武汉理工大学 热能与动力机械测试技术-1可疑测量数据剔除
- 格式:ppt
- 大小:391.00 KB
- 文档页数:1
第一章X射线一、X射线的产生?热阴极上的灯丝被通电加热至高温时,产生大量的热电子,这些电子在阴阳极间的高压作用下被加速,以极快速度撞向阳极,由于电子的运动突然受阻,其动能部分转变为辐射能,以X射线的形式放出,产生X射线。
二、 X射线谱的种类?各自的特征?答:两种类型:连续X射线谱和特征X射线谱连续X射线谱:具有从某一个最短波长(短波极限)开始的连续的各种波长的X射线。
它的强度随管电压V、管电流i和阳极材料原子序数Z的变化而变化。
指X射线管中发出的一部分包含各种波长的光的光谱。
从管中释放的电子与阳极碰撞的时间和条件各不相同,绝大多数电子要经历多次碰撞,产生能量各不相同的辐射,因此出现连续X射线谱特征X射线谱:也称标识X射线谱,它是由若干特定波长而强度很大的谱线构成的,这种谱线只有当管电压超过一定数值Vk(激发电压)时才能产生,而这种谱线的波长与X射线管的管电压、管电流等工作条件无关,只取决于阳极材料,不同元属制成的阳极将发出不同波长的谱线,并称为特征X射线谱三、什么叫K系和L系辐射?当k层电子被激发,L、M、N。
壳层中的电子跳入k层空位时发出X射线的过程叫K系辐射,发出的X射线谱线分别称之为Kα、Kβ、Kγ…谱线,它们共同构成了k系标识X射线。
当L层电子被激发, M、N。
壳层中的电子跳入L层空位时发出X射线的过程叫L系辐射,发出的X 射线谱线分别称之为Lα、Lβ…谱线,它们共同构成了L系标识X射线。
四、何谓Kα射线?何谓Kβ射线?这两种射线中哪种射线强度大?通常X射线衍射用的是哪种射线?Kα是L壳层中的电子跳入K层空位时发出的X射线,Kβ射线是M壳层中的电子跳入K层空位时发出的X射线,Kα比Kβ强度大,因为L层电子跳入K层空位的几率比M层电子跳入K层空位的几率大。
Kβ波长短,X射线衍射用的是Kα射线,另加:Kα射线是由Kα1和Kα2组成,它们分别是电子从L3和L2子能级跳入K层空位时产生的。
且K α1和Kα2的强度比是2:1。
2012年有幸参加了武汉理工大学能动学院研究生招生复试下面是一些能够回忆起的考题希望会对大家有所帮助:一、专业课考试部分: 总分100测试技术考题1、什么是压电效应?应用实例?2、什么是光电效应?应用实例?3、什么是霍尔效应?应用实例?4、测量误差按其影响程度可分为哪三类?分别作简单的介绍?5、系统误差按产生的原因可分为哪几类, 产生的原因是什么?如何利用扭矩法测涡轮等的转速?关于测转速的方法好好了解一下。
柴油机考题1、柴油机的固定件与活动件的名称?画出柴油机的简图并标出运动件与固定件。
2、柴油机燃料的燃烧分为哪几个阶段?分别有什么特点?高置水箱的作用?辅机考题1、泵的分类?并举例?2、什么是液压传动?应用实例?喷油泵与喷油嘴的区别与作用?智能交通运输系统1、如何解决打的难?2、对道路建设的一些建议?3、如何利用智能交通解决交通拥堵?你赞同单双号限行吗?这样做的利与弊?能回忆的就这么多了, 总共有26题测试技术10题, 柴油机5题, 辅机5题, 智能交通运输系统6题考试要求任选20题解答, 考试时间120分钟二、英语测试听力总共30题, 8个短对话4个长对话(每个长对话有4个小题)短文一篇总共6小题4题单词2题句子翻译部分一篇中译英是与专业相关的大概也就5—6句话不长的然后一篇英译中也是专业相关的长度差不多时间60分钟总分100分三、面试部分首先自我介绍中英文都可以没有要求, 但是最好样英文自我介绍, 然后就是文献翻译从打印好的一篇文献里随便挑一段让你读完后就翻译, 之后就是一些老师提问什么都会问的, 这个只要对自己所学过的所有专业科目有一个概括性的认识就行了, 当然有些老师也会细问的, 因人而异。
振动模态的参数识别综述谭冬梅1 姚 三1 瞿伟廉1(1.武汉理工大学 土木工程与建筑学院,湖北 武汉 430070)摘 要:综述了目前振动模态参数识别的频域方法、时域方法、时2频方法、基于小波分析与基于H HT 变换的非平稳信号处理的时2频方法及基于模拟进化的方法的基本原则与具体做法,比较了各方法的优缺点及适用范围,并展望了模态参数识别的方向.关键词:振动模态; 参数识别; 小波分析中图分类号:TU311.3 文献标识码:A 文章编号:1000-5730(2002)03-0073-06模态参数识别的主要任务是从测试所得的数据中,确定振动系统的模态参数[1],其中包括模态固有频率、模态阻尼比、模态质量、模态刚度及振型等.目前参数识别分为频域法、时域法、时2频方法及基于模拟进化的方法四大类.1 频域法问题的引入从结构损伤诊断开始,振动模态参数是主要的损伤标识量.傅立叶变换是时域到频域相互转化的工具,从物理意义上讲,它的实质是把波形分解成许多不同频率的正弦波的叠加.在测试时,响应与力的信号是时间的函数,要在频域内进行参数识别,就必须将其转换成频域信号.计算机技术的发展及快速富氏变换(FFT)技术的实现,实现了时域信号转换成频域信号,特别是专用的FF T 谱分析仪问世,使频域内参数识别的技术得到迅速发展.频域法又分为单模态识别法、多模态识别法、分区模态综合法和频域总体识别法.对小阻尼且各模态耦合较小的系统,用单模态识别法可达到满意的识别精度.而对模态耦合较大的系统,必须用多模态识别法.1.1 单模态识别方法从理论上说单模态识别方法[2,3]只用一个频响函数(原点或跨原点频响函数),就可得到主导模态的模态频率和模态阻尼(衰减系数),而要得到该阶模态振型值,则需要频响函数矩阵的一列(激励一点,测各点响应)或一行(激励各点,测一点响应)元素,这样便得到主导模态的全部参数.将所有关心模态分别作为主导模态进行单模态识别,就得到系统的各阶模态参数.a.直接估计法.直接估计法认为系统的观测数据是准确的,没有噪声和误差,直接由其求取系统的数学模型,分为直接读数法(分量估计法)及差分法.直接读数法利用单自由度系统频响函数各种曲线的特征进行参数识别.