曾谨言 量子力学第一卷 习题答案解析8第八章
- 格式:pdf
- 大小:290.56 KB
- 文档页数:34
曾谨言量子力学练习题答案曾谨言量子力学练习题答案量子力学是现代物理学的重要分支之一,其研究对象是微观粒子的行为规律。
曾谨言是一位著名的物理学家,他在量子力学领域有着杰出的贡献。
在学习量子力学的过程中,我们常常会遇到一些练习题,以下是曾谨言量子力学练习题的答案。
1. 问题:在双缝干涉实验中,光子通过两个狭缝后,在屏幕上形成干涉条纹。
如果将其中一个狭缝完全堵住,干涉条纹会发生什么变化?答案:当一个狭缝被堵住时,干涉条纹会消失,屏幕上只会出现一个单缝的衍射图样。
这是因为双缝干涉实验中,光子通过两个狭缝后会形成波的叠加,产生干涉现象。
而当一个狭缝被堵住时,只有一个光子通过,无法产生干涉。
2. 问题:在量子力学中,什么是波函数?答案:波函数是量子力学中描述微观粒子状态的数学函数。
它可以用来计算粒子在空间中的位置、动量等物理量的概率分布。
波函数的平方模的积分表示了粒子在某一位置的概率密度。
3. 问题:什么是量子纠缠?答案:量子纠缠是量子力学中一种特殊的现象,当两个或多个粒子发生相互作用后,它们的状态将无法被单独描述,而是成为一个整体系统的状态。
即使这些粒子之间距离很远,它们的状态仍然是相互关联的。
这种关联关系在量子通信和量子计算中有着重要的应用。
4. 问题:什么是量子隧穿?答案:量子隧穿是指微观粒子在经典力学中无法通过的势垒或势阱,在量子力学中却有一定概率穿越的现象。
这是由于量子力学中粒子的波粒二象性,粒子具有波动性质,可以在势垒或势阱的两侧存在一定的概率分布。
5. 问题:什么是量子比特?答案:量子比特,简称量子位或qubit,是量子计算中的基本单位。
与经典计算中的比特不同,量子比特可以同时处于多个状态的叠加态,这种叠加态可以通过量子门操作进行处理和控制,从而实现量子计算的优势。
以上是曾谨言量子力学练习题的答案。
量子力学作为一门复杂而又精密的学科,需要我们通过理论和练习来加深对其原理和应用的理解。
希望这些答案能够帮助大家更好地掌握量子力学的知识,并在学习和研究中取得更进一步的突破。
曾谨言《量子力学》(卷I )第四版(科学出版社)2007年1月摘录第三版序言我认为一个好的高校教师,不应只满足于传授知识,而应着重培养学生如何思考问题、提出问题和解决问题。
这里涉及到科学上的继承和创新的关系。
“继往”中是一种手段,而目的只能是“开来”。
讲课虽不必要完全按照历史的发展线索讲,但有必要充分展开这种矛盾,让学生自己去思考,自己去设想一个解决矛盾的方案。
要真正贯彻启发式教学,教师有必要进行教学与科学研究。
而教学研究既有教学法的研究,便更实质性的是教学内容的研究。
从教学法来讲,教师讲述一个新概念和新原理时,应力求符合初学者的认识过程。
在教学内容上,至少对于像量子力学这样的现代物理课程来讲,我信为还有很多问题并未搞得很清楚,很值得研究。
量子力学涉及物质运动形式和规律的根本变革.20世纪前的经典物理学(经典力学、电动力学、热力学与统计物理学等),只适用于描述一般宏观从物质波的驻波条件自然得出角动量量子化的条件及自然理解为什么束缚态的能量是量子化的:P17~18;人类对光的认识的发展历史把原来人们长期把物质粒子看作经典粒子而没有发现错误的启发作用:P18;康普顿实验对玻尔电子轨道概念的否定及得出“无限精确地跟踪一个电子是不可能的”:P21;在矩阵力学的建立过程中,玻尔的对应原理思想起了重要的作用;波动力学严于德布罗意物质波的思想:P21;微观粒子波粒二象性的准确含义:P29;电子的双缝衍射实验对理解电子波为几率波的作用:P31在非相对论条件下(没有粒子的产生与湮灭),概率波正确地把物质粒子的波动性与粒子性联系起来,也是在此条件下,有波函数的归一化及归一化不随时间变化的结果:P32;经典波没有归一化的要领,这也是概率波与经典波的区别之一:P32;波函数归一化不影响概率分布:P32多粒子体系波函数的物理意义表明:物质粒子的波动性并不是在三维空间中某种实在的物理量的波动现象,而一般说来是多维的位形空间中的概率波。
