极化恒等式在向量中的应用
- 格式:pdf
- 大小:743.04 KB
- 文档页数:4
极化恒等式在向量问题中的应用目标1:阅读材料,了解极化恒等式的由来过程,掌握极化恒等式的两种模式,并理解其几何意义阅读以下材料: .两倍等于两条邻边平方和的平方和平行四边形的对角线的你能用向量方法证明:何模型。
示向量加法和减法的几引例:平行四边形是表 ,,b AD a AB ==证明:不妨设,,则b a DB b a A -=+=C ()222222C C b b a a b a A A +?+=+== (1)()222222b b a a b a DB DB +?-=-== (2)(1)(2)两式相加得:??+=??? ??+=+22222222C AD AB b a DB A 结论:定理:平行四边形对角线的平方和等于两条邻边平方和的两倍.思考1:如果将上面(1)(2)两式相减,能得到什么结论呢b a ?=()()--+2241b a b a ————极化恒等式几何意义:向量的数量积表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的41. 即:[]2241DB AC b a -=?(平行四边形模式)思考:在图1的三角形ABD 中(M 为BD 的中点),此恒等式如何表示呢因为AM AC 2=,所以2241DB AM b a -=?(三角形模式)目标2-1:掌握用极化恒等式求数量积的值例1.(2012年浙江文15)在ABC ?中,M 是BC 的中点,3,10AM BC ==,则AB AC ?=____ . 解:因为M 是BC 的中点,由极化恒等式得:2241BC AM AC AB -=?=9-10041?= -16 【小结】运用极化恒等式的三角形模式,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式。
目标检测.______1)132012(的值为边上的动点,则是点,的边长为已知正方形改编北京文DA DE AB E ABCD ?目标2-2:掌握用极化恒等式求数量积的最值、范围.________O O 2.2的取值范围是则上的一个动点,是圆,点的圆内接于半径为(自编)已知正三角形例PB PA P ABC ?解:取AB 的中点D ,连结CD ,因为三角形ABC 为正三角形,所以O 为三角形ABC的重心,O 在CD 上,且22==OD OC ,所以3=CD ,32=AB 又由极化恒等式得:341222-=-=?PD AB PD PB PA 因为P 在圆O 上,所以当P 在点C 处时,3||max =PD 当P 在CO 的延长线与圆O 的交点处时,1||min =PD所以]6,2[-∈?PB PA【小结】涉及数量积的范围或最值时,可以利用极化恒等式将多变量转变为单变量,再用数形结合等方法求出单变量的范围、最值即可。
向量的极化恒等式与等和线的应用-学生版向量的极化恒等式与等和线的应用-学生版结论:平行四边形对角线的平方和等于两条邻边平方和的两倍?思考1:如果将上面(1) (2)两式相减,能得到什么结论呢?对于上述恒等式,用向量运算显然容易证明。
那么基于上面的引例,你觉得极化恒等式的几何意义是什么?几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的丄.4即:;b = 4〔AC 2-DB 2】(平行四边形模式)极化恒等式引例:平行四边形是表示向量加法和减法的几何模型。
你能用向量方法证明:平行四边形的对角线的平方和等于两条邻边平方和的两倍? 证明:不妨设AB = a, AD = b,贝V AC 二 a b,DB =a —b, ___ , 2 AC 二 AC 二 a b (1).2 DB r 2 a ___ 2 ? ■ 2 =DB 二 a — b ? r r 2 -2a b + b(1) (2)两式相加得:ab =;_a b极化恒等式思考:在图1的三角形ABD中(M为BD的中点),此恒等式如何表示呢?因为AC=2AM,所以ai=|AMp-1|DB|2(三角形模式)例1. (2012年浙江文15)在ABC中川是BC的中点AM =3,BC =10,则AB TAC =BMC目标检测(2012北京文 13改编)已知正方形 ABCD 的边长为 1, 点E 是AB 边上的动点,贝V DE DA 的值为_______________________________________ .