该方法适用于单自由度系统的参数识别,对复杂结构,当各阶模态并不紧密耦合时,也可应用此法对某阶模态作参数识别,这种方法主要基于特征曲线的图形进行参数识别,所以有人也称为图解法.由于该方法识别精度差、效率低,现已基本淘汰.差分法利用各振点附近实测频响函数值的差分直接估算模态参数,简单易行,便于编程处理.但由于属于直接估计,且未考虑剩余模态影响,所以精度不高.b.最小二乘圆拟合法,属于曲线拟合法.其基本思想是根据实测频响函数数据,用理想导纳圆去拟合实测的导纳圆,并按最小二乘原理使其误差最小.此方法只用最小二乘原理估算出导纳圆半径或振型,而其他模态参数的估计仍建立在图解法的基础上,故精度不高.1.2 多模态识别方法多模态识别方法[2,3]是在建立频响函数的理论模型过程中,将耦合较重的待识别模态考虑进去,用适当的参数识别方法去估算.它适用于模态较为密集,或阻尼较大,各模态间互有重叠的情况.a.根据所选频响函数数学模型不同有两类方法:一类以频响函数的模态展式为数学模型,包括非线性加权最小二乘法,直接偏导数法;另一类以频响函数的有理分式为数学模型,包括Levy 法收稿日期:2002-07-10.作者简介:谭冬梅(1976-),女,硕士研究生;武汉,武汉理工大学土木工程与建筑学院(430070).基金项目:国家自然科学基金会主任基金项目(50145020).第19卷第3期 华 中 科 技 大 学 学 报(城市科学版) Vol.19No.32002年9月 J.of Huazhong Univ.o f Sci.&Tech.(Urban Science Edi tion) Sep.2002(多项式拟合法),正交多项式拟合法等.Levy法做参数识别的数学模型采用频响函数的有理分式形式,由于未使用简化的模态展式,理论模型是精确的,因而有较高的识别精度,但计算工作量大.b.优化识别法.优化识别法的思路是将非线性函数在初值附近做泰勒展开,通过迭代来改善初值,达到识别参数的优化.1.3分区模态综合法对较大型结构,由于单点激励能量有限,在测得的一列或一行频响函数中,远离激励点的频响函数信噪比很低,以此为基础识别的振型精度也很低,甚至无法得到结构的整体振型.分区模态综合法[3,4]简单,不增加测试设备便可得到满意的效果,缺点是对超大型结构仍难以激起整体有效模态. 1.4频域总体识别法频域总体识别法[3]建立在MI M O频响函数估计基础上,用频响函数矩阵的多列元素进行识别.还有一种建立在SIM O频响函数估计之上的不完全的SI M O参数识别,它运用所有测点的频响函数来识别模态阻尼和模态频率,可以认为是一种总体识别.运用SIM O法识别模态阻尼和模态频率原则上也可以用各点的测量数据,并分别识别各点的留数值.但是根据单点激励所测得的一列频响函数来求取模态参数时,可能遗漏模态,单点激励无法识别重根以及难以识别非常密集的模态.1.5线性动态系统的Karhunen2loeve(KL)方法Karhunen2loeve过程[5]是在频域内推导的,它基于准确的系统响应和离散傅立叶变换表达式.考虑分布函数在频域内导出的特征方程将产生的不同问题,对有效KL模态计算和利用KL特征模态构造降阶系统,也讨论了系统响应的选择. Karhunen2loeve分解已经大量应用于产生动态和流体结构应用的特征模态的新集合[6~10],KL方法有如下优点.a.KL过程利用快照方法,使获得大型系统特征模态的问题降为解决只有100阶矩阵的特征模态.b.提出了真实的优化模态.c.直接响应,不需要系统的动态模型表述,能应用于分析和实验模型.d.解决了线性系统及其伴随系统,有可能重新构造初始系统的特征模态.然而,对于更一般的包括多输入的响应问题, KL方法的输入选择不是唯一的,需进一步研究.频域法的最大优点是利用频域平均技术,最大限度地抑制了噪声影响,使模态定阶问题容易解决,但也存在若干不足.a.功率泄露、频率混叠及离线分析等.b.在识别振动模态参数时,虽然傅立叶变换能将信号的时域特征和频域特征联系起来,分别从信号的时域和频域观察,但由于信号的时域波形中不包含任何频域信息,所以不能把二者有机结合.另外,傅立叶谱是信号的统计特性,从其表达式可看出,它是整个时间域内的积分,没有局部分析信号的功能,完全不具备时域信息,这样在信号分析中就面临时域和频域的局部化矛盾.c.由于对非线性参数需用迭代法识别,因而分析周期长;又由于必须使用激励信号,一般需增加复杂的激振设备.特别是对大型结构,尽管可采用多点激振技术,但有些情况下仍难以实现有效激振,无法测得有效激励和响应信号,比如对大型海工结构、超大建筑及超大运输等,往往只能得到其自然力或工作动力激励下的响应信号.2时域法时域法是近年才在国内外发展起来的一门新技术,它可以克服频域法的一些缺陷.特别是对大型复杂构件,如飞机、船舶及建筑物等受到风、浪及大地脉动的作用,它们在工作中承受的荷载很难测量,但响应信号很容易测得,直接利用响应的时域信号进行参数识别无疑是很有意义的.时域法是将振动信号直接进行识别.最基本、最常用的有Ibrahim时域法、I TD法、最小二乘复指数法(LSCE法)、多参考点复指数法(PRCE法)、特征系统实现法(ERA法)和ARM A时序分析法. 2.1Ibrahim时域法1973年~1976年提出的Ibrahim时域法[2~4]是以粘性阻尼多自由度系统的自由响应为基础,根据对各测点测得的自由振动响应信号以适当的方式采样,建立自由振动响应矩阵及数学模型,求出系统的特征值与特征向量,最终识别出各模态参数.此方法概念简单,但问题是,第一,在I2 brahim时域法中的位移、速度及加速度响应的测试是困难的;第二,此法要求激励能量足够大,否则不足以使系统产生所需全部模态的自由振动响应信息;第三,要求测试对应于系统n个自由度测点的自由响应,才能构成2n@2n阶的状态向量矩阵,测试工作量很大.2.2ITD法I TD法[2,3,11]属SI M O参数识别,直接使用自由响应或脉冲响应信号.