,若2AP BP =,则()10215p p +=− 解得:203p =若2BP AP =,则()15210p p −=+ 解得:53p =−(ii )当点P 在A 点左侧时,则2BP AP =,即:()15210p p −=−− 解得:35p =−故:点P 表示的数为35−,520,33−;②(i )当点P 为点,A B 的“关联点”时,则2PA PB =,即:()10215p p +=−解得:40p =(ii )当点B 为点,A P “关联点”时,则2AB PB =,即:()1510215p +=− 解得:552p =或2BP AB =,即:()1521510p −=+解得:65p =(iii )当点A 为点,B P 的“关联点”时,则2AP AB =,即:()1021510p +=+的解得:40p=故:点P表示的数为55 40652,,【点睛】本题以新定义题型为背景,考查了数轴上两点间的距离公式.掌握相关结论,进行分类讨论是解题关键.。