例2.(自编)已知正三角形 ABC 内接于半径为2的圆O ,点P 是圆O 上的一个动点, 则PA PB 的取值范围是 _________________ .目标检测2 2(2010福建文11)若点O 和点F 分别为椭圆中上 =1的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为()A2 B.3 C.6 D.8例3. (2013浙江理7)在ABC 中,P o是边AB 上一定点,满足P°B*AB ,且对于边AB 上任一点4 7PB 卩C HRB PC 。
向量数量积替代方式--极化恒等式在向量运算中,数量积是一种常见的操作,用于计算两个向量之间的数量关系。
然而,当我们处理复杂的运算时,使用极化恒等式可以简化计算过程,提高效率。
本文将介绍向量数量积替代方式--极化恒等式的原理和应用。
1. 极化恒等式的原理极化恒等式是基于向量的线性性质和数量积的定义而推导出来的。
根据极化恒等式,任何一个向量数量积都可以表示为两个向量的线性组合。
具体而言,对于任意向量a和b,其数量积可以表示为a与b的和与差的线性组合。
2. 极化恒等式的应用极化恒等式在向量运算和证明中有广泛的应用。
以下是一些常见的应用场景:2.1 向量的模长计算根据极化恒等式,可以将向量的模长计算转化为数量积的计算。
通过取向量与自身的数量积开根号,即可得到向量的模长。
2.2 向量的垂直判定对于两个向量a和b,如果它们的数量积为零,则可以判断它们是垂直的。
这是因为根据极化恒等式,数量积为零意味着两个向量的和与差相等,即它们的夹角为90度。
2.3 向量的投影计算通过极化恒等式,可以将向量的投影计算转化为数量积的计算。
具体而言,将待投影向量与投影方向的单位向量进行数量积运算,即可得到向量在该方向上的投影长度。
3. 总结极化恒等式是一种简化向量运算的有效方法。
通过将数量积表示为两个向量的线性组合,我们可以利用向量的线性性质进行更加简洁和高效的计算。
在实际应用中,极化恒等式常用于向量的模长计算、垂直判定和投影计算等问题。
希望本文对您理解向量数量积替代方式--极化恒等式有所帮助。
极化恒等式面积-概述说明以及解释1.引言1.1 概述概述在数学领域中,极化恒等式是一种重要的数学工具,用于研究向量空间中的内积和范数。
同时,面积是几何学中一个重要的概念,用于描述平面图形的大小和形态。
本文将介绍极化恒等式和面积的基本概念,并探讨它们在数学和几何学中的应用。
首先,我们将详细介绍极化恒等式。
极化恒等式是一种将内积运算与范数运算联系起来的重要定理。
它表明,在一个向量空间中,任意两个非零向量的内积可以通过它们的范数和角度来表示。
具体来说,对于一个向量空间V中的任意两个非零向量x和y,极化恒等式可以表示为:⟨x, y⟨ = x y cosθ其中,⟨x, y⟨表示向量x和y的内积,x 和y 分别表示x和y的范数,θ表示x和y之间的夹角。
在接下来的部分中,我们将探讨面积的概念。
面积是几何学中描述平面图形大小的一种度量。
不同的形状和图形具有不同的计算方法。
对于简单的几何形状,如正方形、长方形和圆形,面积可以通过一些基本公式直接计算得到。
而对于复杂的曲线和曲面,面积的计算可能需要使用积分和微分等数学工具。
最后,我们将探讨极化恒等式和面积的应用。
极化恒等式在向量分析、线性代数和泛函分析等领域中具有广泛的应用。
通过使用极化恒等式,我们可以研究向量空间中的正交性、投影性质和内积的性质。
而面积的计算则广泛应用于几何学、物理学、工程学等领域。
通过计算图形的面积,我们可以研究物体的形状、表面积以及它们之间的关系。
总之,本文将详细介绍极化恒等式和面积的基本概念,并探讨它们在数学和几何学中的应用。
通过对这些概念的理解和应用,我们可以更好地理解向量空间和平面图形的性质,为进一步的研究和应用打下坚实的基础。
1.2文章结构文章结构的设计对于一篇长文非常重要,它能够帮助读者更好地理解和掌握文章的内容。
在本文中,我们将介绍极化恒等式和面积这两个主要部分。
2. 正文2.1 极化恒等式在本节中,我们将详细介绍极化恒等式的概念和相关理论。