其基本思想是使用同时测得的各测点的自由响应(位移、速度或加速度三者之74华中科技大学学报(城市科学版)2002年一),通过三次不同延时采样,构造自由响应采样数据的增广矩阵,根据自由响应的数学模型建立特征方程,求解出特征对后再估算各阶模态参数.I TD 法的特点是同时使用全部测点的自由响应数据,成为后来发展起来的多种整体识别法的基础.1986年,Ibrahim又提出了省时的S TD法,实际上是I TD 法的一种新的解算过程,使IT D法的计算量大为降低,节省了内存和机时,而且有较高的识别精度,尤其对于误差的识别,可免除有偏误差.S TD法对用户的参数选择的要求也大为减少.2.3最小二乘复指数法(LSCE法)最小二乘复指数法(L SCE法)[2,3]是另一类时域识别方法,也称Prony法,属于SIS O参数识别. LS CE法直接使用自由响应或脉冲响应信号,基本思想是以Z变换因子中包含待识别的复频率,构造Prony多项式,使其零点等于Z变换因子的值.这样,将求解Z变换因子转化为求解Prony多项式的系数.为了求解这一组系数,构造脉冲响应数据序列的自回归(A R)模型,自回归系数即Prony多项式的系数,通过在不同起始点采样,得到关于自回归系数的线性方程组,用最小二乘法可得到自回归系数的解,于是可求得Prony多项式的根.再由脉冲响应数据序列构造该测点各阶脉冲响应幅值(留数)的线性方程组,用最小二乘法求解,对各点均作上述识别,得到各阶模态矢量.与I TD法相比,L SCE 法在识别模态频率和模态阻尼时只用一个测点的脉冲响应数据,而不象I TD法那样使用全部测点自由响应数据,因而L SCE法属于局部识别法.2.4多参考点复指数法(PRCE法)在上述单参考点复指数法的基础上,提出了多参考点复指数法(PRCE法)[3],它源于单点激励下的最小二乘复指数法,属M IM O整体识别法,数学模型为基于MI M O的脉冲响应函数矩阵.2.5特征系统实现法(ERA法)特征系统实现法(ERA法)[3,11]源于单点激励下的I TD法,属MI M O整体识别法.ERA法以由M I M O得到的脉冲响应函数为基本模型,通过构造广义Hankel矩阵,利用奇异值分解技术,得到系统的最小实现,从而得到最小阶数的系统矩阵,以此为基础可进一步识别系统的模态参数.该方法理论推导严密、技术先进且计算量小,是当时乃至目前最完善又最先进的方法之一,比LSC E法的识别精度有较大提高,特别是能识别密集模态和重根情形,对大型复杂结构效果良好.2.6ARMA时序分析法时间序列分析或时间序列方法[2,3,11]是对有序的随机数据进行分析、研究和处理.20世纪70年代中期,美籍华人吴贤铭和Pandit将时序法成功用于机械制造业,对其数学方法赋予了清晰的物理概念,讨论并阐明了时序模型方程与振动微分之间的关系.时序法使用的数学模型(差分方程)主要是A R模型和AR M A模型,A R模型只使用响应信号,A RM A模型需使用激励和响应两种信号,两者均使用平稳随机信号.ARM A属SIS O 参数识别,直接使用随机激励和响应信号,利用差分方程和Z变换,分别建立强迫振动方程与A R2 M A模型、传递函数与A RM A模型的等价关系,由ARM A模型识别模态参数.与LS CE法相同,只使用一个测点的ARM A模型,就可以识别出各阶极点,因而也属于局部识别法.在以往进行频域谱分析时,常由于信号截断而引起泄露,出现旁瓣、分辨率低及信号被淹没等缺陷,而时间序列分析则与谱分析不同,由于时序谱是动态谱,观测数据能外延,因此不会由于观测数据的样本长度有限而产生上述缺陷.用时序模型进行参数识别无泄露、分辨率高,但它的形式、阶次与参数都必须正确选择,因而这又是时序分析的难点.1986年Leuridan J M等人使用ARM A模型提出了另一种M IM O时域识别法DPM I(direct parameter model identifica2 tion),将LSEC,PRCE及I TD法统一起来.时域参数法的主要优点是可以只使用实测响应信号,无需FFT,因而可以利用时域方法对连续工作的设备,例如发电机组、大型化肥设备及化工装置,进行/在线0参数识别,这种在现实工况下识别的参数真正反映了结构的实际动态特性.由于时域法参数识别技术只需要响应的时域信号,从而减少了激励设备,大大节省了测试时间与费用,这些都是频域法所不具有的优点.当不使用脉冲响应信号时,缺点也很明显.由于不使用平均技术,因而分析信号中包含噪声干扰,所识别的模态中除系统模态外,还包含噪声模态.如何甄别和剔除噪声模态,一直是时域法研究中的重要课题.3小波分析法[12~15]小波分析法能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,也称时频局部化方法.特别适用于非稳定信号.3.1小波分析的基本思想小波理论的思想形成于本世纪初,Haar在1910年提出第一个小波规范正交基,即人们所熟知的Haar系.小波Wavelet变换是由法国数学家75第3期谭冬梅等:振动模态的参数识别综述M orlet于1980年提出的,他与法国理论物理学家Grossman共同提出连续小波变换的几何体系,其基础是平移和伸缩(放射群)下的不变性,这使得能将一个信号分解成对空间和尺度(时间与频率)的独立贡献,同时又不丢失原有信号的信息.基于小波理论时频表示的基本思想:认为自然界各种信号中频率高低不同的分量具有不同的时变特性,通常是较低频率成分的频谱特征随时间的变化比较缓慢,而较高频率成分的频谱特征则变化比较迅速.因此,按这样的规律非均匀地划分时间和频率轴,就可以在服从测不准原理的前提下,在不同的时频区域都能获得比较合适的时间分辨率和频率分辨率.3.2模态参数识别的小波变换分析方法首先利用调频高斯小波变换良好的时频分辨能力以及带通滤波性质使系统自动解耦,然后从脉冲响应函数的小波变换出发识别模态参数.信号直接小波变换方法的优点,一是直接根据定义而来,概念非常易于理解,因此易于工程技术人员理解与应用;二是可将实际工程中大量存在的非平稳的随机信号、有局部断点的信号及一些不能用Fourier变换来分析的信号等,用直接小波变换分解为不同尺度上(不同频率范围内)的分量,再对这些分量进行分析.