上海交大量子力学考研曾谨言《量子力学教程》考研真题第一部分考研真题精选一、填空题11924年,德布罗意提出物质波概念,认为任何实物粒子,如电子,质子,也具有波性,对于具有一定动量p的自由粒子,满足德布罗意关系:______;假设电子由静止被150伏电压加速,加速后电子的物质波波长为:______。
[北京大学2005研]【答案】2对宏观物体而言,其对应的物质波长极短,所以宏观物体波动性很难被我们观察到,但最近发现介观系统(纳米尺度下的大分子)在低温下会显示出波动性。
计算1K时,C60团簇(由60个C原子构成足球状分子)热运动对应的物质波波长为:______。
[北京大学2005研]【答案】2.9×10-10m二、判断题1一维粒子的本征态是不简并的。
[北京大学2006研]【答案】错查看答案【解析】对于一维粒子的本征态是否简并不能确定,可以举例说明。
比如,一维无限深方势阱,若势能满足:在阱内(),体系所满足的定态薛定谔方程为:在阱外(),定态薛定谔方程为:体系的能量本征值为:本征函数为:所以,显而易见,一维无限深方势阱的本征态是简并的。
2量子力学中可观察力学量相应的算符为厄米算符。
[北京大学2006研] 【答案】对查看答案【解析】在量子力学中,表示力学量的算符都是厄米算符。
3设体系处于定态,则不含时力学量的测量值的概率分布不随时间改变。
[北京大学2006研]【答案】错查看答案【解析】力学量F ∧的平均值随时间的变化满足:若(即力学量F ∧的平均值不随时间变化),则称F ∧为守恒量。
力学量F ∧为守恒量的条件为:∂F/∂t =0且[F ,H]=0。
不含时力学量F ∧的测量值随时间改变可以表示为:因此,力学量F ∧的平均值是否变化不能确定,对于定态而言,任何一个波函数都可以用力学量F ∧的本征函数表示,在各个本征函数中,力学量F ∧所取值的大小是确定的。
因此可以推断,力学量F ∧的测量值的概率分布也不能确定。
第8章 自 旋一、填空题1.称______等固有性质______的微观粒子为全同粒子。
【答案】质量;电荷;自旋;完全相同2.对氢原子,不考虑电子的自旋,能级的简并度为______,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为______。
【答案】n 2;2n 23.一个电子运动的旋量波函数为,则表示电子自旋向上、位置在处的几率密度表达式为______,表示电子自旋向下的几率的表达式为______。
【答案】;二、名词解释题 电子自旋。
答:电子的内禀特性之一:(1)在非相对论量子力学中。
电子自旋是作为假定由Uhlenbeck 和Goudsmit 提出的:每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值:;每个电子具有自旋磁矩M s ,它和自旋角动量的关系式:。
(2)在相对论量子力学中,自旋象粒子的其他性质—样包含在波动方程中,不需另作假定。
三、简答题 1.请用泡利矩阵,,定义电子的自旋算符,并验证它们满足角动量对易关系。
答:电子的自旋算符,其中,i =x ,y ,z 。
()()()z ,2,,2r r s r ψψψ⎛⎫= ⎪ ⎪-⎝⎭r ()2,/2r ψ()23d ,/2rr ψ-⎰2±=z s μμ2e M S e M sz s ±=→-=⎪⎪⎭⎫ ⎝⎛=0110xσ⎪⎪⎭⎫ ⎝⎛-=00i i y σ⎪⎪⎭⎫ ⎝⎛-=1001zσi iS σˆ2ˆ=2.写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。
答:总自旋为0。
总自旋为1: 。
3.写出泡利矩阵。
答:,,4.试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。