极化恒等式的应用引言极化恒等式是数学中一条重要的关系式,它在各个领域中都有着广泛的应用。
本文将介绍极化恒等式的定义和性质,并给出一些具体的应用案例。
极化恒等式的定义极化恒等式是指在内积空间中,通过使用内积运算将双线性函数转化为一个向量上的光滑函数。
具体地,对于一个内积空间 V,其内积运算为 \< , \>,则对于任意两个向量v, w ∈ V,极化恒等式可以表示为:\< v, w \> = \frac{1}{4} \left(\|v + w\|^2 - \|v - w\|^2\right)其中,\|v\| 表示向量 v 的范数。
极化恒等式的性质极化恒等式具有以下一些重要的性质:1.对称性:对于任意的v, w ∈ V,极化恒等式成立。
2.线性性:极化恒等式中的向量 v 和 w 可以是任意的线性组合,对应的恒等式仍然成立。
3.正定性:当且仅当 V 是一个欧几里得空间时,极化恒等式成立。
极化恒等式在向量分析中的应用极化恒等式在向量分析中起着重要的作用,以下是一些常见的应用案例:1. 向量正交性证明假设有两个向量 v 和 w,在证明它们正交性时,可以利用极化恒等式。
通过计算 \< v, w \>,若等式右侧的值为 0,则可以得到 v 和 w 的正交性。
2. 向量长度计算对于一个给定的向量 v,可以利用极化恒等式计算其长度。
通过令 w = v,代入极化恒等式并求解,即可得到向量 v 的长度,即 \|v\|。
3. 向量夹角计算给定两个向量 v 和 w,可以利用极化恒等式计算它们之间的夹角。
通过令 w = v - w,代入极化恒等式并求解,即可得到向量 v 和 w 之间的夹角。
极化恒等式在物理学中的应用极化恒等式在物理学中也有广泛的应用,以下是一些常见的应用案例:1. 电场的计算对于一个给定的电场分布,利用极化恒等式可以计算电场的能量密度。
通过令v 和 w 分别为电场和电位移向量,在极化恒等式中代入并求解,即可得到电场的能量密度。
微专题6 极化恒等式、投影向量极化恒等式:a ·b =14[(a +b )2-(a -b )2].(1)几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.(2)在平行四边形PMQN 中,O 是对角线交点,则: ①PM→·PN →=14[|PQ →|2-|NM →|2](平行四边形模式); ②PM→·PN →=|PO →|2-14|NM →|2(三角形模式).类型一 投影向量的应用由投影与投影所在的向量共线,问题转化为求向量间的投影数量与投影所在向量方向上单位向量的积.例1 已知|a |=4,e 为单位向量,它们的夹角为2π3,则向量a 在向量e 上的投影向量是________;向量e 在向量a 上的投影向量是________. 答案 -2e -18a解析 由|a |=4,e 为单位向量,它们的夹角为2π3, 向量a 在向量e 上的投影数量:|a |cos 23π=-2, 向量e 在向量a 上的投影数量:|e |cos 23π=-12, 故向量a 在向量e 上的投影向量:-2e , 向量e 在向量a 上的投影向量:-12×a |a |=-18a .训练1 (1)已知向量a 与b 的夹角为34π,且|a |=2,|b |=3,则a 在b 方向上的投影向量与投影向量的长度分别是( ) A.23b ,2 B.23b ,-2 C.-23b , 2D.-23b ,-2(2)已知向量a =(1,2),A (6,4),B (4,3),b 为向量AB →在向量a 上的投影向量,则|b |=________. 答案 (1)D (2)455解析 (1)设a 在b 方向上的投影向量为λb (λ∈R ), 则a ·b =λb ·b , 故λ=a ·b b 2=|a |cos 34π|b |=-23.故a 在b 方向上的投影向量为-23b ,a 在b 方向上的投影向量的长度为|a | cos 34π=- 2. (2)AB→=(-2,-1), 由投影公式可知|b |=|AB→·a ||a |=|-2×1+(-1)×2|5=455.类型二 利用极化恒等式求向量的数量积利用极化恒等式求平面向量数量积的步骤: (1)取第三边的中点,连接向量的起点与中点;(2)利用极化恒等式将数量积转化为中线长与第三边长的一半的平方差; (3)求中线及第三边的长度,从而求出数量积的值.