如可用Fourier变换,这样即可使用人们熟知的有效方法.3.3信号除噪处理的小波分析方法在实际工程中,结构损伤识别信号不可避免地混有噪声与干扰,能较好地排除噪声,对充分进行特征提取是非常重要的.因此,对结构损伤信号进行预处理,主要是进行消噪处理,小波分析能同时在时频域中对信号进行分析,所以它能有效地区分信号中的突变部分和噪声,实现信号的消噪.小波消噪处理的算法是:a.强制消噪处理.首先将一维信号小波分解,然后把小波分解结构中的高频系数全部变为零,再对信号进行重构.这种方法比较简单,重构后的消噪信号也比较平滑,但容易丢失信号的某些高频有用成份.b.给定阀值消噪处理.分为三个步骤:一维信号的小波分解;小波分解高频系数的阀值量化;一维小波的重构.小波分析被认为是傅立叶分析方法的突破性发展,是一种新的时变信号时2频两维分析方法.它与短时傅立叶变换的最大不同之处是其分析精度可变,它是一种加时变窗进行分析的方法,在时2频相平面的高频段具有高的时间分辨率和低的频率分辨率,而在低频段具有低的时间分辨率和高的频率分辨率,这正符合低频信号变换缓慢而高频信号变化迅速的特点.小波变换比短时傅立叶变换具有更好的时频窗口特性,克服了傅立叶变换中时-频分辨率恒定的弱点,因此它能在具有足够时间分辨率的前提下分析信号中的短时高频成份,又能在很好的频率分辨率下估计信号中的低频.但小波分析源于傅立叶分析,小波函数的存在性证明依赖于傅立叶分析,因此,它不可能完全取代傅立叶分析.本质上,小波变换仍是一种线性变换,不能用于处理非线性问题.此外,小波变换的分析分辨率仍有一定的极限,这使得变换结果在某些场合下失去了物理意义.4基于HHT变换的非平稳信号的处理方法[16,17]4.1HHT变换的基本原理经验模态分解方法E M D(e mpirical mode decom2 position)[18]用于非平稳信号处理.信号经E M D分解后的各分量I M F(Intrinsic M ode Function)都是平稳的,可以进一步进行Hilbert变换得到Hilbert谱,由此得到的Hilbert能谱能准确反映出物理过程中能量在各种频率尺度及时间上的分布.EM D方法为非平稳信号进行变换奠定了基础,美国宇航中心N AS A将其称为HHT(Hilbert/Huang T ransform)变换.E M D方法本质上是对一个信号进行平稳化处理分解,产生具有信号的不同特征尺度的本征模函数I M F分量.对于非平稳信号,直接进行Hilbert变换没有意义.而IM F分量是平稳的,基于I M F分量进行Hilbert变换后得到的Hilbert能谱能准确反映出物理过程中能量在各种频率尺度及时间上的分布.谱是一个三维(时间2频率2局地振幅)谱形,与小波谱的表示方法类似.E M D分解主要是为了进行Hilbert变换得到Hilbert谱,基于I M F分量的Hilbert 谱的计算通过Fourier变换实现.4.2基于HHT变换的模态参数识别HHT变换是一种谱分析方法,分为两部分.a.Hilbert变换.Hilbert变换的关键是经验振型分离法,该方法认为任何复杂的时间序列都是由一些相互不同的、简单的、并非正弦函数的固有振型函数组成,一步步将较高频率成份从一时间序列中分离出来,将时间系列分解成若干个周期愈来愈长的固有振型函数.b.Hilbert谱分析.对这一固有振型函数系列进行Hilbert变换,得到Hilbert 谱,该谱的振幅既是频率的函数,又是时间的函数.任一时间序列的Hilbert谱中检测出某振幅的频率,是指这一振幅的瞬时频率,因此,检测出的76华中科技大学学报(城市科学版)2002年这种频率的波不一定在此时间序列的整个持续时间都存在.HHT分析与小波分析等其他方法相比,具有如下特点.a.E M D能有效地处理非平稳信号.在线性框架下,HHT谱与小波谱具有相同的表现特性,但HH T谱在时域内的分辨率高于小波谱.b.与Fourier谱相比,从Hilbert谱中不仅可看出幅值,而且可以看出频率随时间的变化情况,这是Fourier 谱所不能反映的.此外,对非平稳的时程曲线, Fourier谱的分辨率可能要低一些,而对Hilbert谱来说,因为可以结合频率和时间两个坐标来分析,容易消除一些干扰,有利于提高检索信号的分辨率.c.在克服边缘效应后,HHT能较好地处理短时信号.在实际应用中,短时信号的处理是很重要的.d.HHT能客观地处理一类非线性问题,所得到的三维谱形能准确地用于波内调制机制反映出系统的非线性变化特性,这是其他方法所不能比拟的.小波分析难以处理非线性问题.e.E M D能较好地分离强间歇信号,而且也是去除高频噪音的最好方法之一.实际应用HHT时,必须克服边缘效应.5基于模拟进化的模态参数识别5.1基于模拟进化的模态参数识别的基本原理基于模拟进化的模态参数识别方法实现了基于达尔文进化理论的整体优化算法用于识别线性振动结构的模态参数.Bremermann[19]认识到生物进化是一个优化过程.设计变量的向量被认为是一个生物体,变量向量的组成部分被称为类似于一个生物体的基因.Fogel和A tmar[20]研究了基于模拟有性结合的进化机理,他们的结果表明在整体优化有效中,通过高斯随机变量结果改变进化解法的每个组成部分.在这个过程中,变量向量起着生物体的作用,因此参数空间的每个点被认为是一个生物体.每个生物体(变量向量)复制本身给后代,其中复制错误(随机)用来解释变异.两代生物体根据给定规则彼此竞争,在整个群体中,每个生物体与随机选择的生物体进行竞争以获得适应性分数.得最高分的生物体作为下一代的双亲而幸存,剩余的生物体则被淘汰,同样的过程一直重复到整个群体得到很好的进化[21].5.2线性结构的模态参数识别[22]a.响应计算的快速回归算法.对于线性结构的每个占优模态,可通过动力方程求解其在某种激励下的响应,再将模态响应迭加.在优化过程中,基于进化的研究包含大量计算,因此必须有一个高效求解算法用于该动力方程.如果是在时域基于模态扫描的概念下进行模态参数识别,则受到对于线性振荡器的向前响应快速算法的激发,提出了输入数据三个连续时间段内呈平方插值的假设,从而得到响应计算的快速回归算法.b.模态扫描.