答:让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。
5.完全描述电子运动的旋量波函数为,试述及分别表示什么样的物理意义。
答:表示电子自旋向下,位置在处的几率密度;表示电子自旋向上的几率。
曾谨言量子力学练习题答案曾谨言量子力学练习题答案量子力学作为现代物理学的重要分支,是研究微观世界的基本理论。
在学习量子力学的过程中,练习题是不可或缺的一部分。
本文将为大家提供一些曾谨言量子力学练习题的答案,希望能对大家的学习有所帮助。
1. 考虑一个自旋1/2的粒子,其自旋矢量可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|其中,i为虚数单位。
根据这些泡利矩阵,我们可以计算自旋矢量在不同方向上的期望值。
2. 对于一个自旋1/2的粒子,其自旋矢量的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋矢量的内积。
根据泡利矩阵的定义,可以计算出自旋矢量在不同方向上的内积。
3. 考虑一个自旋1/2的粒子,其自旋矩阵可以表示为:J = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋矩阵在不同方向上的期望值。
4. 对于一个自旋1/2的粒子,其自旋矩阵的模长可以表示为:|J| = √(J·J)其中,J·J表示自旋矩阵的内积。
根据泡利矩阵的定义,可以计算出自旋矩阵在不同方向上的内积。
5. 考虑一个自旋1/2的粒子,其自旋算符可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋算符在不同方向上的期望值。
6. 对于一个自旋1/2的粒子,其自旋算符的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋算符的内积。
量子力学曾谨言练习题答案量子力学是一门研究微观粒子行为的物理学分支,它与经典力学有着根本的不同。
曾谨言教授的《量子力学》教材是许多学生和学者学习量子力学的重要参考书籍。
以下是一些量子力学练习题的答案,供参考:1. 波函数的归一化条件:波函数的归一化条件是为了保证概率的守恒。
一个归一化的波函数满足以下条件:\[ \int |\psi(x)|^2 dx = 1 \]这意味着粒子在空间中任意位置出现的概率之和等于1。
2. 薛定谔方程:薛定谔方程是量子力学中描述粒子波函数随时间演化的基本方程。
对于一个非相对论性的单粒子系统,薛定谔方程可以写为:\[ i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2 \psi + V\psi \]其中,\( \hbar \) 是约化普朗克常数,\( m \) 是粒子质量,\( V \) 是势能,\( \nabla^2 \) 是拉普拉斯算子。
3. 不确定性原理:海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。
其数学表达式为:\[ \Delta x \cdot \Delta p \geq \frac{\hbar}{2} \]这里,\( \Delta x \) 和 \( \Delta p \) 分别是位置和动量的不确定性。
4. 氢原子的能级:氢原子的能级是量子化的,并且可以用以下公式表示:\[ E_n = -\frac{13.6 \text{ eV}}{n^2} \]其中,\( n \) 是主量子数,\( E_n \) 是对应于 \( n \) 能级的能级能量。
5. 泡利不相容原理:泡利不相容原理指出,一个原子中的两个电子不能具有完全相同的四个量子数。
这意味着在同一个原子中,没有两个电子可以同时具有相同的主量子数、角量子数、磁量子数和自旋量子数。
6. 量子隧道效应:量子隧道效应是指粒子在经典力学中不可能穿越的势垒下,由于量子效应,粒子有一定的概率穿越势垒。