注:对于不共起点或不共终点的向量需通过平移转化为共起点(终点)的向量,再利用极化恒等式.例2 (1)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.BA →·CA →=4,BF→·CF →=-1,则BE →·CE →的值为________.(2)如图,在平行四边形ABCD 中,AB =1,AD =2,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边上的中点,则EF →·FG →+GH →·HE →=________.答案 (1)78 (2)32解析 (1)设BD =DC =m , AE =EF =FD =n , 则AD =3n .根据向量的极化恒等式,有AB →·AC →=AD →2-DB →2=9n 2-m 2=4,FB →·FC →=FD →2-DB →2=n 2-m 2=-1, 联立解得n 2=58,m 2=138.因此EB →·EC →=ED →2-DB →2=4n 2-m 2=78. 即BE→·CE →=78. (2)连接EG ,FH 交于点O (图略), 则EF→·FG →=EO →2-OH →2=1-⎝ ⎛⎭⎪⎫122=34,GH→·HE →=GO →2-OH →2=1-⎝ ⎛⎭⎪⎫122=34, 因此EF→·FG →+GH →·HE →=32. 训练2 (1)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB→·AC →=________.(2)如图,在△ABC 中,已知AB =4,AC =6,∠BAC =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=3AE →,若F 为DE 的中点,则BF →·DE →的值为________.答案 (1)-16 (2)4解析 (1)因为M 是BC 的中点, 由极化恒等式得AB→·AC → =|AM →|2-14|BC →|2=9-14×100=-16. (2)取BD 的中点N ,连接NF ,EB ,因AB =4,AE =2,∠BAC =60°,故BE ⊥AE ,所以BE =2 3.在△DEB 中,FN 綊12BE , 所以FN =3, 故BF→·DE →=2FB →·FD →=2⎝ ⎛⎭⎪⎫FN →2-14DB →2=2(3-1)=4. 类型三 利用极化恒等式求数量积的最值(范围)(1)利用极化恒等式求数量积的最值(范围)时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式.(2)难点在于求中线长的最值(范围),可通过观察图形或用点到直线的距离等求解.例3 (1)如图,在同一平面内,点A 位于两平行直线m ,n 的同侧,且A 到m ,n 的距离分别为1,3,点B ,C 分别在m ,n 上,|AB →+AC →|=5,则AB →·AC →的最大值是________.(2)(2022·济南调研)在△ABC 中,点E ,F 分别是线段AB ,AC 的中点,点P 在直线EF 上,若△ABC 的面积为2,则PB →·PC →+BC →2的最小值为________. 答案 (1)214 (2)23 解析 (1)法一(极化恒等式法)连接BC ,取BC 的中点D ,AB →·AC →=AD →2-BD →2,又AD =12|AB →+AC →|=52,故AB→·AC →=254-BD →2=254-14BC →2, 又因为BC min =3-1=2,所以(AB →·AC →)max =214. 法二(坐标法)以直线n 为x 轴,过点A 且垂直于n 的直线为y 轴,建立如图所示的平面直角坐标系xOy ,如图,则A (0,3),C (c ,0),B (b ,2), 则AB→=(b ,-1),AC →=(c ,-3) 从而(b +c )2+(-4)2=52, 即(b +c )2=9,又AC →·AB →=bc +3≤(b +c )24+3=214,当且仅当b =c 时,等号成立. (2)取BC 中点O ,PB→·PC →=PO →2-14BC →2⇒PB →·PC →+BC →2=PO →2+34BC →2≥2PO→2·34BC →2=3|PO→||BC →|,当且仅当PO =32BC 时等号成立. ∵PO ≥12h ,∴3|PO →||BC →|≥32h |BC →|=3S △ABC =23,∴PB →·PC →+BC →2的最小值为2 3.