在识别感兴趣的模态参数识别问题时,将输出错误的平方作为最小化的价值函数,并引入模态扫描的概念.价值函数的最小值通过连续性的模态扫描获得,在每次扫描中,由M 个单模态最小值去估计模型中每M个模态的参数.因此价值函数是根据只有一个模态的模态参数初次最小化,在达到测试容许的适应性后,将一个新的模态增加到模型中,再根据两个模态的模态参数执行最小化.重复该过程直到价值函数的减小值小于规定值.c.收敛准则.在一个最优化研究中,如果价值函数值的绝对或相对变化小于规定的容许值,则被认为是收敛的.在进化研究中,最好生物体的目标函数值可能在一些代中保持相同,常规的收敛准则可能导致不是局部最小值的错误结论.根据/适应前景0的概念,生物体将向前景的极值移动(符合对环境最适应的定位),基于此提出新的准则.若在最好或最坏生物体间的/形态0(欧拉距离)差异小于规定值,则进化研究被认为是收敛的.基于模态扫描的模态参数识别,只要当前模型满足收敛准则,就将额外的模态增加到模态模型中.d.评估模态阶数的方法.在系统识别中,为了确定准确的模型阶数,使用的准则是随着模型大小的增加,所处罚价值函数的降低,结构模型则根据该准则的给定最小值获得.数值算例是对一个简单的10个自由度的链式质量2弹性2阻尼系统进行参数识别.数值模拟的结果表明进化研究算法对于多重最优是可靠的,可靠性是靠每一代结束后维持群体候选结果而达到的,实际上提供了在同一时间对不同解的高效并行研究.甚至在困难的条件下(SNR=1),进化研究算法证明了它能确定一个好的解,这表明提出的基于模拟进化的模态参数识别方法用于测试噪音是很可靠的.该方法用于识别更复杂模态的现实问题上,还需要更进一步研究.6结论与展望结构的振动模态参数识别是一个具有广阔工程应用前景的研究课题,虽然关于振动模态的参77第3期谭冬梅等:振动模态的参数识别综述。
能源与动力工程测试技术_江苏大学中国大学mooc课后章节答案期末考试题库2023年1.在水洞内开展绕流物体周围的空化现象可视化实验,关键要实现高的:参考答案:流速2.风洞中实验段上游的稳定段,其内部结构一般是:参考答案:格栅3.水洞实验段内的湍流度可以用何仪器测量:参考答案:激光多普勒测速仪4.风洞内可进行实验的是:参考答案:汽车模型_翼型_风力机模型_建筑物模型5.在水洞内可进行实验的对象是:参考答案:绕流圆柱_螺旋桨叶片_S形水力转轮叶片6.在水洞内进行空化实验时,在下一轮循环中消除空化泡的方法有:参考答案:储液罐内设格栅_喷淋装置_中间设中转罐进行排气7.1英寸为多少厘米参考答案:2.548.皮托管是:参考答案:一根弯成90度的管子_可以测量流速_可以测量总压_可以测量静压9.下列属于PIV技术的是:参考答案:Tomo PIV_Micro PIV_TR PIV10.以下属于无接触式流速测量仪器的是:参考答案:粒子图像速度场仪_激光多普勒测速仪11.以下可以作为流体力学实验平台的设备是:参考答案:风洞_水洞_拖曳水槽12.热线风速仪的基本原理中,最为关键的是:参考答案:对流换热13.流动实验中的PLIF是:参考答案:平面激光诱导荧光法14.关于示踪粒子的选用,下列说法正确的是:参考答案:示踪粒子扮演了流体质点的角色15.在清水中测量流动速度时,示踪粒子可以选用:参考答案:空心玻璃球16.关于速度测量,下列说法不正确的是:参考答案:PIV测量的实施需要两个或两个以上的相机17.关于速度测量,下列说法正确的是:参考答案:PIV和LDV都需要示踪粒子18.下列属于国际单位制中规定的7个物理量的单位的是参考答案:米_秒_安培19.与叶片泵振动有关的因素是:参考答案:转速_叶片数_出水室结构_转子部件的支撑方式20.按噪声源的不同,噪声可分为:参考答案:机械噪声_电磁噪声_空气动力噪声21.利用热电偶测温,只要热电偶连接显示仪表的两个接点温度相同,那么仪表的接入对热电势没有影响。
汽车发动机冷热冲击试验系统设计吴飞1,詹洁1,李培杰1,张希2(1.武汉理工大学机电工程学院,湖北武汉430070;2.武汉东测科技有限责任公司,湖北武汉430056)来稿日期:2019-05-27作者简介:吴飞,(1973-),男,湖北武汉人,博士研究生,硕士生导师,副教授,主要研究方向:数控技术,运动控制分析,CAD/CAM1引言发动机是汽车的核心单元,温度冲击破坏是发动机零部件热变形失效的主要形式。
而影响发动机开发周期和效率的主要因素是发动机热疲劳的考核方式。
为了缩短汽车发动机的开发周期、降低成本,设计一套用于快速检测发动机重要零部件热疲劳特性的冷热冲击试验系统就显得非常重要。
该冷热冲击系统可以用于发动机的研发设计阶段,通过加速热疲劳的方式快速考核发动机缸体缸盖变形、活塞拉缸、汽缸垫开裂等[1]特性。
国外,发动机冷热冲击试验系统的开发和试验技术水平目前已经非常成熟,以美国福特、康明斯,德国大众,英国帕金斯,日本东风本田为代表。
我国对发动机的研究仍然落后于国外先进水平。
但是随着与国外企业的技术合作交流,并结合我国自身的行业特点,形成了适合我国国情的试验标准规范。
随着国产发动机质量考核标准要求越来越严格,对发动机进行冷热冲击试验也显得越来越重要,所以需要尽早开发和研制相应的试验系统。
汽车发动机冷热冲击试验系统用于测试在极端温度工况下发动机零部件的强度,以评估发动机主要零部件的可靠性。
试验系统的成功设计在国内获得多项发明专利并且已经投产使用。
2系统设计原理冷热冲击试验系统的设计要满足国标GBT19055-2003(图1)的要求。
主要分为机械部分、阀组切换部分和PLC 控制部分3个方面的设计。
2.1机械能力部分设计热储能灌通过外循环热水加热发动机机体到一定温度,满足发动机升温需求。
根据热冲击需要,通过设计加热器可以在热冲击前将热储能灌内防冻液温度提升到需求温度。
发动机在进入摘要:发动机是汽车的核心组成部分,其可靠性直接影响整车的安全性能。