训练3 (1)如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为2,MN 是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),P 为正方体表面上的动点,当弦MN 的长度最大时,PM→·PN →的取值范围是________.(2)如图所示,正方形ABCD 的边长为1,A ,D 分别在x 轴,y 轴的正半轴(含原点)上滑动,则OC→·OB →的最大值是________.答案 (1)[0,2] (2)2解析 (1)由正方体的棱长为2, 得内切球的半径为1, 正方体的体对角线长为2 3.当弦MN 的长度最大时,MN 为球的直径. 设内切球的球心为O ,则PM→·PN →=PO →2-ON →2=|PO →2|-1. 由于P 为正方体表面上的动点, 故|OP |∈[1,3], 所以PM→·PN →∈[0,2]. (2)如图,取BC 的中点M ,AD 的中点N ,连接MN ,ON ,则OC→·OB →=OM →2-14=|OM →|2-14. 因为OM ≤ON +NM =12AD +AB =32, 当且仅当O ,N ,M 三点共线时取等号. 所以OC→·OB →的最大值为2.一、基本技能练1.设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b 等于( ) A.1 B.2 C.3 D.4答案 A解析 由极化恒等式得a ·b =14[(a +b )2-(a -b )2]=14×(10-6)=1.2.如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5,若AB →·AD →=-7,则BC→·DC →=( )A.-9B.21C.-21D.9答案 D解析 AB→·AD →=|AO →|2-14|BD →|2=-7,∴14|BD →|2=16,BC →·DC →=|CO →|2-14|BD →|2=25-16=9.3.如图,BC ,DE 是半径为1的圆O 的两条直径,BF→=2FO →,则FD →·FE →=( )A.-34B.-89C.-14D.-49答案 B解析 ∵BF →=2FO →,圆O 的半径为1,∴|FO→|=13. 法一 FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO →2+FO →·(OE →+OD →)+OD →·OE →=⎝ ⎛⎭⎪⎫132+0-1=-89.法二 由极化恒等式得FD→·FE →=FO →2-14DE →2=19-1=-89. 4.已知正方形ABCD 的面积为2,点P 在边AB 上,则PD →·PC →的最大值是( )A.92B.2C.32D.34答案 B解析 如图所示,取CD 的中点E ,连接PE ,由极化恒等式可得PD →·PC →=PE →2-EC →2=|PE →|2-12, 所以当P 与A (B )重合时,|PE→|=52最大,从而(PD →·PC →)max =2. 5.已知a ,b 是平面内两个互相垂直的单位向量,若c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A.1 B.2 C.2 D.22答案 C解析 由极化恒等式(a -c )·(b -c ) =14[(a +b -2c )2-(a -b )2], ∵(a -c )·(b -c )=0, 所以(a +b -2c )2=(a -b )2, 故c 2=(a +b )·c , 又因为|a |=|b |=1,a ⊥b , ∴|a +b |=2,于是|c |2≤|a +b ||c |=2|c |, ∴|c |≤ 2.6.已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A →·PB →的最小值为( ) A.1 B.2 C.2 D.22 答案 A解析 如图所示,由极化恒等式易知,当OP 与直线x -y +2=0垂直时,P A →·PB →有最小值,即P A →·PB →=PO →2-OB →2=(2)2-12=1. 故选A.7.已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于A ,B 的一点,P 是圆O 所在平面上任意一点,则(P A →+PB →)·PC →的最小值为( ) A.-14 B.-13 C.-12 D.-1答案 C解析 ∵P A →+PB →=2PO →,∴(P A →+PB→)·PC →=2PO →·PC →, 取OC 中点D (图略),由极化恒等式得,PO→·PC →=|PD →|2-14|OC →|2=|PD →|2-14, 又|PD →|2min=0,∴(P A →+PB→)·PC →的最小值为-12. 8.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值为( ) A.-2 B.-32 C.-43 D.-1 答案 B解析 取BC 的中点D ,连接AD ,PD ,取AD 的中点E ,连接PE .由△ABC 是边长为2的等边三角形,E 为中线AD 的中点得AE =12AD =32, 则P A →·(PB→+PC →) =2P A →·PD →=2(|PE →|2-|EA →|2) =2⎣⎢⎡⎦⎥⎤|PE →|2-⎝ ⎛⎭⎪⎫322≥2×⎝ ⎛⎭⎪⎫0-34=-32,当且仅当|PE→|=0时,取等号,∴P A →·(PB→+PC →)的最小值为-32. 9.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·DA →的值为________.答案 1解析 取AE 中点O ,设AE =x (0≤x ≤1),则AO =12x ,∴DE→·DA →=|DO →|2-14|AE |2=12+⎝ ⎛⎭⎪⎫12x 2-14x 2=1.10.在△ABC 中,AB =6,AC =5,A =120°,动点P 在以C 为圆心,2为半径的圆上,则P A →·PB →的最小值为________.答案 16解析 设AB 的中点为M ,则P A →·PB →=PM →2-MA →2=|PM →|2-9, 所以要求P A →·PB→的最小值,只需求|PM →|的最小值, 显然当点P 为线段MC 与圆的交点时,|PM→|取得最小值,最小值为|MC |-2. 在△AMC 中,由余弦定理得|MC |2=32+52-2×3×5×cos 120°=49, 所以|MC |=7,所以|PM →|的最小值为5, 则P A →·PB→的最小值为16. 11.在Rt △ABC 中,CA =CB =2,M ,N 是斜边AB 上的两个动点,且MN =2,则CM →·CN →的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤32,2解析 取MN 的中点为P ,由极化恒等式得CM→·CN →=|CP →|2-14|MN |2=|CP →|2-12. 当P 为AB 的中点时,|CP →|取最小值为2,则CM→·CN →的最小值为32; 当M 与A (或N 与B )重合时,|CP→|取最大值为102,则CM →·CN →的最大值为2,所以CM→·CN →的取值范围是⎣⎢⎡⎦⎥⎤32,2. 12.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,AB =8,CD =6,则MA →·MB →的取值范围是________. 答案 [-9,0]解析 如图,取CD 的中点G ,连接OG ,MO ,CO ,得OG ⊥CD ,MA→·MB →=|MO →|2-14|BA →|2=|MO →|2-16, ∵|OC→|≥|OM →|≥|OG →|, ∴7≤|OM→|≤4,∴MA→·MB →∈[-9,0]. 二、创新拓展练13.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A.2B.3C.6D.8答案 C解析 如图,由已知OF =1,取FO 中点E ,连接PE ,由极化恒等式得:OP →·FP →=|PE→|2-14|OF →|2=|PE →|2-14,∵当P 在椭圆右顶点时,|PE →|2有最大值,|PE →|2max=254, ∴OP→·FP →的最大值为6. 