d o i :10.3963/j .i s s n .1674-6066.2022.04.012基于H o pf i e l d 神经网络的有限元模型修正杨昕怡(武汉理工大学土木工程与建筑学院,武汉430070)摘 要: 工程结构的有限元模型对结构的健康监测与可靠性评估有重大意义,但实际工程中测量数据和模型都与结构初始有限元模型有一定的差异,因此有必要对实际结构的有限元模型进行修正㊂首先建立有限元模型修正方程来表达结构响应与待修正参数之间的关系,再通过H o p f i e l d 递归神经网络技术,对模型修正方程进行求解㊂通过一个数值梁模型对提出的方法进行了验证,结果显示H o p f i e l d 神经网络在求解线性模型修正仿真中有较好的效果㊂关键词: H o pf i e l d 神经网络; 模型修正; 线性方程组; 有限元模型F i n i t eE l e m e n tM o d e lM o d i f i c a t i o nB a s e do nH o p f i e l d N e u r a lN e t w o r kY A N G X i n -yi (S c h o o l o fC i v i l E n g i n e e r i n g a n dA r c h i t e c t u r e ,W u h a nU n i v e r s i t y o fT e c h n o l o g y ,W u h a n430000,C h i n a )A b s t r a c t : T h e f i n i t e e l e m e n tm o d e l o f e n g i n e e r i n g s t r u c t u r ew a so f g r e a t s i g n i f i c a n c e t o t h eh e a l t h m o n i t o r i n g a n d r e l i a b i l i t y e v a l u a t i o n o f t h e s t r u c t u r e ,b u t t h em e a s u r e d d a t a a n d t h em o d e l i n t h e a c t u a l e n g i n e e r i n g w e r e d i f f e r e n t f r o m t h e i n i t i a l f i n i t e e l e m e n tm o d e l o f t h es t r u c t u r e ,s o i tw a sn e c e s s a r y t o m o d i f y t h e f i n i t ee l e m e n tm o d e l o f t h ea c t u a l s t r u c t u r e .F i r s t l y ,t h e f i n i t ee l e m e n tm o d e lm o d i f i c a t i o ne q u a t i o n w a se s t a b l i s h e dt oe x p r e s st h er e l a t i o n s h i p b e t w e e n s t r u c t u r a l r e s p o n s e a n d p a r a m e t e r s t o b em o d i f i e d ,a n d t h e n t h eH o p f i e l d r e c u r s i v e n e u r a l n e t w o r k t e c h n o l o g y wa s u s e d t os o l v e t h em o d e lm o d i f i c a t i o n e q u a t i o n .An u m e r i c a lb e a m m o d e lw a s u s e d t o v e r i f y t h e p r o p o s e dm e t h o d ,a n d t h e r e -s u l t s s h o w e d t h a tH o p f i e l dn e u r a l n e t w o r kw a s e f f e c t i v e i n s o l v i n g l i n e a rm o d e lm o d i f i c a t i o n s i m u l a t i o n .K e y wo r d s : H o p f i e l dn e u r a l n e t w o r k ; m o d e lm o d i f i c a t i o n ; l i n e a r e q u a t i o n s ; f i n i t e e l e m e n tm o d e l 收稿日期:2022-04-08.基金项目:武汉理工大学土木工程与建筑学院国家级大学生创新创业训练计划资助(202110497067).作者简介:杨昕怡(2000-),本科生.E -m a i l :y a n g x i n y i @w h u t .e d u .c n 自有限单元元分析法问世至今,一直备受工程界学者的广泛关注㊂利用有限元模型来模拟研究结构响应对结构的设计㊁运营㊁维护㊁监测等活动具有重大作用㊂有限元模型修正主要是用结构实测的响应来反演结构力学参数,如弹性模型㊁质量㊁密度㊁尺寸参数等㊂常用的结构实测响应数据主要有静力数据和动力数据㊂由于结构动力数据种类丰富㊁测量方便,因此基于动力数据的有限元模型修正方法较多㊂国内外很多工程领域的研究人员都对基于动力数据的模型修正方法开展了研究,例如,方圣恩等[1]提出了一种模型修正措施,将建立的响应面模型与应用蒙特卡罗仿真技术得到的结构响应样本相联合,用于结构有限元模型修正㊂姚春柱等[2]采用了贝叶斯模型修正方法,将使用吉布斯抽样的蒙特卡罗马尔科夫链抽样方法得到的数据代入随机模型,应用贝叶斯理论,得到关于模型参数的后验分布动态统计特征,达到对参数进行识别的目标㊂陈辉等[3]结合结构随机响应实测数据列出了能准确表达待修正参数与结构反应之间联系的模型修正方程式,并在求解该方程时运用混合摄动-伽辽金方法,从而获取修正参数的概率统计特征㊂在国际上,美国的B e c k JL 教授[4]在对线弹性土木结构的随机模型修正研究中应用了贝叶斯方法,通过判断所抽取样本对应的响应与测量结果是否吻合来确定修正参数㊂R u i [5]通过响应面法㊁改进的蒙特卡洛统计模拟法和移动最小二乘法求解了模型修正方程㊂模型修正是力学反问题,求解模型修正方程,会涉及大型矩阵反复求逆,或存在多解或者病态问题,导致64建材世界 2022年 第43卷 第4期计算精度不高㊂并且根据目前国内外研究人员的研究成果可以看出学者们对模型修正的研究还在初级阶段,还需克服许多困难㊂因此,在工程界的迫切需求下,提出更为实用和高效的模型修正方法具有必要性㊂使用H o p f i e l d神经网络来求解模型修正方程能有效解决上述问题㊂首先建立基于动力模态数据的模型修正方程,并对H o p f i e l d神经网络解决实际问题的理论解与模型推导进行阐述,然后通过一个两跨连续梁对该方法进行了验证㊂结果表明,该方法能非常准确地求解模型修正方程,使修正结果与预设的工况一致,修正后的结构参数能够复现结构动力响应,具有实际工程意义㊂1理论1.1模型修正方程的建立考虑具有N个自由度的无阻尼结构,初始模型满足以下特征值方程K aφi=λi M aφi(i=1, ,n c)(1)式中,K a和M a分别是初始结构模型的整体刚度矩阵和质量矩阵;λi和φi分别是初始模型的第i阶特征值和特征向量;n c为初始模型的计算模态个数㊂类似地,实际结构的特征方程可以表示为K dφ-j=λ-j M dφ-j(j=1, ,n m)(2)式中,K d和M d分别是实际结构模型的整体刚度矩阵和质量矩阵;λ-j和φ-j分别是实际模型的第j阶特征值和特征向量;n m为实际模型的计算模态的个数㊂初始结构跟实际结构的质量矩阵与刚度矩阵存在以下关系M d=M a+ðN e n=1βn M n(3)K d=K a+ðN e n=1αn K n(4)式中,N e为结构的单元个数;K n和M n分别是结构第n个单元的NˑN单元组装矩阵;αn和βn分别为结构第n个单元的质量和刚度的修正系数,表示为实际结构的单元刚度和质量相对于初始矩阵的变化率㊂将式(1)的每个方程左乘φ-T j,其中j=1, ,n m㊂同样,将式(2)的每个方程左乘φT i,其中i=1, ,n c㊂可以得到φ-T j K aφi=λiφ-T j M aφi(5)φT i K dφ-j=λ-T jφi M dφ-j(6)合并式(5)和式(6)可以得到φT i K dφ-jφT i K aφ-j =λ-jφT i M dφ-jλiφT i M aφ-j(7)将式(3)㊁式(4)代入式(7)可以得到1+ðN e n=1αnφT i K nφ-jφT i K aφ-j =λ-jλi1+ðN e n=1βnφT i M nφ-jφT i M aφ-æèçöø÷j(8)对式(8)进行因式变换可以得到ðN e n=1αnφT i K nφ-jφT i K aφ-j -ðN e n=1βnφT i M nφ-jφT i M aφ-j=λ-jλi-1(9)式(9)可以简写为C(0)E(0[])㊃γ(0)=f(0)(10)式中,C=Φ()i T K nΦj,E=ðN e n=1-λ-jΦ()i T M nΦj,f(0)=λ-jΦ()i T MΦj-Φ()i T KΦj,γ=α[]βT㊂1.2H o p f i e l d神经网络H o p f i e l d神经网络作为一种递归神经网络,具有多反馈回路㊂递归神经网络通过结构递归建立,根据不同形式的递归性应用,产生了许多具有不同结构的递归网络㊂在各种神经网络的学习算法中,梯度下降法应用十分广泛㊂采用H o p f i e l d神经网络来求解现行矩阵方程,根据得到的解与理论解之间的对比,能判断该74建材世界2022年第43卷第4期神经网络模型求解线性矩阵方程的有效性㊂数学矩阵论中求C (0)E (0[])㊃γ(0)=f (0)的方法如下x =C ()0 E ()[]0/f ()0=C ()0 E ()[]0-()1㊃f ()0 下面依据负梯度设计方法推导该神经网络模型:1)构造一个基于矩阵范数的标量误差函数ε(t )= C ()0E ()[]0 22/2=C ()0E ()[](0㊃γ()0-f ())0T C ()0E ()[]0㊃γ()0-f ()()0/2 2)为了使上述误差减小,可采用经典的负梯度方法,因此我们可以得到如下误差函数负梯度方向作为下降方向-∂ε∂χ=-C ()0E ()[]0T C ()0E ()[](0㊃γ()0-f ())0 3)线性的基于负梯度的神经网络模型如下γ㊃()0()t =-γC ()0E ()[]0T C ()0E ()[](0㊃γ()0-f ())0其中参数γ>0决定网络的收敛速度,如条件允许,越大越好㊂2 数值算例下面对一个双跨连续梁进行模型修正研究,跨长和梁截面如图1所示㊂模拟连续梁的有限元模型由12个相同的欧拉-伯努利梁单元组成㊂单元中的每一个节点包括两个自由度㊁一个垂直位移和一个扭转角度㊂假设初始梁模型弹性模量为2.8ˑl 010P a ,密度为2.5ˑ103k g /m 3㊂假设第②㊁⑤㊁⑩三个单元的真实质量分别下降了40%㊁30%和20%,同时第③㊁⑤㊁⑨㊁⑩㊁单元的弹性模量分别减少30%㊁40%㊁35%㊁30%和20%,其他单元的质量与弹性模量保持初始值不变㊂将12个单元的弹性模量和质量认定为修正参数㊂修正后的弹性模量参数从左到右编为1~12号,相应的质量参数为13~24㊂换句话说,修正后的参数总数为24㊂计算得到该两跨连续梁24个参数修正后的神经网络预测值与实际真值结果对比如图2所示㊂由图2可以看出,修正后的H o p f i e l d 识别值与实际真值基本吻合,由此可证明H o p f i e l d 神经网络修正模型的有效性㊂(下转第65页)84建材世界 2022年 第43卷 第4期建材世界2022年第43卷第4期[10]施有志,柴建峰,赵花丽,等.