14.(多选)已知在△ABC 中,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( ) A.PB→·PC →=PD →2-DB →2 B.存在点P ,使|PD →|<|P 0D →| C.P 0C →·AB →=0 D.AC =BC 答案 AD解析 如图所示,取BC 的中点D ,连接PD ,根据向量的极化恒等式,有PB →·PC →=PD →2-DB →2,P 0B →·P 0C →=P 0D →2-DB →2. 又PB →·PC →≥P 0B →·P 0C →,所以|PD →|≥|P 0D →|,A 正确;B 错误;故由点P 为边AB 上任意一点知:点D 到边AB 上点的距离的最小值为|DP 0→|,从而DP 0⊥AB ,∴P 0C →·AB →≠0,C 错误;取AB 的中点E ,则由P 0B =14AB 知,CE ∥DP 0,故CE ⊥AB ,于是AC =BC ,D 正确.15.在半径为1的扇形中,∠AOB =60°,C 为弧上的动点,AB 与OC 交于P ,则OP →·BP →的最小值为________. 答案 -116解析 取OB 的中点D ,作DE ⊥AB 于点E ,连接PD ,则OP→·BP →=|PD →|2-|OD →|2=|PD →|2-14,易知|PD →|∈⎣⎡⎦⎤|DE →|,|AD →|=⎣⎢⎡⎦⎥⎤34,32, 则OP→·BP →=PD →2-14∈⎣⎢⎡⎦⎥⎤-116,12,故所求最小值为-116. 16.如图,在平面四边形ABCD 中,AC =AD =2,∠DAC =120°,∠ABC =90°,则BD→·BC →的最大值为________.答案1解析取CD的中点E,连接EA,EB,∵AC=AD=2,∠DAC=120°,∴AE⊥CD,DE=AD sin 60°=3,由∠ABC=∠AEC=90°,∴A,B,C,E四点共圆,且AC为直径,则BD→·BC→=|BE→|2-|ED→|2=|BE→|2-(3)2≤|AC→|2-3=22-3=1,所以BD→·BC→的最大值为1.。
平面向量的极化恒等式及其应用2AB22AC2BC2则动点P的轨迹一定通过ABC的------A.外心B.内心C.重心D.垂心平面向量的极化恒等式及其应用一、极化恒等式的由来定理:平行四边形的对角线的平方和等于相邻两边平方和的两倍。
证法1(向量法):设 $AB=a,AD=b$,则$AC=a+b,DB=a-b$,$AC+DB=2(a+b)=2(AB+AD)$。
证法2(解析法):证法3(余弦定理):推论1:由 $AC+DB=2(AB+AD)$ 知,$2AO+2OB=2(AB+AD)$,即 $AB+AD=2(AO+OB)$。
推论2:$a\cdot b=\dfrac{1}{4}(a+b)^2-\dfrac{1}{4}(a-b)^2$,即 $AB\cdot AD=AO-OB$。
推论3:在 $\triangle ABC$ 中,$O$ 是边 $BC$ 的中点,则 $AB\cdot AC=AO-OB$,即极化恒等式的几何意义。
二、平行四边形的一个重要结论平行四边形的对角线的平方和等于相邻两边平方和的两倍。
AC+DB=2(AB+AD)$。
三、三角形中线的一个性质AB+AC=2(AO+OB)$。
推论1:$AO=\dfrac{1}{2}(AB+AC)-OB$。
推论2:$AO=\dfrac{1}{2}(AB+AC)-BC$。
应用】已知点 $P$ 是直角三角形 $ABC$ 斜边 $AB$ 上中线 $CD$ 的中点,则 $\dfrac{PA+PB}{PC^2}=-\dfrac{1}{2}$。
四、三角形“四心”的向量形态1.$O$ 是平面上一定点,$A,B,C$ 是平面上不同的三点,动点 $P$ 满足 $\dfrac{AP}{AB}+\dfrac{AP}{AC}=\infty$,则动点 $P$ 的轨迹一定通过 $\triangle ABC$ 的外心 $O$,即$OP=OA+\lambda\cdot\overrightarrow{AB}+\mu\cdot\overrighta rrow{AC}$,$\lambda,\mu\in\mathbb{R}$。
极化恒等式的应用极化恒等式(Polarization Identity)是线性代数中的一个重要定理,它对向量空间内的内积和范数的关系进行了深入的探讨和证明。