地铁深基坑开挖对邻近建筑物影响分析[J].防灾减灾工程学报,2018,38(6):927-935.[11]郑翔,汤继新,成怡冲,等.软土地区地铁车站深基坑施工全过程对邻近建筑物影响实测分析[J].建筑结构,2021,51(10):128-134.[12]A n JB,S u nCF.S a f e t y A s s e s s m e n t o f t h e I m p a c t s o f F o u n d a t i o nP i t C o n s t r u c t i o n i nM e t r oS t a t i o no nN e a r b y B u i l d i n g s[J].I n t e r n a t i o n a l J o u r n a l o f S a f e t y a n dS e c u r i t y E n g i n e e r i n g,2020,10(3):423-429.[13]王利军,邱俊筠,何忠明,等.超大深基坑开挖对邻近地铁隧道变形影响[J].长安大学学报(自然科学版),2020,40(6):77-85.[14]尚国文,李飒,翟超,等.基坑开挖与邻近地铁结构变形相关性的实测分析[J].防灾减灾工程学报,2020,40(1):107-115.[15]丁智,张霄,金杰克,等.基坑全过程开挖及邻近地铁隧道变形实测分析[J].岩土力学,2019,40(S1):415-423.[16]许四法,周奇辉,郑文豪,等.基坑施工对邻近运营隧道变形影响全过程实测分析[J].岩土工程学报,2021,43(5):804-812.[17]左自波,黄玉林,吴小建,等.基坑施工对下方双线地铁隧道影响的数值模拟[J].北京交通大学学报,2019,43(3):50-56.[18]章润红,刘汉龙,仉文岗.深基坑支护开挖对临近地铁隧道结构的影响分析研究[J].防灾减灾工程学报,2018,38(5):857-866.[19]S u nH S,W a n g,L W,C h e nSW,e t a l.AP r e c i s e P r e d i c t i o n o f T u n n e l D e f o r m a t i o nC a u s e d b y C i r c u l a r F o u n d a t i o nP i t E x-c a v a t i o n[J].A p p l i e dS c i e n c e s,2019,9(11),2275.[20]徐宏增,石磊,王振平,等.深基坑开挖对邻近大直径管线影响的优化分析[J].科学技术与工程,2021,21(2):714-719.[21]贺雷,张亚楠,曹明洋,等.软土区基坑开挖对邻近电缆隧道的影响研究[J].建筑结构,2020,50(S1):1032-1037.[22]施有志,葛修润,李秀芳,等.地铁深基坑施工对周边管线影响数值分析[J].中山大学学报(自然科学版),2017,56(6):83-93.[23]L iWJ,H a nX M,C h e nT,e t a l.R e s e a r c ho n I n f l u n e n c eL a wo f E x i s t i n g P i p e-j a c k i n g T u n n e lA f f e c t e db y A d j a c e n t F o u n-d a t i o nP i tE x c a v a t i o ni nS o f tC l a y S t r a t u m[J].I O P C o n fe r e n c eS e r i e s M a t e r i a l sS c i e n c ea n d E n g i n e e r i n g,2019,688:022041.(上接第48页)3结论该文提出了一种基于H o p f i e l d人工神经网络和模态数据求解有限元模型修正参数的方法㊂基于结构实测响应,通过构建修正方程与H o p f i e l d神经网络对一两跨连续梁质量与弹性模量参数进行修正,修正后得到的有限元模型与结构实际特征基本统一㊂因此可以认为将H o p f i e l d神经网络引入模型参数修正中可以避免大型矩阵求逆和正则化,能更准确的修正结构参数㊂参考文献[1]方圣恩,林友勤,夏樟华.考虑结构参数不确定性的随机模型修正方法[J].振动.测试与诊断,2014,34(5):832-837,973.[2]姚春柱,王红岩,芮强,等.车辆点焊结构有限元模型参数不确定性修正方法[J].机械科学与技术,2014,33(10):1545-1550.[3]陈辉,张衡,李烨君,等.测量模态不确定的梁式结构随机有限元模型修正[J].振动工程学报,2019,32(4):653-659.[4] B e c k JL,K a t a f y g i o t i sLS.U p d a t i n g M o d e l s a n dT h e i rU n c e r t a i n t i e s-I:B a y e s i a nS t a t i s t i c a l F r a m e w o r k[J].J o u r n a l o f E n-g i n e e r i n g M e c h a n i c s,1988,124(4):455-461.[5] R u iQ,O u y a n g H,W a n g H Y.A nE f f i c i e n tS t a t i s t i c a l l y E q u i v a l e n tR e d u c e d M e t h o do nS t o c h a s t i c M o d e lU p d a t i n g[J].A p p l i e d M a t h e m a t i c a lM o d e l l i n g,2013,37(8):6079-6096.56。