极化恒等式不仅在线性代数中具有广泛的应用,而且在物理、工程、计算机科学、经济学等多个领域中也有着重要的应用。
本文将介绍极化恒等式的应用,包括其在向量空间的几何意义、特征向量的计算、信号处理、机器学习和经济学等方面的应用。
一、在向量空间的几何意义极化恒等式是向量空间内内积和范数的一个等式,它的几何意义是将内积(或范数)表示为向量之间的内积的线性组合。
极化恒等式表明了向量空间内的任何一个内积可以表示为向量之间的内积的线性组合,这个线性组合的系数是向量空间内的所有向量。
因此,极化恒等式是将内积和范数联系在一起的关键。
具体来说,假设V是一个有限维向量空间,u和v是V中的任意两个向量,则其极化恒等式可以表示为:⟨u,v⟩ = (||u||^2 + ||v||^2 - ||u-v||^2)/2其中,⟨u,v⟩表示u和v的内积,||u||表示u的范数。
这个等式可以表示为u和v之间的距离。
通过极化恒等式,我们可以得到向量空间中的任意两个向量之间的内积和范数的关系,从而为向量空间内的几何结构构建提供了基础。
例如,在计算几何中,利用极化恒等式可以计算任意两个向量之间的夹角,从而计算出向量空间中的长度、角度和曲线等几何问题。
二、特征向量的计算极化恒等式在计算特征向量和特征值方面也具有重要的应用。
这里,特征向量是指一个向量空间中的一个非零向量,其在线性变换下只被缩放,而不改变其方向。
特征向量的计算是线性代数中的一个关键问题,它在信号处理、图像处理和机器学习等领域中有广泛的应用。
通过极化恒等式,我们可以计算特征向量和特征值。
假设A 是一个n*n的实对称矩阵,x是非零向量,λ是实数,则其极化恒等式可以表示为:(Ax)·x = x·(Ax) = λx·x其中,·表示向量之间的内积操作。
课题:极化恒等式在向量问题中的应用学习目标目标1:通过自主学习掌握极化恒等式两种模式,理解其几何意义; 目标2-1:通过对例1的自主学习掌握用极化恒等式求数量积的值; 目标2-2:通过对例2的自主学习掌握用极化恒等式求数量积的最值、范围; 目标2-3:通过小组合作学习掌握极化恒等式解决与数量积有关的综合问题。
重点掌握极化恒等式,利用它解决一类与数量积有关的向量问题 难点 根据具体的问题情境,灵活运用极化恒等式目标达成途径学习自我评价阅读以下材料: .两倍等于两条邻边平方和的平方和平行四边形的对角线的你能用向量方法证明:何模型。
示向量加法和减法的几引例:平行四边形是表,,b AD a AB ==证明:不妨设,,则b a DB b a A -=+=C ()222222C C b b a a b a A A +⋅+=+== (1)()222222b b a a b a DB DB +⋅-=-== (2)(1)(2)两式相加得:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+22222222C AD AB b a DB A 结论:平行四边形对角线的平方和等于两条邻边平方和的两倍.思考1:如果将上面(1)(2)两式相减,能得到什么结论呢?b a ⋅=()()⎥⎦⎤⎢⎣⎡--+2241b a b a ————极化恒等式 对于上述恒等式,用向量运算显然容易证明。
那么基于上面的引例,你觉得极化恒等式的几何意义是什么?几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的41. 即:[]2241DB AC b a -=⋅(平行四边形模式) 目标1:阅读材料,了解极化恒等式的由来过程,掌握极化恒等式 的两种模式,并理解其几何意义 M图1思考:在图1的三角形ABD 中(M 为BD 的中点),此恒等式如何表示呢?因为AM AC 2=,所以2241DB AMb a -=⋅(三角形模式) 例1.(2012年浙江文15)在ABC ∆中,M 是BC 的中点,3,10AM BC ==,则AB AC ⋅=____ .解:因为M 是BC 的中点,由极化恒等式得: 2241BC AM AC AB -=⋅=9-10041⨯= -16 【小结】在运用极化恒等式的三角形模式时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式。